Шапиро Д.М. Теория и расчет оснований обсыпных устоев автодорожных мостов // Вестник ПНИПУ. Строительство и архитектура. – 2019. – Т. 10, № 3. – С. 104–116. DOI: 10.15593/2224-9826/2019.3.11

Shapiro D.M. Theory and calculation of road bridges buried abutments bases. Bulletin of PNRPU. Construction and Architecture. 2019. Vol. 10. No. 3. Pp. 104-116. DOI: 10.15593/2224-9826/2019.3.11

DOI: 10.15593/2224-9826/2019.3.11 УДК 624.21

ТЕОРИЯ И РАСЧЕТ ОСНОВАНИЙ ОБСЫПНЫХ УСТОЕВ АВТОДОРОЖНЫХ МОСТОВ

Д.М. Шапиро

Воронежский государственный технический университет, Воронеж, Россия

О СТАТЬЕ

Получена: 19 апреля 2019 Принята: 01 июля 2019 Опубликована: 7 октября 2019

Ключевые слова:

основание, обсыпной устой, расчет по предельным состояниям, уравнение Мора – Кулона.

аннотация

В современных мостовых сооружениях на автомобильных дорогах наиболее широко применяются сопряжения с насыпями, включающие обсыпной устой и конус, завершающий подходную насыпь. Особенностью условий, определяющих устойчивость и деформирование оснований и фундаментных конструкций обсыпных устоев, является силовое воздействие веса подходной насыпи и конуса.

В статье содержится описание инженерного метода расчетов оснований обсыпных устоев автодорожных мостов, включающего комплекс проверок по предельным состояниям, приведены расчетные схемы. Расчеты выполняются по расчетным схемам двух групп с использованием моделей теории жесткопластической среды (на основе метода горизонтальных сил Г.М. Шахунянца) и теории линейно деформируемой (или упругопластической) среды. Представлены табличные данные, необходимые для выполнения расчетов. Разработан способ определения напряжений в основаниях обсыпных устоев от веса конуса и подходной насыпи по теории линейно деформируемой среды путем образования условной (эквивалентной) расчетной схемы, в которой к основанию добавляется невесомый слой и действующая нагрузка заменяется равной по величине полубесконечной полосовой, приложенной в повышенном уровне. При этом на действительной поверхности основания возникают нормальные и касательные напряжения, согласующиеся с формой подходной насыпи, ограниченной откосами с трех сторон. Предложен способ расчета прочности грунтов основания обсыпного устоя и конуса моста по уравнению Мора – Кулона, реализуемый при помощи напряжений, определяемых в соответствии с изложенным выше описанием.

© ПНИПУ

[©] Шапиро Давид Моисеевич – доктор технических наук, профессор, e-mail: davshap@mail.ru.

David M. Shapiro - Doctor of Technical Sciences, Professor, e-mail: davshap@mail.ru.

THEORY AND CALCULATION OF ROAD BRIDGES BURIED ABUTMENTS BASES

D.M. Shapiro

Voronezh State Technical University, Voronezh, Russian Federation

ARTICLE INFO	ABSTRACT
Received: 19 April 2019 Accepted: 01 July 2019 Published: 7 October 2019	Buried abutments are most broadly applied in connections of road bridges structures and approach embankments. Embankment and cone weight force influence is the peculiarity of buried abutments bases and foundations constructions conditions of stability and deformation.
Keywords:	calculation method including the complex of limit state checkings and grounding of calcula-
base, buried abutment, calculation by limit states, More-Coulomb equation.	tion schemes. The calculations fulfil by calculated schemes of hard-plastic midst theory (on the base of prof. G.M. Shakhunjantc horizontal strengths method) and linear deformation (or elastic-plastic) midst theory. Table data necessitated for calculations are quoted. A way for define the strains in buried abutments bases from cone and approach embank- ment by the linear deformation midst theory is elaborated by means of making conventional (equivalent) calculated scheme. Non-weighting layer is added to the base, acting load is substitute by equal by value half-endless strip. By it on the real level of base arise normal and tangent strains, conformed with the form approach embankment restricted by slopes from three sides. It is suggested a method of buried abutment base soils stability calculation by the More Coulomb equation.
	descripted way.

Введение

Устои (крайние опоры) являются сложным при проектировании и потенциально аварийным элементом мостовых сооружений. Причины опасностей при строительстве и эксплуатации связаны с силовым воздействием на устои и их основания грунтового массива подходной насыпи и мостового конуса. По публикациям с описаниями аварий [1–10] число обрушений устоев до 80-х гг. прошлого века превышало все случаи повреждений других несущих конструкций мостов. В последние десятилетия аварии устоев наблюдаются значительно реже, что можно объяснить их предупреждением при проектировании и сокращением числа вновь строящихся мостов в пользу ремонтов и реконструкций существующих объектов.

Начиная с 50-х гг. прошлого века в строительстве и на эксплуатируемых объектах наиболее широко применяются сопряжения с насыпями, включающие обсыпные устои и конусы в крайних пролетах мостовых сооружений (рис. 1). Положительным качеством этих систем является завершение подходной насыпи откосом в крайнем пролете моста, придающее плавность распределению напряжений в основании, что ограничивает развитие пластических деформаций и снижает опасность глубоких сдвигов.

Проблема научно обоснованного расчета оснований обсыпных устоев остается по-прежнему актуальной, требующей продолжения исследований в связи с сохраняющимися несовершенствами и недостаточной конкретностью положений норм проектирования (СП 35.13330.2011), написанных в 60-х гг. прошлого века с опорой на упрощенные методы расчета.

