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Introduction. Volterra – Fredholm integro-differential equations 

(IDEs) appear in various fields of science such as physics, biology, and en-
gineering. Such equations are the mathematical models in the problems of 
mechanics, electromagnetic theory, population dynamics, fluid dynamics, 
pharmacokinetic studies and many others [1–5]. Usually it is difficult to 
solve Volterra – Fredholm IDE using analytical methods. By Adomian de-
composition method in [6–7] the solution of such IDEs is given in an infi-
nite series of components that can be recurrently determined. Spline colloca-
tion method was used to solve Volterra integro-differential equations in [8]. 
The numerical solution of linear Fredholm – Volterra integro-differential 
equations was studied in [9]. In [10] was developed an existence and 
uniqueness theorem of the solution to an initial value problems for a class of 
second-order impulsive integro-differential equations of Volterra type in a 
real Banach space by using the generalized Banach fixed point theorem. Ex-
istence and Uniqueness Theorems are also illustrated for the systems of 
Volterra IDEs of first order in [2], [11–14] and for Volterra IDEs of the first 
and second order in [6–7, 20, 22]. Exact solutions to Volterra – Fredholm 
integro-differential equations were obtained in [4, 19]. We investigate the 
problem 

 ( )  ( ) ( ) ( ) ( ) ( ) ( )  Φ   ,    ,Bu x Au x g x u f x D B D A= − = =  (1) 
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where an operator B contains a linear differential operator A , the linear 
Volterra integral operator K with kernel of convolution type and the inner 
product of vectors g(x)Φ(u) with linear bounded functionals Φi, i = 1, ..., 
m. Similar problem for arbitrary Banach spaces X, Y and Fredholm 

integro-differential (loaded differential) equation ( )  ( )Bu x Au x= −  

( ) ( ) ( )Φg x u f x− = , ( ) ( )  D B AD= , where A  is a correct operator and 

( )Φ i u  are bounded integral functionals (loaded part of differential equa-

tions), was investigated in [20] and for ( ) ( ) ,Bu x f x=  with nonlocal 

boundary conditions in [21]. We prove in this paper that the operator 
A K−  is continuously invertible and, using Oinarov extensions of linear 
operators in Banach space [22], we obtain exact real solutions in closed 
form of Problem (1). The technique which we present, is simple to use and 
can be easily incorporated to any Computer Algebra System (CAS). 

Terminology and notation. Let Х be a complex Banach space and Х* 
its adjoint space, i.e. the set of all complex-valued linear and bounded 
functionals on X. We denote by f(x) the value of f on x. We write D(A) and 
R(A) for the domain and the range of the operator A, respectively. A linear 
operator B is said to be an injective operator, if kerB = {0}. An operator A is 
called invertible if there exists the inverse operator A−1. An operator A is 
called continuously invertible if it is invertible and the inverse operator A−1 

is continuous. Remind that if a linear operator is injective, then it is inverti-
ble. A bounded operator B: X → Y is said to be compact if the image {Bun} 
of any bounded sequence {un} of X contains a Cauchy subsequence. A func-
tion f(x) is said to be of exponential order α if |f(x)| ≤ Meαx, 0 ≤ x < ∞, where 
M and α are constants. By F(s) = L[f(x)] we denote Laplace transform of 
function f(x) and by L−1[F(s)] = f(x) the inverse Laplace transform of F(s). 
An equation is called loaded equation if it contains the solution function on 
a manifold with dimension less than the dimension of domain of this func-
tion [23]. For example an ordinary loaded differential equation is 
represented by 

( ) ( )( ) [ ] [ ]/   ,   ,    0,1 ,   0,1 ,j jdy dx f x y y x x x= + ψ ∈  ∈  

where xj are fixed points. If Φi ∈ X∗, i = 1, ..., m, then we denote by Φ =  
= col(Φ1, ..., Φm) and Φ(x) = col(Φ1(x), ..., Φm(x)). Let g = (g1, ..., gm) be 
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a vector of Xm. We will denote by Φ(g) the m × m matrix whose i,j-th entry 
is the value of functional Φi on element gj and by Im the identity m × m ma-
trix, respectively. Note that Φ(gC) = Φ(g)C, where C is a m×m constant ma-
trix. By c and 0 we will denote a vector and zero vector, respectively. We 
also denote u = u(x), g = g(x), f = f(x), Ω = [a, b] × [a, b], C0[a, b] =  
= {u(x)∈C[a; b]: u(a) = 0}, C0

