IIpuxnaanas mareMaTrka 1 Bonpocs! ynpasneHus. 2020. Ne 2

DOLI: 10.15593/2499-9873/2020.2.05
YK 519.71:681.51

T.A. Ky3HeuoBa, B.I'. ABryctuHoBuu4

lMepMCKMIn HaUMOHarbHBIN UccreaoBaTenbCKNin
nonuTexHu4eckumn yHmsepucter, Nepmb, Poccus

PELWLEHUE NPOBJIEMbI HEMOJIHOTbI UH®OPMALIUU
Ob OB bEKTE ABTOMATUYECKOI'O YINPABJIEHUA
HA OCHOBE BUPTYAJIbHbIX AATYUKOB
PEAJIbHOIO BPEMEHU

CoBpeMmeHHble CMCTEMbI yrpaBneHnsa akTUBHO MCMOMNb3YIOT BCTPOEHHble MaTeMaTuyeckune
moZenu obbekTa ANs peanusauuv LenesBbiX MYHKUUIA M NapaMeTpoB ynpaBlieHWUsi, KOTopble He
MOryT ObiTb NOMyYeHbl NPSAMbIM M3MEPEHUEM, B YaCTHOCTU 3MUCCUMU BPEAHbIX BELECTB (OKUCMOB
asoTa u yrrnepopga). B kauectBe BUpTyanbHOro ceHcopa aMUCCHMM OKCUAOB a3oTa Maro3MUCCUOH-
HOI Kamepbl CroOpaHusi, NPUroAHOro ANs BCTpauBaHWUA B CTPYKTYpPY perynsatopa, paccMaTpuBaeTcs
[Ba BapuaHTa.

MepBbIi BapuaHT — 3TO CTOXacTUyeckas HenvHerHas matemMaTuyeckas MOAenb reHepauuu
okucros asoTa Ha 6ase ypasHeHus 3enbgosunya. OcobeHHOCTbIO NpPeacTaBreHHON MaTemMaTU4eckon
Mopaenu ABNAeTCcs NpYMeHeHWe NpUHLMNa Cynepnosvnumnmn reHepauum okucnoB as3ota B Anddy3voHHOM
N romMmoreHHom cpakenax. OyHKUMKU pacnpeaeneHns NIoTHOCTU BEPOSTHOCTU KOHLIeHTpauuv TOMnnuBo-
BO3/YLLUHOW CMECU B 3TUX (hakenax y4YmTbiBaloT Kak NMPOCTPAHCTBEHHYHO HEOAHOPOAHOCTL COCTaBa CMe-
CW, TaK U rapMOHNYECKYI0O COCTaBMSIOLLYI0 OT aKyCTU4eCKWX BOSIH, FeHepupyeMblX TemnnornonBoaoM.
[MpeacraBneHHas koHUenuusi MaTeMaTUY4eCKONn MOAENN B BUAE MHTErparbHbIX COOTHOLLEHUI CHOpMU-
poBaHa Ha OCHOBE pe3ynbTaToOB YMCIIEHHOTO MOAENMPOBaHWUSA NMPOCTPAHCTBEHHOW U BPEMEHHOW Heoa-
HOPOAHOCTEW KOHLeHTpaLun TOMNMBOBO3AYLLHON cMecu Ha 4D-meTamoaeny n MMeloLMXCcsa aKcnepu-
MeHTanbHbIX AaHHbIX.

BTopoli BapvMaHT OCHOBaH Ha MPUMEHEHWM TEXHOMNOrMM HEWpOHHbIX ceTen. lpenctaBneH
npumep pa3paboTaHHON HEVPOHHOW CeTU U pe3ynbTaTbl ee 0by4yeHnsa Ha peanbHOW Mano3MUCCUOH-
HOW kamepe cropaHus. lokasaHo, YTO ABYX- UMW TPEXCIoNHas HEMPOHHAs CeTb C KONNYECTBOM Hel-
poHoB 20-30 obecneymBaeT AOCTaTOYHYlO MorpewwHocTb (He 6onee 10 %) oTobpaxeHns amuccun
OKCMAO0B a3oTa M MOXeT OblTb UCMONb30BaHa Kak BUPTyalbHbIA CEHCOP 3MUCCUM B CUCTEME ynpas-
neHws asuraTenem.