Основная часть

Общие положения расчетов. В табл. 1 показаны связи нормируемых проверок оснований обсыпных устоев с общими формулировками видов предельных состояний (ПС) по ГОСТ 27751–2014 и расчетными моделями теории механики грунтов. Расчеты выполняются по описываемым в дальнейшем изложении расчетным схемам двух групп с использованием моделей теории жесткопластической среды (предельного равновесия) и теории линейно деформируемой (или упругопластической) среды.

© PNRPU

Shapiro D.M. / PNRPU Bulletin. Construction and Architecture, vol. 10, no. 3 (2019), 104-116

Рис. 1. Конструктивные схемы обсыпных устоев: *I* – оголовок; *2* – свайный ряд, ряд буронабивных свай; *3* – стоечный ряд; *4* – фундамент мелкого заложения, плита ростверка; *5* – грунт подходной насыпи и конуса; *6* – переходная плита; *7* – пролетное строение
Fig. 1. Construction schemes of buried abutments: *I* – head part; *2* – row of piles, row of cast-in-citu concrete piles; *3* – row of columns; *4* – foundation, pile foundation slab; *5* – арргоасh embankment

and cone soil; 6 - transitional slab; 7 - high structure

Таблица 1

Расчетные проверки оснований обсыпных устоев и их связь с видами предельных состояний и расчетными моделями

Table 1

Design checks of the grounds of the bulk foundations and their relationship
with the types of limit states and design models

	Группы и виды ПС	Расчетная	
Паименование расчетов (проверок)	по ГОСТ 27751–2014	модель грунта	
Расчет прочности по осевому сжатию грунта под фун-	Первая группа:	Линейно-деформи-	
даментом мелкого заложения и подстилающих слоев	– пластическое или хрупкое	руемая среда	
основания.	разрушение;		
Расчет свайного фундамента как условного массивного	– потеря устойчивости с пе-		
Расчет устойчивости оснований против глубокого	реходом в изменяемую сис-	Жесткопластическая	
и локального оползневого сдвига	тему;	среда: предельное	
Расчет устойчивости фундаментов мелкого заложения	– ползучесть, сдвиг, образо-	равновесие	
против скольжения (плоского сдвига)	вание трещин, ведущие к		
Расчет несущей способности свай	прекращению эксплуатации	Предельное равнове-	
		сие при вдавливании /	
		выдергивании сваи	
Проверка прочности оснований конусов по условию	Вторая группа:	Линейно-деформи-	
Мора – Кулона	проявления текучести, пол-	руемая среда	
	зучести, сдвиги оснований		
Расчет осадок, кренов фундаментов мелкого заложения.	Вторая группа:	Линейно-деформи-	
Проверка относительного эксцентриситета равнодей-	достижение предельных де-	руемая среда	
ствующих нагрузок на основание фундамента мелкого	формаций, прогибов, пово-		
заложения	ротов, предельных осадок		
Расчет свайных фундаментов на совместное действие	Первая группа:	Метод коэффициента	
вертикальных, горизонтальных сил и моментов.	– пластическое или хрупкое	постели	
Расчет прочности железобетонных конструкций при	разрушение;		
изгибе, внецентренном сжатии (растяжении) и по по-	– ползучесть, сдвиг, образо-		
перечной силе.	вание трещин, ведущие к		
Расчет железобетонных конструкций по образованию	прекращению эксплуатации.		
продольных и раскрытию нормальных к продольной	Вторая группа:		
оси трещин	– достижение предельных		
	деформаций, прогибов, по-		
	воротов, предельных осадок;		
	– образование или раскрытие		
	трещин		

Жесткопластическая модель. Расчет устойчивости оснований обсыпных устоев. Описание расчета устойчивости грунтовых оснований мостовых устоев против глубоких и локальных оползневых сдвигов изложено в [8, 11, 12]. Ниже в настоящей статье излагаются его основные положения.

Теоретическую основу решений составляет метод горизонтальных сил Г.М. Шахунянца [13], позволяющий рассматривать поверхности скольжения произвольной формы. В состав алгоритма и программы (программа РУСТ [12]) входят решения плоской и пространственной задач расчета устойчивости обсыпного устоя совместно с конусом, подходной насыпью и основанием.

Для условий плоских расчетных областей используется решение «прямой задачи», в которой определяется коэффициент η, выражающий отношение горизонтальных составляющих удерживающих и сдвигающих сил, по следующему уравнению (рис. 2):

$$\eta = \frac{\sum_{i=1}^{n} \left[\left(|T_{i, y_{\pi}}| + N_{i} \cdot tg\phi_{i} + c_{i} \cdot l_{i} \right) \cdot \frac{\cos \phi_{i}}{\cos(\alpha_{i} - \phi_{i})} + F_{ai} \right]}{\sum_{i=1}^{n} \left[T_{i, c_{\pi}} \frac{\cos \phi_{i}}{\cos(\alpha_{i} - \phi_{i})} + \Delta I_{i} + Q_{i} + T_{B} \right]} \ge \gamma_{k}, \qquad (1)$$

где $\sum_{i=1}^{n}$ – знаки суммы, распространяющиеся на все отсеки тела обрушения со следующи-