n[a; b] = {u(x) ∈ Cn[a; b]: u(j–1)(a) = 0, j = 1, …, n}, 

( )
0

0
n n

n
k

C C C
k

u u u
=

= =  and 

 ( ) ( ) ( ) ( ) [ ]0
0

, 0,  , ,
n

n i n
i n

i

A Au x u x D C a b−

=

= α  α ≠ =   

( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]
0

, ,  , ,
xn

j n
j j

j a

Ku x K x t u t dt K x t C D K C a b
=

= − − ∈ Ω =   

( ) ( ) ( ) ( ) ( ) ( )
1

Ф Ф Ф ,k

m

k
k

g u x g x u g x u
=

= =  

where α0, α1, ..., αn are constants, g1(x), ..., gm(x) are linearly independent in 
C[a,b] functions, g(x) = (g1(x), ..., gm(x)), Φ1, ..., Φm the set of bounded line-
arly independent on Cn−1[a,b] functionals, Φ(u) = col(Φ1(u), ..., Φm(u)) and 
Kj(0) = 0, j = 0,1, ..., n. Denote Kj,0(z) = Kj(z), j = 0,1, ..., n. Let Kj,i+1(z) be 
the antiderivative of Kj,i(z), such that Kj,i(0) = 0, j = 0,1, ..., n, i = 0,1, ..., 
n−1. The index i in Kj,i(z) shows the number of integrations of the function 
Kj(z). Also denote by (Kj,i)(z) = Kj,i(z). 

Theorem 1. Let α0 ≠ 0. Then: 
(i) Volterra integro-differential equation ܣመu (x) − Ku(x) = 0 or 

 ( ) ( ) ( ) ( ) ( )
0 0

0
xn n

n i j
i j

i j

u x K x t u t dt−

= = α

α − − =   (2) 

is reduces to Volterra integral equation 

 ( )  ( ) ( ) 0,
x

a

u x K x t u t dt− − =  (3) 
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where 

 ( ) ( )( )

( ) ( ) ( )

0, 1, 1 2, 2 3, 3 ,0
0

1

1 2
0

1

1
,

1 !

n n n n n

nn

x tK x t

x t x t
n

− − −

−

− = + + + +…+ − −
α

 α− α + α − +…+ − α − 

    

 

and has a unique zero solution. 

(ii) The operator A K−  is closed and continuously invertible. 
(iii) If the functions u(x), g(x), f(x) are of exponential order α then the 

nonhomogenious equation Au(x)−Ku(x) = f(x) for each f(x) has a unique 
solution 

 ( ) ( )
( ) [ ]1

0 1

, , .
n

n

s
u x x a

s s s
−  

=  ∈ +∞ α + α +…+ α − 


  (4) 

Where ( ) ( ) ,s f x=      ( ) ( ) 0 1 . .n
ns K x s s= ≠ α + α + … + α      

Proof. (i), (ii). First for j = 0,1, ..., n, i = 0,1, ..., n−1 we prove two 
formulas 

 ( ) ( ) ( ) ( ) ( ) ( )1 , 
yx x

j j
j j

a a a

K y t u t dtdy K x t u t dt−− = −    (5) 

 ( ) ( ) ( ) ( ), , 1 , 
yx x

j i j i

a a a

K y t u t dtdy K x t u t dt+− = −    (6) 

It is easy to verify that 

 ( ) ( ), , 1 ,  0,1, , ,  0,1, , 1.
x

j i j i

t

y t dy x t j n i n+− = − =  … =  …  −    (7) 

Further by using Fubbini theorem and integrating by parts we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )1 1
,1 .

yx x x
j j

j j

a a t

t xx x
j j

j j t
t

a

at a

K y t u t dtdy u t K y t dy dt

u t K y t dy u t K x t dt

=
− −

=

 
− = − = 

 

  ′= − − − 
 

  

 
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Now taking into account (7) we get 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 1
,1 .