B kavecTBe LeneBon yHKUUK (KpUTepus) ynpaBrneHnss Maro3aMUCCUOHHON Kamepon CropaHust
aBMaLMOHHOIO ra3oTypOUHHOrO ABWUraTens paccMaTpuBaeTcsi HOPMUPYEMbIA YPOBEHb SMUCCUM OKCU-
0B a3oTa 3a UMK B3neT—nocagka. [nsa oueHkn ypoBHs amuccun NOx npefnaraeTcs BCTPOEHHbIN BUP-
TyanbHbIN JaT4uK.

KnioueBble cnoBa: cuctemMa aBTOMaTUYECKOrO ynpaBfieHUsi, aBUALMOHHBIN ABUraTernb, Kame-
pa cropaHusi, ouddy3rMoHHbIM (aken, roMOreHHbI daken, rpaHMua 6egHoro cpbiBa, KO3UUNEHT
n3bbITKa BO3Ayxa, IMUCCHS, BUPTYanbHbI CEHCOP, CTOXacTU4eckas HenMHerHas MatemaTnyeckas mo-
Aenb, HeMpoHHas Lenb.
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SOLVING THE PROBLEM OF INCOMPLETE INFORMATION
ABOUT AN AUTOMATIC CONTROL OBJECT BASED
ON REAL-TIME VIRTUAL SENSORS

Modern automatic control systems use built-in mathematical models for estimation of unmeas-
ured by the direct methods parameters such as NOx emission in aeroengine low-emission combustion
chamber. The two models of NOx emissions virtual sensor built into the controller are proposed.

A stochastic nonlinear mathematical model is based on the Zeldovich equation. It applies the su-
perposition principle of NOx production in diffusion and homogeneous flames. Probability density distribu-
tion functions of the air-fuel mixture concentration in these flames take into account both of a spatial non-
uniformity of the mixture composition and a harmonic component of the acoustic waves generated by the
heat release. The concept of integral relations models has been developed with the use of numerical mod-
eling of spatial and temporal non-uniformities of the air-fuel mixture concentration (4D-metamodeling) and
available experimental data.

Another virtual sensor model is based on the neural network predicting NOx emission in gas tur-
bine combustion chamber. The example of a neural network and results of its training on a real combustion
chamber is presented. It is shown that the two or three-layer neural network having 20-30 neurons pro-
vides an acceptable error (not exceeding 10 %) of the NOx emission display and can be used as a virtual
emission sensor in an engine control system.

The normalized level of NO, emission per take-off and landing cycle is considered as a target
function of the automatic control of low-emission combustion. To estimate the level of NOx emission
a built-in virtual sensor is proposed.

Keywords: automatic control system, aeroengine, combustion chamber, diffusion flame, homo-
geneous flame, lean blow-out line, air-fuel mixture concentration, emission, virtual sensor, stochastic
nonlinear mathematical model, neural network.

Introduction

Built-in mathematical models of an object are actively used in modern
control systems to implement target functions and control parameters that
cannot be directly measured. This is applied particularly to NOy and CO emis-
sions (nitrogen and carbon oxides). Meanwhile, emission levels in modern
gas turbine engines are no less significant than thrust (power) performance or
an engine life.

Low-emission combustion systems have a narrow operating range that
on the one hand is restricted by a regulated level of NOy emission, and on the
other hand, by a flame blow-out or high combustion dynamics (thermal
acoustic natural vibrations) which are not acceptable in the field operation.
Hazardous emission (primarily, NOy) for the new generation engines becomes
an equally important parameter as an engine thrust.
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Solving the problem of incomplete information about an automatic control object...

All other requirements are unconditionally met. So it is necessary to ar-
range both a system for continuous monitoring of emissions according to en-
gine parameters, and the control over the combustor diffusion circuit to en-
sure a target level of emission (not exceeding the regulations).

1. The Actuality and Scientific Relevance of the Problem

As the peculiarity of the target NOy emission indication is its integral na-
ture, i.e. the number of emissions per TOL (take-off and landing) cycle within
the flight altitude up to 1000 meters. Therefore, it is advisable to choose Climb-
ing as an emission tuning mode based on the following considerations:

— Climbing contributes significantly to emissions thanks to a combina-
tion of a high power (85 % of maximum thrust) and the engine runtime
(up to 2.2 minutes). Climbing is not critical (compared to Take-Off) in
terms of the flight safety.