ми параметрами в пределах каждого (от *i*-го) отсека: $T_i = G_i \sin \alpha_i$, $N_i = G_i \cos \alpha_i$ – касательная и нормальная (к поверхности скольжения) составляющие веса отсека G_i с вертикальными нагрузками в его пределах; φ_i , c_i – угол внутреннего трения и удельное сцепление грунта насыпи или слоя основания, пересекаемого линией скольжения; l_i – длина линии скольжения; F_{ai} – суммарная удерживающая сила от воздействия армирующих элементов, пересекаемых линией скольжения; Q_i – равнодействующая горизонтальных сейсмических сил; $\Delta I_i = \gamma_w I_0 S_i$ – равнодействующая сил фильтрационного давления, $\gamma_w = 9.8$ кH/м³ – удельный вес воды, I_0 – средний уклон грунтовых вод или водной поверхности при спаде половодья, S_i –площадь затопленной части *i*-го отсека; T_B – внешние горизонтальные силы, действующие на поверхности тела обрушения; $\gamma_k = 1,4$ – требуемый коэффициент запаса устойчивости, принимаемый в соответствии с п. 5.40 СП 35.13330 как отношение коэффициентов надежности по назначению $\gamma_{\Pi} = 1,1$ и условий работы m = 0,8.

В формуле (1) касательные силы T_i разделены на сдвигающие $T_{i,cd}$, действующие в отсеках, где $\alpha_i > 0$, $\sin \alpha_i > 0$ (на нисходящей части линии скольжения), и удерживающие $T_{i,yd}$, где $\alpha_i < 0$, $\sin \alpha_i < 0$ (на восходящей части линии скольжения).

Пространственная задача решается как «обратная» с заданным коэффициентом запаса устойчивости $\gamma_k = 1,4$. В расчете определяется соответствующая этому условию алгебраическая сумма *E* горизонтальных составляющих сдвигающих и удерживающих сил, действующих на расчетной поверхности скольжения. Поверхности скольжения придается очертание с поперечными сечениями в виде ломаных линий *ABCD* (см. рис. 1). Размер основания *BC* сечения поверхности скольжения принят равным ширине насыпи *b*, боковые грани *AB* и *CD* наклонены под углом, который принимается общим для всех отсеков тела обрушения. Положение центра, радиус осевого сечения поверхности скольжения, относительное заложение бортов определяются путем перебора невыгоднейших по условию макси-

мального значения равнодействующей E, соответствующей заданному значению $\gamma_k = 1,4$. Если поверхность скольжения пересекает (не пересекает) фундаментные конструкции устоя, допускается получение E > 0 (необходимо обеспечить $E \le 0$). При E > 0 устой должен быть рассчитан на ее восприятие как равнодействующей силового взаимодействия грунта и сооружения.

Рис. 2. Схема сдвигающих и удерживающих сил к уравнению (1) и поперечное сечение пространственной поверхности скольжения; E_i , E_{i-1} – горизонтальные силы взаимодействия отсеков; R_i – нормальная составляющая сил, действующих на поверхности скольжения Fig. 2. Scheme of displacing and holding strength to equation (1) and cross-section of spatial slide surface; E_i , E_{i-1} – horizontal strengths landslide parts interaction; G_i – weight of i-st landslide part, R_i – strength, normal to the landslide surface

Расчетные кривые скольжения определяются путем перебора с многократным повторным выполнением расчета. Линии скольжения генерируются в виде дуг окружностей по трем точкам с меняющимися координатами [8, 11].

Расчет напряжений в основаниях обсыпных устоев по теории линейно-деформируемой среды. На напряженно-деформированное состояние оснований устоев значительное влияние оказывает нагрузка от веса конуса и насыпи, представляющих собой грунтовый массив с откосами с трех сторон. Для отражения в расчетах воздействия этой нагрузки предложен прием [14, 15], близкий по своей идее к известному в строительной механике методу граничных элементов (МГЭ) [16]. Сущность МГЭ состоит в условном расширении расчетной области до размеров и формы, для которых имеются готовые проверенные решения, и приложении на новых границах такой системы сил, чтобы распределение напряжений на фактической поверхности расчетной области совпало с действующей нагрузкой.

К основанию добавляется невесомый слой $\overline{Z} = \frac{1}{2}mH$, равный половине горизонталь-

ного заложения откосов (H – высота насыпи), и прикладывается полубесконечная полосовая нагрузка с интенсивностью $p_0 = \gamma H$ (γ – удельный вес насыпного грунта), с шириной полосы B = b + mH (рис. 3). Этим обеспечивается равенство действительной и заменяющей ее условной нагрузки p_0 и близкое соответствие вертикальных давлений под насыпью и распределения вертикальных напряжений на поверхности основания, определяемых по формулам теории упругости [17] или по расчету методом конечных элементов.

Шапиро Д.М. / Вестник ПНИПУ. Строительство и архитектура, т. 10, № 3 (2019), 104–116

Рис. 3. Форма конуса и насыпи (1) и схема приложения условной (эквивалентной) нагрузки $p_0 = \gamma H(2)$ Fig. 3. The form of cone and embankment (1) and scheme of conventional (equivalent) load application $p_0 = \gamma H(2)$

Предлагаемый способ расчета позволяет получить на поверхности основания не только вертикальные, но и касательные напряжения, которые насыпь передает на основание и которые не учитываются, если заменить насыпь и конус вертикальной распределенной нагрузкой, повторяющей их форму. На рис. 4 показано распределение нормальных σ_z и касательных τ_{zx} , τ_{zy} напряжений (по формулам теории упругости) на поверхности основания от условной нагрузки p_0 , заменяющей насыпь и конус с заложением откосов 1,5. Там же, на рис. 4, δ , показано распределение напряжений σ_z и τ_{zy} по поперечному сечению основания насыпи по экспериментальным данным Р.Е. Подвального (СибЦНИИС, 1970) [18]), подтверждающее эффективность предложенного расчетного приема.