yx x x
j j j

j j jt
a a a a

y t u t dtdy u t x t dt tu K x t dt− −′− = − − = −      

So we proved (5). Further by using Fubbini theorem and (7) we have 

( ) ( ) ( ) ( ), , 1 .
yx x

j i j j

a a a

y t u t dtdy x t u t dt+− = −     

So we proved (6). Now we will prove that A K−  is injective. Re-
write (2) as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2
0 1 2

0 1

2 .

n n n
n

x x

a

x x
n

n

a a

u x u x u x u x

K x t u t dt K x t u t dt

K x t u t dt K x t u t dt

− −

α

α + α + α +…+ α =

′= − + − +

′′+ − …+ −

 

 

 

Integrating with respect to x both sides of the above equation and  
using the initial conditions and (5), (6) obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 3
0 1 2

0,1 1,0

1
2

( )

.

x
n n n

n

x

x x
n

n

a a

u x u x u x u t dt

x t u t dt

K x t u t dt K x t u t dt

− − −

α

α

−

α + α + α +…+ α =

= + − +

′+ − +…+ −





 

   

The second integration gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 3 4
0 1 2

2
0,2 1,1 2,0( ) .

x
n n n

n

x x
n

n

a

u x u x u x x t u t dt

x t u t dt K x t u t dt

− − −

α

−

α

α + α + α +…+ α − =

= + + − +…+ −



   
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By the third integration we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

23 4 5
0 1 2

3
0,3 1,2 2,1 3,0

1

2

( ) .

x
n n n

n

x x
n

n

a

u x u x u x x t u t dt

x t u t dt K x t u t dt

− − −

α

−

α

α + α + α +…+ α − =

= + + + − +…+ −



    

  

By n-th integration obtain 

( ) ( ) ( ) ( ) ( )

( )( ) ( )

1

0 1 2

0, 1, 1 2, 2 3, 3 ,0

1 !

,

x
nn

x

n n n n n

u x x t x t u t dt
n

x t u t dt

−

α

− − −
α

 αα + α + α − +…+ − = − 

= + + + +…+ −



     

  

or (2). Since  ( )K z  is a continuous function, the equation (3) has a unique 

zero solution and so (2) has also a unique zero solution. Then the operator 
A−K is invertible. The closedness of the operator A  is proved in [24]. The 

operator K is bounded as compact operator. Remind that ( ) [ ]0 ,nD C a bA =  

and ( ) [ , ].nD K C a b=  So ( ) ( ).D A D K⊂  We will show that A−K is closed. 

Let un ∈ ( )D A  and 0 ,
nC

nu u→  ( ) .
C

nK uA− →υ  Then [ ]0 ,nu C a b∈  and 


0.

C

nAu Ku→υ+  The last relation follows from the boundedness of K. From 

0 ,
nC

nu u→   0

C

nAu Ku→υ+  since A  is closed, follows that u0 ∈ D( A ) and  0Au

= υ  + Ku0. Then ( ) 0 .A K u− = υ  So the operator A K−  is closed, which 

implies the closedness of ( ) 1

.A K
−

−  Now, since R( A− K) = C[a,b], by 

Closed Graph Theorem, the operator (A − K)−1 is bounded and the operator 

( ) 1

A K
−

−  is continuously invertible. 

(iii) By using Laplace transform on both sides of Au (x) − Ku(x) = f(x) 
and then by inverse Laplace transform we obtain (4). The theorem is proved. 
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The next theorem is useful for solving of linear Volterra – Fredholm or 
Volterra loaded integro-differential equations with initial boundary conditions. 

Theorem 2. Let the operator [ ] [ ]0: , ,nB C a b C a b→  be defined by the 

equality 

 Bu(x) = Au (x) − Ku(x) − gΦ(u)(x) = f(x). (8) 

Then: 

(i) R(K) ⊂ C0[a,b], the operator K is compact and R( A− K) = C[a,b].  
(ii) The operator B is invertible if and only if detW ≠ 0, where 

 ( ) 1

Φm gAW I K
−  = − −    

  (9) 