— During Climbing, compared to Take-Off, the probability of a high
combustion dynamics is lower due to less heat release.

Thus, in order to determine the target emission level at Climb up to 1000
meters it is necessary to sum up the emissions in each specific case. These are a
combination of ambient conditions and Take-Off and Climb profiles which re-
quire continuous monitoring of emission. The task is complicated by the fact
that there is no existing on-board emission sensor, and functionally the emis-
sion level depends on a large number of variables (at least six to seven). In ad-
dition, the low emission combustor stability margin (from lean blow-out to high
combustion dynamics) also depends on many parameters, and the extension of
the safe envelope (where required) by increasing fuel flow through the diffu-
sion circuit results in higher emission. This should be considered when an inte-
gral principle for the control is used. In addition, it is necessary to take into ac-
count the fact that, in view of continuous challenges to meet more and more
stringent NOy emission standards for the low emission combustor by means of
exclusively design measures, the low emission combustion systems have a lim-
ited emission margin against standards. In this regard, the development of a vir-
tual sensor of the emission of nitrogen oxide, built into the diffusion flame
tracking automatic control system, becomes relevant [1].

Nowadays, in combustion design practice, methods of virtual reality
construction (in particular, gas turbine combustion system) are widely used
to allow predicting NOy emission [2—4]. As an example of this solution, be-
low is the shot-by-shot breakdown of changes in the flame surface during
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lean premix down to flame blow-out (while the diffusion flame goes on sta-
ble). This visualization is obtained by numerical simulation and is shown in
Fig. 1-4. The lean blow-out line is identified based on the test results ob-
tained on the test rig presented in [5]. It should be noted that high-level
mathematical models similar to those used above require prohibitively large
resources for using them both for teaching (training) neural networks and
developing software for control systems, and as a virtual emission sensor. In
this regard, it is necessary to develop a specific expert model suitable both
for training a neural network and for integrating it in the structure of a con-
trol as a virtual NOy emission sensor.

Alpha= 2.86121

Fig. 2. Partial blow-out of homogenuous flame
(equivalence ratio @ = 0.26)

Alpha= 5.32111

Fig. 3. Propagation of blow-out of homogenuous flame
(equivalence ratio ¢ = 0.19)
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Alpha= 7.26049

Fig. 4. Full blow-out of homogenuous flame
(equivalence ratio ¢ = 0.14). Pilot (diffusion) flame is stable

In engineering practice, two methods are known to address it. The first
way is to represent the emission value in the form of a polynomial function
depending on the determining variables (pressure and air temperature in com-
bustor) [6]. The second method is approximation of multiple (emission) vari-
able function using neural network technology [7]. Typically, these methods
are used for industrial gas turbines in monitoring systems.

2. Statement of the Problem

The task of an emission of pollutants control is to minimize the pro-
portion of the fuel consumption through the diffusion circuit, taking into ac-
count the stability limitations of the combustion process in a wide range
changing of external and internal factors [8]. The minimum emission level
of nitrogen and carbon oxides is chosen as the main control objective func-
tion. For the generality of the obtained solutions, it is proposed to consider
the normalized integral level of emission for the full work cycle of the aero-
engine as an additional objective function.

The fulfillment of these criteria can be carried out by a smart regulator —
a control system based on a neural network [9, 10] with a built-in mathemati-
cal model of the generation of NOy and CO emissions. The possible imple-
mentation of a nonlinear controller is shown in Fig. 5, where Y; — emission
target; y — real emission value; y,, — model emission value; /' — disturbances
(interference); e — control error; X — input vector of DLN and a model of
emission; DLN — dry low NOy emission combustion chamber.

The choice of the neuro-fuzzy algorithm for the design of the emis-
sions generation mathematical model is explained by its technological sim-
plicity and high speed. It should be noted that high-level mathematical mod-
els require significant computing power, the usage of complex software and
they are characterized by a relatively low speed.
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Fig. 5. Neuro-fuzzy controller of DLN

At present, the neural networks technology is widely used for mathe-
matical model design, including for predicting (estimating) an emission of
nitrogen and carbon oxides [11].