Рис. 4. Продольный (*a*) и поперечный (б) разрез конуса и подходной насыпи и эквивалентная нагрузка $p_0 = \gamma H$; *l* – очертание конуса и насыпи; *2* – эпюра σ_z ; *3* – эпюры τ_{zx} , τ_{zy} ; *4* – эпюры нормальных и касательных напряжений по экспериментальным данным [18] Fig. 4. Longitudinal section (*a*) and cross-section (*b*) of cone and approach embankment and equivalent load $p_0 = \gamma H$; *l* – cone and embankment outline; *2* – σ_z graph; 3 – τ_{zy} , τ_{zx} graphs; *4* – normal and tangent strains graphs by experimental data [18]

Компоненты напряжений σ_z , σ_x , τ_{zx} в основании определяются на вертикальной продольной плоскости симметрии полосовой нагрузки p_0 , через которую проходит ось моста и подходной насыпи и на которой выполняются требуемые расчетные проверки. Напряженное состояние основания на расчетной плоскости подобно условиям плоской деформации, что позволяет упростить выполнение расчетных проверок в условиях пространственной задачи. При этом сохраняется строгость и надежность выполняемых расчетов, так как расчетные напряжения σ_z , σ_x , τ_{zx} на этой плоскости являются наибольшими, а результаты проверок по предельным состояниям – невыгоднейшими.

В табл. 2, 3 приводятся относительные компоненты напряжений $\sigma'_z = \sigma_z/p_0$, $\sigma'_x = \sigma_x/p_0$, $\tau'_{zx} = \tau_{zx}/p_0$ в основании от полосовой нагрузки шириной *B* с интенсивностью $p_0 = 1$ на ее продольной плоскости симметрии.

Таблица 2

Относительные напряжения $\sigma'_z = \sigma_z/p_0$ в основании на продольной плоскости симметрии полосовой нагрузки $p_0 = 1$ шириной *В*

Table 2

Relative stresses $\sigma'_z = \sigma_z/p_0$ in the base on the longitudinal plane of symmetry of the strip load $p_0 = 1$ width *B*

\tilde{z}/R						\tilde{x}/B					
27D	-0,50	-0,25	0	0,05	0,10	0,15	0,20	0,30	0,50	0,75	1,00
0,15	0,004	0,020	0,495	0,692	0,828	0,902	0,941	0,972	0,996	0,999	0,999
0,20	0,008	0,053	0,489	0,640	0,761	0,843	0,893	0,942	0,969	0,975	0,976
0,25	0,015	0,080	0,480	0,602	0,707	0,786	0,842	0,904	0,945	0,955	0,958
0,30	0,023	0,105	0,468	0,569	0,660	0,734	0,791	0,861	0,914	0,930	0,934
0,35	0,031	0,126	0,455	0,541	0,620	0,687	0,742	0,816	0,879	0,900	0,907
0,40	0,041	0,144	0,441	0,514	0,583	0,644	0,695	0,770	0,840	0,868	0,876
0,50	0,050	0,169	0,409	0,465	0,519	0,568	0,612	0,681	0,760	0,796	0,809
0,60	0,074	0,182	0,378	0,421	0,464	0,504	0,541	0,602	0,681	0,724	0,741
0,80	0,096	0,187	0,321	0,349	0,378	0,405	0,430	0,477	0,545	0,593	0,617
1,00	0,107	0,180	0,275	0,295	0,314	0,334	0,352	0,387	0,443	0,490	0,515
1,50	0,108	0,150	0,198	0,208	0, 217	0,227	0,236	0,254	0,287	0,320	0,344
2,00	0,099	0,125	0,153	0,159	0,164	0,170	0,175	0,186	0,207	0,229	0,248

Таблица 3

Относительные напряжения $\sigma'_x = \sigma_x/p_0$, $\tau'_{zx} = \tau_{zx}/p_0$ в основании на продольной плоскости симметрии полосовой нагрузки $p_0 = 1$ шириной *В*

Table 3

Relative stresses $\sigma'_x = \sigma_x/p_0$, $\tau'_{zx} = \tau_{zx}/p_0$ in the base on the longitudinal plane of symmetry of the strip load $p_0 = 1$ width B

	\tilde{x}/B												
$\tilde{\tau}/R$	-0,50		-0,25		(0		0,25		0,50		1,00	
2/D	σ'_x	τ'_{zx}	σ'_x	τ'_{zx}	σ'_x	τ'_{zx}	σ'_x	τ'_{zx}	σ'_x	τ'_{zx}	σ'_x	τ'_{zx}	
0,25	0,101	0,044	0,210	0,144	0,282	0,284	0,353	0,144	0,462	0,044	0,539	0,018	
0,50	0,141	0,087	0,191	0,178	0,200	0,225	0,208	0,178	0,238	0,087	0,339	0,040	
1,00	0,112	0,102	0,116	0,132	0,118	0,142	0,119	0,132	0,123	0,102	0,155	0,057	
1,50	0,080	0,085	0,081	0,097	0,082	0,100	0,082	0,097	0,083	0,085	0,092	0,058	
2,00	0,061	0,077	0,062	0,080	0,062	0,080	0,063	0,080	0,063	0,077	0,065	0,056	