Proof. (i) Let ( ) ( ) ( ) ( ) ( )
0

.
xn

j
j

j a

z x Ku x K x t u t dt
=

= = −  Then z(a) = 0 

and R(K)⊂C0[a, b]. Denote by ( ) ( ) ( ) ( ) .
x

j
j j

a

K u x K x t u t dt= −   

Then ( ) ( )
0

.
n

j
j

Ku x K u x
=

=  We will show that the operators 

[ ] [ ]0: , , , 0,1, ,n
jK C a b C a b j n→ =   …  are compact. Note that for x1, x2 ∈ 

[a, b] hold 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

1 2

1 2

1

1 2 1 2

1 2 2

1 2 1 2 2

1 2 1 2 2

( max max

max max .n

x x
j j

j j j j

a a

x x
j j

j j j

a x

j
j j j

t tC

j j jC t t

K u x K u x K x t u t dt K x t u t dt

K x t K x t u t dt K x t u t dt

u t b a K x t K x t x x K x t

u t b a K x t K x t x x K x t

− = − − − ≤

 ≤ − − − + − ≤ 

≤ − − − − + − − ≤

≤ − − − − + − −

 

   

Since Kj(x − t) is continuous, it is uniformly continuous and |Kju(x1) − 
Kju(x2)| can be made arbitrarily small by taking |x1 − x2| small. How small  

|x1 − x2| should be depends only on ( ) .nC
u t  In other words, the Kju are 

equicontinuous for a bounded set of u. Sinse {Kju} is equibounded for 
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a bounded set {u} for a similar reason, by Ascoli – Arzeia criterion follows 
that {Kjui} contains a uniformly convergent subsequence if {ui} is bounded. 
Since this means that {Kjui} contains a Cauchy subsequence in C[a, b], then 

Kj, j = 0, 1, ..., n is compact. From the last follows that 
0

n

j
j

K K
=

=  is a com-

pact operator as a finite sum of compact operators. Now we find R( A−K). 

Let ( A−K)u=y, y∈C[a, b]. This equation is equivalent to 

 1 1
( ) .I A K u A y

− −
− =  The operator 

1
A K

−
 is compact, because K is compact 

and  1
A

−
 is bounded. By second Fredholm Theorem ( )1

R I A K
−

− =  

[ ] ( ){ }1
, : 0y C a b A y

−
= ∈ ψ = , where ψ ∈ ker(I − K∗  1*

A
−

). By the first 

Fredholm Theorem dim ker(I − K∗  1*
A

−
) = dim ker  1

( ).I A K
−

−  But ker

 1
( )I A K

−
−  = ker( A−K) = {0}, since A−K by Theorem 1 is invertible. So 

ker(I − K∗  1*
A

−
) ={0} and R  1

( )I A K
−

− = [ ]0 , .nC a b  Then R( A − K) = C[a, b]. 

(ii) Since the operator B is linear, it is sufficiently to prove that B is 
injective. 

Let Bu = 0 and detW ≠ 0. Then 

 Bu = ܣመu − Ku − gΦ(u) = 0. (10) 

Taking into account that the operator A − K is invertible and R( A − K) =  

= C[a, b] we can use the inverse operator ( A − K)−1 on both sides of Equa-
tion (10) and get 

 u = ( A− K)−1gΦ(u). (11) 

Applying the vector Φ on (11) and using the linearity of Φ1, ..., Φm, we 
arrive at the equations 

( ) ( ) ( )
1

Φ Φ Φ ,u K gA u
− = − 

 
  

( ) ( )
1

Φ Φ 0,mI K g uA
−  − − =    

 

 ( )Φ 0.W u =   (12) 
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From the last equation, since detW ≠ 0, follows that Φ(u) = 0. Substi-
tuting Φ(u) = 0 into (11) we obtain u = 0. So kerB = {0} and the operator B 
is invertible. 

Conversely. Let det W = 0. Then there exists a nonzero vector c =  

= col(c1, ..., cm) such that Wc = 0. Consider the element u0 = ( A − K)−1gc. 
Observe that u0 ≠ 0 since g1, ..., gm is a linearly independent set in C[a, b]. 

Then Bu0 = ( A –K)u0–gΦ(u0) = gc−gΦ(( A −K)−1g)c = g[Im−Φ(( A − K)−1g)]c =  
= gWc = 0. 

Consequently, u0 ∈ ker B and B is not injective. Hence the operator B 
is invertible if and only if det W ≠ 0. The theorem is proved.  