In general, the experience of using neural network technology for aero-
engine control tasks shows that the main problems are incompleteness and in-
accuracy of the input information (a limited number of measured parameters
supplied to the network input) and a weak correlation of the measured pa-
rameters with some states of the system (the state vector has a larger dimen-
sion than the input vector).

As a rule, the number of measured parameters on the engine is mini-
mized based on the need to ensure the reliability of the system as a whole.
Therefore, to provide the necessary input information to the engine auto-
matic control system, it is advisable to use a virtual sensor, implemented as
a built-in mathematical model of an emission generation. As the world ex-
perience shows, to solve the problem of an emissions estimation with an er-
ror of no more than 15 %, the neural networks having 6 inputs and 12 neu-
rons in a hidden layer with linear activation functions are efficiently used.

If the built-in mathematical model of the combustion chamber based on
the Zeldovich mechanism is used for training the neural network, we can obtain
a deviation of the measured emission level from the model value, taking into
account the boundaries of the lean blow-out (LBO) and the vibrating combus-
tion (thermal acoustic vibrations). Next, to obtain correct training data, parame-
ters of the neural control system of aero engine low-emission combustion
chamber (DLN) are optimized.

As it has already been noted, the main feature of the low-emission
combustion chamber of new generations of aero engines as a control object
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is a significant non-linearity. This is caused by a discrete division into oper-
ating zones with specific properties, which make it difficult to identify its
characteristics, and, as a consequence, the incompleteness and incorrectness
of its mathematical description.

In this work, the identification of DLN is based on a neural network
design. The use of neural network significantly improves the quality of solv-
ing the problem of identification of multidimensional objects by using of the
flexible and simple (from a mathematical point of view) algorithms. The
network structure is determined by the mathematical statement of the prob-
lem. In this case, the neural network converts the multidimensional input
vector X (x;,x,,...) into the multidimensional output vector depending on

the problem conditions.

The possibility of a mathematical description of such conversion in
the form of a sum of polynomials with different weight coefficients at coor-
dinates of the vector X(x;,x,,...) is confirmed by the Kolmogorov — Ar-

nold — Hecht — Nielsen theorem (KAHN) [12]. According to this theorem,
for any set of mutually consistent pairs of distinct input and output vectors
of an arbitrary dimension, there is a two-layer perceptron with sigmoid acti-
vation functions and with a finite number of neurons, which for each input
vector X forms the corresponding output vector Y (y;,y,,...).

Thus obtained model implements the function of several variables
(x1,X,,...) as the sum of the functions of one variable x; with different

weighting coefficients w;.

It should be noted, that adaptive control of the emission of nitrogen ox-
ides is an important problem for aero engines primarily. And a control object
model (virtual emission sensor) is required to solve the problem of developing
control algorithms. An industrial engine has the characteristics similar to an
aircraft engine and is more available for experiments. So the industrial engine
is used here as an experimental object to test the developed approach.

3. Theoretical Foundation of Mathematical Modeling

a) Mathematical Model of DLN based on Zeldovich Equation

Below, we formulate the main assumptions that will allow us to make-
up an expert model suitable for the set goals. As primary, it is assumed that
all burners in terms of geometry and gas dynamics are identical and operate
under identical boundary conditions including phase relations.
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Zeldovich equation is taken as a mathematical model for NOy genera-
tion. It can be written as in [13]

38370
§=218-10%¢ T [O]:[N,] (1)

Further on, it is necessary to simulate the interaction of pilot (diffu-
sion) and the main (technically premixed or homogeneous) flames, as well
as the process of NOy formation.

To describe the interaction of diffusion and premix flames we assume
the possibility to applying a superposition principle. The superposition of
premix and diffusion flames progresses as follows based on the assumption
of their independence in a spacial position. Using the probability addition

theorem, P(A+B)=P(A)+P(B), we place the characteristics of flames

stochastic in terms of a mixture composition on one of the arguments, bear-
ing in mind that the probability distribution function F(x)=P{X<x}

within the mixture composition operating range varies from 0 to 1. Here, it’s
convenient to choose a fuel-air equivalence ratio ¢ as an argument. Then the
stable combustion range is ¢ = 0.15...2.0. An increase in the argument cor-
responds to the increase in the proportion of the fuel flow.