В расчете основания стоечного устоя с фундаментом мелкого заложения (свайного фундамента) действующая нагрузка складывается из двух частей (рис. 5): эквивалентной полубесконечной полосы шириной B с интенсивностью p_0 и давления p_1 от вертикальной силы N и момента M – равнодействующих сил, передаваемых на фундамент мелкого заложения (плиту ростверка свайного фундамента) конструкциями рамной надстройки обсыпного устоя. Равнодействующие N и M складываются из следующих нагрузок: вертикальных постоянных и временных нагрузок, передаваемых на оголовок пролетным строением и переходной плитой, веса оголовка и конструкций устоя в грунте (с вычетом из удельного веса стоек и фундамента удельного веса грунта), горизонтального давления грунта, тормозной нагрузки, температурной деформации пролетных строений. Равнодействующая Fгоризонтальных составляющих сил, приложенных к устою, учитывается в расчетах свайных фундаментов (в соответствии с СП 24.13330.2011) и при проверках устойчивости фундаментов мелкого заложения против скольжения (плоского сдвига).

Рис. 5. Образование расчетной схемы с эквивалентной нагрузкой p_0 и схема приложения давлений σ_h , p_1 , $\gamma'd$ к основанию фундамента мелкого заложения Fig. 5. Calculational scheme formation with equivalent load p_0 and scheme of apply pressures σ_h , p_1 , $\gamma'd$ to shallow foundation base

Суммарные напряжения в основании под фундаментом устоя на расчетной плоскости, соответствующей продольной плоскости симметрии моста и дорожной насыпи, определяются по формуле

$$p = \sigma_h + p_1 + \gamma_g d, \tag{2}$$

где $\sigma_h = \sigma'_z p_0$ – давление от воздействия нагрузки p_0 на продольной плоскости симметрии насыпи, $\gamma_g d$ – природное давление в основании под плитой фундамента: γ_g – удельный вес грунта, d – глубина заложения, считая от природного уровня основания; $p_1 = N/A + Mx/I$; A, I – геометрические характеристики плиты фундамента – площадь и момент сопротивления; x – горизонтальные координаты точек на расчетной плоскости.

Напряжения в основании за пределами площади опирания фундамента мелкого заложения

$$p = \sigma_h + \gamma_g d. \tag{3}$$

В соответствии с нормами СП 35.13330.2011 расчетное сопротивление оснований мостовых опор определяется по формуле (2.1) прил. 2. Второй член этой формулы содержит слагаемое $k_2\gamma_g d$, учитывающее долю несущей способности основания от природного давления, где k_2 – табличный коэффициент, связанный с классификационными характеристиками грунтов. Величину $k_2\gamma_g d$ можно разложить на составляющие: давление извлекаемого грунта $\gamma_g d$ и благоприятное влияние боковой пригрузки основания ($k_2 - 1$) $\gamma_g d$.

Пригрузка основания устоя грунтом конуса и насыпи аналогична фактору $(k_2 - 1)\gamma_g d$, следовательно, ее влияние может быть учтено выражением $(k_2 - 1)\sigma_h$. На основании изложенного формула для определения расчетного сопротивления *R* оснований обсыпных устоев (в обозначениях прил. 2 СП 35.13330.2011) имеет вид

$$R = 1,7\{R_0[1 + k_1 (b - 2)] + k_2\gamma_g (d - 3) + (k_2 - 1)\sigma_h\}.$$
(4)

При определении осадок и кренов фундаментов обсыпных устоев напряжения в основании от воздействия эквивалентной нагрузки p_0 с шириной полосы *B* и давления p_1 (учитывая их разные пространственные размеры) определяются раздельно, а затем суммируются.

Расчет прочности оснований конусов по уравнению Мора – Кулона. Рассматриваемая проверка направлена на ограничение размеров областей в основании с нарушениями условия предельного напряженного состояния Мора – Кулона. Природное давление в основании принимается распределенным гидростатически: $\sigma_{zg} = \sigma_{xg} = \gamma_g z$, где *z* – расстояние от поверхности основания до уровня, на котором выполняется проверка.

Приводимое ниже решение является аналогом предложенного В.Д. Казарновским [19] расчета «безопасной нагрузки» при проектировании земляного полотна на слабых грунтах.

В условиях рассматриваемой задачи уравнение Мора – Кулона прочности (допредельного и предельного напряженного состояния) грунта в точке может быть представлено в виде следующего соотношения:

$$\frac{1}{2}\sqrt{\left(\sigma_{z}-\sigma_{x}\right)^{2}+4\tau_{zx}^{2}}-\frac{1}{2}\left(\sigma_{z}+\sigma_{x}\right)\sin\varphi-\gamma_{g}z\sin\varphi-c\cos\varphi\leq0$$
(5)

или

$$p_0 \left[\frac{1}{2} \sqrt{\left(\sigma'_z - \sigma'_x\right)^2 + 4\tau'^2_{zx}} - \frac{1}{2} \left(\sigma'_z + \sigma'_x\right) \sin \varphi \right] - \gamma_g z \sin \varphi - c \cos \varphi \le 0, \tag{6}$$

где $\phi = \phi_{II}$ и $c = c_{II}$ – прочностные характеристики проверяемого слоя основания: угол внутреннего трения и удельное сцепление для расчетов по предельным состояниям второй группы.

Выражение в квадратных скобках можно заменить безразмерным коэффициентом

$$\beta = \frac{1}{2} \sqrt{\left(\sigma'_{z} - \sigma'_{x}\right)^{2} + 4\tau'^{2}_{zx}} - \frac{1}{2} \left(\sigma'_{z} + \sigma'_{x}\right) \sin \varphi, \tag{7}$$

зависящим от формы полосовой нагрузки на рис. 3 и угла внутреннего трения *ф* проверяемого слоя основания, после чего соотношение (6) принимает вид расчетной формулы:

$$K_{\text{6e3}} = \frac{\gamma_g z \sin \varphi + c \cos \varphi}{\beta p_0} \ge 1, 0, \tag{8}$$

где K_{5e3} – коэффициент безопасности проверяемого слоя основания; при $K_{5e3} \ge 1,0$ проверка считается выполненной.

Шапиро Д.М. / Вестник ПНИПУ. Строительство и архитектура, т. 10, № 3 (2019), 104–116

Коэффициенты β ($\sigma'_x \sigma'_z \tau'_{zx}$; φ) от полосовой нагрузки с интенсивностью $p_0 = 1$ и шириной полосы *B* на рис. 3 определены заранее и представлены в табл. 4. При каждом значении φ на рассматриваемом уровне \tilde{z}/B параметр β вычислялся в нескольких точках, после чего для подстановки в таблицу выбиралось наибольшее значение.

Таблица 4

Table 4

				` .	·		
\tilde{z}/B	$\phi = 0$	$\phi = 5^{\circ}$	φ = 10°	$\varphi = 15^{\circ}$	$\varphi = 20^{\circ}$	$\varphi = 25^{\circ}$	$\phi = 30^{\circ}$
0,20	0,311	0,277	0,243	0,209	0,177	0,145	0,114
0,30	0,291	0,259	0,227	0,195	0,165	0,135	0,107
0,40	0,271	0,242	0,213	0,184	0,156	0,129	0,103
0,50	0,252	0,225	0,199	0,173	0,147	0,122	0,096
0,60	0,233	0,208	0,183	0,159	0,136	0,114	0,092
0,80	0,198	0,177	0,157	0,137	0,118	0,099	0,080
1,00	0,166	0,149	0,132	0,115	0,099	0,083	0,068

Coefficients β ($\sigma'_x \sigma'_z \tau'_{zx}; \phi$)

Коэффициенты β ($\sigma'_x \sigma'_z \tau'_{zx}; \phi$)

В случае отрицательного результата проверки по формуле (8) расчет следует продолжить с использованием упругопластической модели основания при помощи программ PLAXIS, Midas GTS и др., реализующих нелинейный расчет геотехнических систем. Этот расчет не относится к теме настоящей статьи.

Пример расчета. Рассматривается обсыпной устой (рис. 6) с фундаментом мелкого заложения под пролетное строение 18 м общей шириной 10 м; высота насыпи 7,3 м. Двухслойное основание сложено полутвердым суглинком с прочностными характеристиками $\phi_{II} = 20^{\circ}$, $c_{II} = 25$ кПа, залегающим на глубину 3,7 м, и песком мелким $\phi_{II} = 30^{\circ}$.

Рис. 6. К примеру расчета основания фундамента обсыпного устоя и конуса моста Fig. 6. To the example of buried abutment foundation base and bridge cone

Нормативная (расчетная) эквивалентная нагрузка $p_0 = \gamma H = 18 \cdot 7, 3 = 131,4$ кH/м² ($p_0 = \gamma_f \gamma H = 1,1 \cdot 131,4 = 144,5$ кH/м²; $\gamma_f = 1,1 -$ коэффициент надежности по нагрузке); ширина полосы $B = b + mH = 12 + 1,5 \cdot 7,3 = 23$ м. Равнодействующие давления фундамента для расчетов по прочности: N = 2850 кH, M = 970 кHм, F = 680 кH. Природное давление в основании $\gamma_g d = 19,6 \cdot 2 = 39,2$ кH/м².

Давление $\sigma_h = \sigma'_z p_0$ определяется при помощи табл. 2. Для точки 1 (см. рис. 6) относительные координаты $\tilde{z}/B = 7,5/23 = 0,326$, $\tilde{x}/B = 1,7/23 = 0,074$; коэффициент $\sigma'_z = 0,595$; расчетное значение $\sigma_h = 0,595 \cdot 144,5 = 86$ кПа. Для точки 2 $\tilde{z}/B = 7,5/23 = 0,326$, $\tilde{x}/B = 4,7/23 = 0,204$; коэффициент $\sigma'_z = 0,770$; расчетное значение $\sigma_h = 0,770 \cdot 144,5 = 111,3$ кПа.

Давление $p_1 = 2850/30, 6 + 970/15, 3 = 93, 1 + 63, 4 = 156, 5$ кПа.

Общее давление на основание в точке 1 под передней гранью фундамента $p = \sigma_h + p_1 + \gamma d = 86 + 156,5 + 39,2 = 281,7$ кПа.

Расчетное сопротивление:

 $R = 1,7\{245 \cdot [1+0,04(3-2]+2,0\cdot 19,2\cdot (2-3)+(2,0-1)\cdot 86\} = 510 \text{ kma}.$

Проверка условия по п. 11.8 СП 35.13330.2011: $p \le R/\gamma_n$ ($\gamma_n = 1, 4 - коэффициент$ надежности); 281,7 < 508/1,4 = 362,9 кПа.