Next, we place the known average values (expected values) of the
flame mixture composition. These values are determined based on the
known (controlled) fuel flows over the circuits and air flows, proportional to
the circuit throat areas. Here, the following to be kept in mind. The diffusion
flame has a large dispersion of the mixture concentration and a probability
density function close to the normal law. The probability distribution func-
tion in ¢ € [0,2] interval corresponds to the stable combustion envelope.
This function of the diffusion flame is assumed unchanged until the average
value moves into the lean zone (¢ < 1). Physically, this means that at ¢ > 1
the diffusion flame is fed by excess air oxygen from the premix flame tube
cap (dome). When ¢ < 1 an assumption is made about the independent work
of the diffusion flame. In fact, a stoichiometric diffusion flame is maintained
in a wide range of the combustor operation by means of the fuel split.

The equation of the fuel flow (m) averaged NOy generation rate for a
typical two-zone (diffusion flame with ‘@’ index and homogeneous or tech-
nically premixed flame, with ‘4’ index) for the low emission combustor
with 10:90 % fuel split at Maximum can be represented as
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where ¢, is the prediction of the mathematical expectation of an equiva-

lence ratio in diffusion and homogeneous flames; (T)dz is the dispersion of

the equivalent mixture ratio in diffusion and homogeneous flames with tak-
ing into account heterogeneity in a fuel flow, harmonic longitudinal acoustic
pulsation of a flow and background turbulence.

So the thermal acoustics is used to determine the dispersion of the
mixture for subsequent use in the statistical determination of the rate of NOy
emission by the Zeldovich mechanism.

At the next stage, it is necessary to determine the dispersion of the
concentration of premix and diffusion flames and the probability density

distribution function f(¢)=F'(¢).

The assessment of the concentration dispersion (%?) is formed from

several components of the flow parameters with the corresponding probabil-
ity density distribution functions:

—the initial non-uniformity of the concentration distribution in the
flame over its cross section, which also manifests itself in the axial direction
in the turbulent flow due to the correlation of the transverse and lateral mo-
mentum and the concentration transfer;

—regular flow dynamics induced by the flame tube cap swirler of the
frontal device due to the precessing vortex core (PVC) at high Reynolds
numbers representative of gas turbine combustion systems;

— thermal acoustic dynamics of a stream of various fluctuation modes
of a gas column;

— background isotropic turbulence (Kolmogorov scale).

To build up an adequate model of both NOy generation and determina-
tion of a lean blow-out margin, it is necessary to know the above parameters
of the dynamic (fluctuating) flow. These data, for example, the initial non-
uniformity of the concentration and the dynamics distribution can be ob-
tained on the 4D meta-model [14, 15], identified based on the test data [16].

Then it is necessary to average the rate of the NOy generation through-
out the length of a combustion chamber (L) using exponential law. As a first
approximation, this proposed distribution can be set as
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S =Se™. (3)

That is a decrease in the reaction rate throughout the length of a com-
bustion chamber according to the exponential law is due to the rapid de-
crease in the concentration of reacted atomic oxygen.

Then the reaction rate averaged over the length of the chamber (L) S
and, accordingly, the emission index EINQOy, i.e. the ratio of NOy generation
rate in the combustion chamber (flame tube) volume to a fuel flow is

:__VL—bx oV “BL\.
S—Szge dx—Sﬁ(l—e ) (4)
<HNno, V —bL =V a
EINO. )=S r —(1- ~ S— 5
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b) Mathematical Model of DLN Based on the Neural Network

The considering DLN refers to a counter flow type with twelve remote
flame tubes with the organization of combustion of the “poor” premixed
mixture. The DLN uses a front-end device of a single-module type with
a flame stabilization by a bluff body. The flame tube cooling system is im-
pact-convective. DLN has three fuel manifolds: a diffusion manifold, a ho-
mogeneous manifold, an igniter manifold.

Typical for this class of tasks structure of a two-layer perceptron —
a fully-connected neural network with direct signaling, was selected to develop
the DLN model. Fig. 10 shows the structure of the neural DLN model.

Fully connected networks are artificial neural networks, each neuron
of which transmits its output signal to other neurons, including to itself [17].