Проверка прочности основания по формуле (7):

– в полутвердом суглинке на уровне поверхности основания:

 $z = 0, \quad \tilde{z} = 5,5 \text{ m}, \quad \tilde{z}/B = 5,5/23 = 0,24, \quad \varphi_{\text{II}} = 20^{\circ}, \quad \beta = 0,172; \quad K_{5\text{es}} = (\gamma_g z \sin\varphi + c \cos\varphi) / \beta p_0 = 25 \cdot 0,940/0,172 \cdot 131,4 = 23,5/22,6 = 1,04 > 1,0;$

– на нижней границе слоя полутвердого суглинка:

 $z = 3,7 \text{ m}, \ \tilde{z} = 9,2 \text{ m}, \ \tilde{z}/B = 9,2/23 = 0,40, \ \varphi_{\text{II}} = 20^{\circ}, \ \beta = 0,156; \ K_{5e_3} = (\gamma_g z \sin\varphi + c \cos\varphi) / \beta p_0 = (3,7\cdot19,6\cdot0,342+25\cdot0,940) / 0,156\cdot131,4 = (24,8+23,5) / 20,5 = 2,36 > 1,0;$

– в слое мелкого песка на границе с суглинком:

z = 3,7 M, $\tilde{z} = 9,2$ M, $\tilde{z}/B = 9,2/23 = 0,40$, $\varphi_{\text{II}} = 30^{\circ}$, $\beta = 0,103$; $K_{\text{5e}3} = (\gamma_g z \sin\varphi + c \cos\varphi) / \beta p_0 = 3,7 \cdot 19,6 \cdot 0,5/0,103 \cdot 131,4 = 36,3/13,5 = 2,69 > 1,0.$

Проверка прочности по уравнению Мора – Кулона выполняется в обоих слоях основания.

Выводы

1. Разработан инженерный метод расчетов оснований обсыпных устоев автодорожных мостов, включающий комплекс проверок по предельным состояниям, описание расчетных схем. Расчеты выполняются по расчетным схемам двух групп с использованием моделей теории жесткопластической среды (на основе метода горизонтальных сил Г.М. Шахунянца) и теории линейно-деформируемой среды. Приводятся табличные данные, необходимые для выполнения расчетов.

2. Разработан способ определения напряжений в основаниях обсыпных устоев от веса конуса и подходной насыпи по теории линейно-деформируемой среды путем образования условной (эквивалентной) расчетной схемы, в которой к основанию добавляется невесомый слой и действующая нагрузка заменяется равной по величине полубесконечной полосовой, приложенной в повышенном уровне. При этом на действительной поверхности основания возникают нормальные и касательные напряжения, согласующиеся с формой насыпи, ограниченной откосами с трех сторон.

3. Разработан способ расчета прочности грунтов основания обсыпного устоя и конуса моста по уравнению Мора – Кулона, реализуемый при помощи напряжений, определямых в соответствии с изложенным выше описанием.

Библиографический список

1. Свайные фундаменты / Н.М. Глотов, А.А. Луга, К.С. Силин, К.С. Завриев. – М.: Транспорт, 1975. – 432 с.

2. Луга А.А. Глубокий локальный сдвиг устоев мостов и подпорных стенок // В кн.: Исследования несущей способности оснований фундаментов оболочек (Труды ВНИИ трансп. стр-ва, вып. 56). – М.: Транспорт, 1965. – С. 60–70.

3. Луга А.А. Глубокие локальные сдвиги устоев // В кн.: Исследования несущей способности фундаментов из свай и оболочек (Труды ВНИИ трансп. стр-ва, вып. 66). – М.: Транспорт, 1969. – С. 124–140.

4. Луга А.А., Шелкович И.С. Локальные оползни, возникающие на береговых склонах при отсыпке подходных насыпей к мостам // В кн.: Свайные фундаменты (Труды ВНИИ трансп. стр-ва). – М.: Транспорт, 1981. – С. 28–35.

5. Соколов А.Д. Актуальные вопросы защиты мостов от оползней // Транспортное строительство. – 2006. – № 12. – С. 19–21.

6. Соколов А.Д. Взаимодействие устоев мостов и подпорных стен с грунтовой средой // Наука и техника в дорожной отрасли. – 2007. – № 2. – С. 30–84.

7. Соколов А.Д. Защита от оползней – актуальная задача мостостроения // Автомобильные дороги. – 2006. – № 11. – С. 82–84.

8. Шапиро Д.М. Теория и расчетные модели оснований и объектов геотехники. – 2-е изд., доп. – М.: Изд-во АСВ, 2016. – 180 с.

9. Bauer G.E., Felio G.I. Movements of a bridge abutment // Ground Movements and Structures: Proc. 3rt Int. Conf. Cardiff, July 1984. – London, 1985. – P. 581–593.

10. Grover R.A. Movement of bridge abutments and settlements of approach pavements in Ohio // Transport Research Record № 678. – 1978. – P. 12–17.

11. Шапиро Д.М., Безрядин А.В., Дыбов В.С. Расчет устойчивости береговых опор на ЭВМ // Автомобильные дороги. – 1984. – № 7. – С. 17–18.

12. Шапиро Д.М., Тарасов А.А. Расчетные модели оснований откосных сооружений и армогрунтовых подпорных стенок // Основания, фундаменты и механика грунтов. – 2014. – № 4. – С. 13–18.

13. Шахунянц Г.М. Железнодорожный путь. – 2-е изд., перераб. и доп. – М.: Транспорт, 1969. – 532 с.

14. Шапиро Д.М. Расчет оснований обсыпных устоев мостов // Автомобильные дороги. – 1974. – № 4. – С. 19–20.

15. Шеляпин Р.С., Шапиро Д.М. Совершенствовать проектирование фундаментов обсыпных устоев мостов // Автомобильные дороги. – 1971. – № 10. – С. 14–15.

16. Крауч С., Старфилд А. Методы граничных элементов в механике твердого тела. – М.: Мир, 1987. – 328 с.

17. Флорин В.А. Основы механики грунтов. Т. 1. – М.: Госстройиздат, 1959. – 543 с.

18. Подвальный Р.Е. К вопросу о распределении напряжений в насыпях и бортах выемок // Сб. трудов ЦНИИС. – Вып. 32. – М., 1970.

19. Евгеньев И.Е., Казарновский В.Д. Земляное полотно автомобильных дорог на слабых основания. – М.: Транспорт, 1976. – 276 с.

References

1. Glotov N.M., Luga A.A., Silin K.S., Zavriev K.S. Svainye fundamenty [Pile foundations]. Moscow, Transport, 1975, 432 p.

2. Luga A.A. Glubokii lokal'nyi sdvig ustoyev mostov i podpornykh stenok [Deep local shift of the foundations of bridges and retaining walls]. *Issledovaniya nesushchey sposobnosti osnovaniy fundamentov obolochek (Trudy VNII transp. str-va, iss. 56)*. Moscow, Transport, 1965, pp. 60–70.

3. Luga A.A. Glubokie lokal'nyye sdvigi ustoyev [Deep local shifts of foundations]. *Issledo-vaniya nesushchey sposobnosti osnovaniy fundamentov obolochek (Trudy VNII transp. str-va, iss. 66).* Moscow, Transport, 1969, pp. 124–140.

4. Luga A.A., Shelkovich I.S. Lokal'nye opolzni, voznikaiushchie na beregovykh sklonakh pri otsypke podkhodnykh nasypei k mostam [Local landslides occurring on coastal slopes when dumping approach embankments to bridges]. *Issledovaniya nesushchey sposobnosti osnovaniy fundamentov obolochek (Trudy VNII transp. str-va)*. Moscow, Transport, 1981, pp. 28–35.

5. Sokolov A.D. Aktual'nye voprosy zashchity mostov ot opolzney [Actual issues of protection of bridges from landslides]. *Transportnoye stroitel'stvo*, 2006, no. 12, pp. 19–21.

6. Sokolov A.D. Vzaimodeistvie ustoyev mostov i podpornykh sten s gruntovoi sredoi [The interaction of the foundations of bridges and retaining walls with the soil environment]. *Nauka i tekhnika v dorozhnoy otrasli*, 2007, no. 2, pp. 30–84.

7. Sokolov A.D. Zashchita ot opolznei – aktual'naia zadacha mostostroeniya [Protection from landslides - an urgent task of bridge building]. *Avtomobil'nye dorogi*, 2006, no. 11, pp. 82–84.

8. Shapiro D.M. Teoriia i raschotnye modeli osnovanii i ob"yektov geotekhniki [Theory and design models of foundations and geotechnical objects]. 2nd ed. Moscow, DIA, 2016, 180 p.

9. Bauer G.E., Felio G.I. Movements of a bridge abutment. *Ground Movements and Struc*tures: Proc. 3rt Int. Conf. Cardiff, July 1984. London, 1985, pp. 581–593.

10. Grover R.A. Movement of bridge abutments and settlements of approach pavements in Ohio. *Transport Research Record* № 678, 1978, pp. 12–17.

11. Shapiro D.M., Bezryadin A.V., Dybov V.S. Raschot ustoychivosti beregovykh opor na EVM [Calculation of the stability of shore supports on a computer]. *Avtomobil'nye dorogi*, 1984, no. 7, pp. 17–18.

12. Shapiro D.M., Tarasov A.A. Raschotnye modeli osnovanii otkosnykh sooruzheniy i armogruntovykh podpornykh stenok [Settlement models of the bases of sloping structures and reinforced soil retaining walls]. *Osnovaniya, fundamenty i mekhanika gruntov*, 2014, no. 4, pp. 13–18.

13. Shakhunyants G.M. Zheleznodorozhnyy put' [Railway track]. 2nd ed. Moscow, Transport, 1969, 532 p.

14. Shapiro D.M. Raschot osnovanii obsypnykh ustoev mostov [Calculation of the foundations of bridges]. *Avtomobil'nye dorogi*, 1974, no. 4, pp. 19–20.

15. Shelyapin R.S., Shapiro D.M. Sovershenstvovat' proyektirovaniye fundamentov obsypnykh ustoyev mostov [To improve the design of the foundations of bulk bridge foundations]. *Avtomobil'nye dorogi*, 1971, no. 10, pp. 14-15.

16. Crouch S., Starfield A. Metody granichnykh elementov v mekhanike tvordogo tela [Methods of boundary elements in solid mechanics]. Moscow, Mir, 1987, 328 p.

17. Florin V.A. Osnovy mekhaniki gruntov [Fundamentals of soil mechanics]. Vol. 1. Moscow, Gosstroyizdat, 1959, 543 p.

18. Podval'nyy R.Ye. K voprosu o raspredelenii napryazhenii v nasypiakh i bortakh vyemok [To the question of the distribution of stresses in embankments and sides of excavations]. *Sbornik trudov TSNIIS*, iss. 32. Moscow, 1970.

19. Evgeniev I.E., Kazarnovsky V.D. Zemlyanoye polotno avtomobil'nykh dorog na slabykh osnovaniya [Subgrade road on weak grounds]. Moscow, Transport, 1976, 276 p.