In the structure under consideration, neurons are regularly organized
into layers. The layer contains an ensemble of neurons with the common in-
put signals. The input (zero) sensors layer is used to enter values of input
variables. In the general case, a two-layer perceptron consists of 3 layers,
numbered from left to right. External input signals are fed to the inputs of the
neurons of the first layer (the input layer is numbered as zero), and the output
signals of the last layer are the outputs of the network. Each of the hidden and
output neurons is connected to all elements of the previous layer.

When constructing a fully-connected two-layer neural network having
one hidden layer of neurons, it is necessary to determine the optimal number
of elements in the hidden layer. A corollary of the KAHN theorem allows us
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to determine the optimal number of neurons in the hidden layer, which pro-
vides, on the one hand, the minimum learning error, and on the other, the
minimum generalization error. The optimal number of neurons in the hidden
layer depends on the number of synaptic weights (connections), which can
be estimated [16] using the inequality

NyQ 2
—1+10g2(Q)£NWSNy(Ny +1](Nx+Ny+1)+Ny, (6)

where N, — dimensionality of the input signals; N, — dimensionality of the
output signal; O — number of training sample elements; N,, — the required
number of synaptic weights (connections).

Depending on the obtained number of synaptic connections N,, the
number of neurons in the hidden layers is estimated. In particular, for a two-
layer perceptron, the number of hidden layer neurons is

N:—NW . (7)
N,+N,

Since the inequality (6) and the equation (7) are evaluation formulas,
in practice the optimal number of hidden layer neurons necessary to achieve
the desired model accuracy is determined experimentally. Obviously, by in-
creasing the number of neurons in the hidden layer, the accuracy of the
model increases. At the same time, the network training time increases, and
the system speed decreases.

It follows from the KAHN theorem that for any function of many
variables there is a neural network of fixed dimension that maps it. When
training (tuning) this network, the three degrees of freedom can be used:

— the value range of sigmoidal activation functions of neurons of the
hidden layer;

— the slope of sigmoidal activation functions of neurons of this layer;

— the view of the activation functions of neurons of the output layer.

4. Practical Importance, the Results of the Implementation,
the Results of the Experiments

a) Experimental Object

To test the proposed methodology for a neural network design for pre-
dicting the NOy and CO emission, the real industrial combustion chamber of a
gas turbine unit with a power of 16 MW - GTU-16 was considered. Fig. 6
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shows the combustor dome. It is represented by a single-module flame tube
cap using a high-drag body concept for a flame stabilization.

In our example we assume a reverse-flow combustor made up of twelve
external flame tubes with a lean premix system. It is represented by a single-
module flame tube cap using a high-drag body concept for a flame stabilization.
The combustion system has an impingement and convective cooling. It in-
cludes three fuel manifolds: diffusion, premix and igniter (light-off) manifold.

Premixer
Igniter

Tube

Aft case

Front case

Fig. 6. An industrial low-emission combustion chamber (DLN)
of a gas turbine unit with a power of 16 MW (GTU-16)

This combustor was tested on a dedicated rig with NO, and CO emis-
sion measurements. Combustor parameter regulation ranges are: pressure is
1.0-1.8 MPa, combustor inlet temperature is 470—730 K, the proportion of
a fuel flow through the diffusion (pilot) circuit (PFR) is 0.04-0.20, thermo-
dynamic gas temperature at combustor discharge is 900—-1550 K.

b) The Identification of a Mathematical Model

The results of the numeric analysis of non-uniformity and the combus-
tion dynamics distribution for the concentration of the fuel-air mixture over
the area of the premix flame were used as inputs. The results are shown in
the Fig. 7 as a mixture fraction.

Mixture fraction was obtained on the metamodel using ANSYS CFX.

The standard deviation from the mathematical expectation was 15 %.

Next, taking into account the assumptions made and NOy emission in-
dex test results, the equivalence length of burning zone (parameter “a”) was
determined as a function of thermodynamic gas temperature at combustor
discharge. The results are shown in Fig. 8.
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Fig. 8. The approximation of experimental data using
a presented model

As it can be seen from the presented data, most of the values of NOy
emission index can be predicted using the discussed approach with no ex-
ceeding 10-20 % error.

It should be borne in mind that this model operates as a part of an
automatic control system of DLN in a real time. And this determining factor
requires some compromise with an accuracy. So, the obtained accuracy is
sufficient for testing the adaptive software for the emission control channel
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at the design stage. The obtained results are the basis for the reasonable con-
fidence that it is possible to achieve an error of not more than 10-20 % with
the further use of neural network technology to represent the identification
parameter a (equivalence length of burning zone) as a function of the super-
position of many variables.

It is sufficient to replace the real item with a virtual one during the
synthesis of the control system software. The simulation of control proc-
esses using the presented mathematical model is provided in real time.

¢) The Real-Time Virtual NOy Sensor Based on Neural Network

The considering DLN refers to a counter flow type with twelve remote
flame tubes with the organization of combustion of the “poor” premixed
mixture. The DLN uses a front-end device of a single-module type with
a flame stabilization by a bluff body. The flame tube cooling system is im-
pact-convective. DLN has three fuel manifolds: a diffusion manifold, a ho-
mogeneous manifold, an igniter manifold.

Typical for this class of tasks structure of a two-layer perceptron —
a fully-connected neural network with direct signaling, was selected to de-
velop the DLN model. Fig. 9 shows the structure of the neural DLN model.

Input X (x;, x,, ...Xg)

Output Y(y,»,)

Fig. 9. The neural network structure for DLN modeling

Fully connected networks are artificial neural networks, each neuron
of which transmits its output signal to other neurons, including to itself.

In the structure under consideration, neurons are regularly organized
into layers. The layer contains an ensemble of neurons with the common in-
put signals. The input (zero) sensors layer is used to enter values of input
variables. In the general case, a two-layer perceptron consists of 3 layers,
numbered from left to right. External input signals are fed to the inputs of
the neurons of the first layer (the input layer is numbered as zero), and the
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output signals of the last layer are the outputs of the network. Each of the
hidden and output neurons is connected to all elements of the previous layer.
As the coordinates of the input vector of virtual sensor X the eight measur-
able parameters of DLN were selected [10,18]: operating mode; temperature
behind the compressor 7¢; pressure behind the compressor Pc; air flow my;
fuel flow my; gas temperature 7g; ripple amplitude at frequencies A200-400 Hz;
proportion of fuel in the pilot burner-pilot fuel ratio (PFR).

As the coordinates of the output vector of the neural network Y the
two output parameters of DLN, characterizing the emission of pollutants,
were selected: concentration of NOy; concentration of CO.

According to the full-scale experiment, 26 training samples, one test-
ing sample and one predictive sample were formed. One test sample (exam-
ple) and one predictive sample were also formed. The corresponding arrays
V1, V2 were selected as targets.

The number of hidden layer neurons N = 35 was selected.

In the considered practical example, the optimization of hidden layers
in the process of the neural network training is based on the algorithm of
a back propagation of an error (Fig. 10).

Neural Network Training Performance (plotperform), Epoch 1000, Maximum epochre...  — O X

File Edit View Insert Tools Desktop Window Help

Best Training Performance is 0.34533 at epoch 638

Mean Squared Error (mse)
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Fig. 10. The mean square error ¢ during the study’s period

The neural network was modeled by the tools of MATLAB. The best
result of neural network tunings according to the minimum of the mean
square error criterion performed an average relative test error of 6 = 10 %,
an average relative prediction error of 3 %.
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The analysis of the significance of the individual coordinates of the
input vector X for the accuracy of the model (Fig. 11), and, therefore, the
degree of their influence on the amount of emissions showed, that the most
significant parameters affecting the accuracy of the DLN model are the
pressure behind the compressor P, thegas temperature 7 and the pilot fuel
ratio (PFR).

50
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20 = CO
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Fig. 11.The analysis of the significance of the individual coordinates
of the input vector X for the accuracy of the DLN model

Conclusion

So the results of MATLAB-modeling confirm the hypothesis of the
possibility of the robust DLN mathematical models design based on artifi-
cial neural networks with taking into account the significance of influence
factors.

The developed virtual emission sensor operates in real time and is
suitable both for developing software for an adaptive control of emission
channel and for embedding it in the on-board controller model.

In general, the obtained results comply with modern international re-
quirements to studies of complex objects and can be used to increase its re-
liability of fault-tolerant automatic control systems of gas turbine engines.
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