Corollary. The equation Bu = f for each f ∈ C[a, b] has a unique solu-
tion 

 ( ) ( ) ( )1 1
1ΦA A Au K f K gW K f

− −
−  = − + − − 

 
 (13) 

if and only if detW ≠ 0. The operator B is continuously invertible on C[a, b] 
and 

 ( ) ( ) ( )1 1 1
1 1 1 .B f K f K gWA K fA A

− − −
− − −  = − + − Φ − 

 
 (14) 

Proof. Acting by the inverse operator ( A − K)−1 on both sides of Equa-
tion (8) we get 

 u = ( A − K)−1f + ( A − K)−1gΦ(u). (15) 

Applying the vector Φ on (15) and using the linearity of Φ1, ..., Φm, we 
arrive at the equations 

( ) ( ) ( ) ( )
1 1

Φ Φ Φ Φ ,Au K f K g uA
− −   = − + −   

   
  

( ) ( ) ( )1 1

Φ Φ Φ ,mI g u K fA AK
− −    − − = −        

 

 ( ) ( ) 1
1 .u W K fA

−
−  Φ = Φ − 

 
 (16) 

Substituting (16) into (15) we obtain the exact solution (13) of (8). 

The boundedness of the operator ( A − K)−1 on C[a, b] and the boundedness 



I.N. Parasidis 

 

16 

of the functionals Φ1, ..., Φm on Cn−1[a, b] imply the boundedness of the op-
erator B−1 on C[a, b]. 

In the next examples we assume that a function u(x) is of exponential 
order α, 0 ≤ x < ∞. 

Example 1. The next linear Volterra – Fredholm integro-differential 
equation 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0

2 sin 2 cos 2 sin 2 ,
x

u x x t u t dt x u t dt x
π

′′ + − − =   (17) 

( ) ( ) ( ) [ ]2
00 0, 0 0,  0, ,u u u x C′= =  ∈ π   

has the unique exact solution 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2

2

2

2

7 2 7
sin 2 2 cos 2

16 16

10 sin 2 2 2 cos 2

7 2 cos 2 2 7 sin 2 16 2

2 2 9 2
cos 2 sin 2 .

16 2 16 2

x
u x x x x

x x x x

−
= − +

−
+ ×

π π + π − π +

  π π× − π − π +      

 (18) 

Proof. If we compare the equation (17) with (8) it is natural to take  

n = 2, m = 1, A u(x)=u′′ (x), D( A )={u(x)∈C2[0,π]:u(0)=0, u′ (0)=0}, 

Ku(x)= ( ) ( )
0

2 sin 2
x

x t u t dt− − , Φ(u)= ( )
0

u t dt
π

 , Bu=  ( )Φ ,Au Ku g u− −  

Ku − gΦ(u), D(B) = D( A ), g(x )= ( )cos 2 ,x  f(x) = ( )sin 2 .x  Note that 

( ) ( )
[ ]

( )
0,

0

Φ max C
t

u u t dt u t u
π

∈ π
≤ ≤ π = π . This means that Φ ∈C[0, π]∗. Then 

Φ ∈ C1[0, π]∗. We can use Theorem 2. Let 1, −   be the operators of the 

direct and inverse Laplace transforms, respectively. Denote by   [u(x)] =  

= U(s) and   [y(x)] = Y(s). The functions ( )sin 2 ,x  ( )cos 2 ,x  sin2x are 

continuous on each closed interval [0, b], b < ∞ and of exponential order 0. 
So we can use Laplace transform. Note that every solution of (17) on [0, ∞) 
is also the solution of (17) on [0, π]. From 
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( ) ( ) ( ) ( ) ( ) ( )
0

2 sin 2 ,
x

A K u x u x x t u t dt y x′′− = + − =  ( )0 0,u =  ( )0 0,u ′ =  

by using the Laplace transform and convolution operator we get 

( ) ( ) ( )2
2

4

4
s U s U s Y s

s
+ =

+
 or ( )

( )
( )2 22

1 2

2 2
U s Y s

s s

 
 = +
 + + 

,  

or 

( )
( )

( )
( )

( )
3

2 222 2

2 22 2 2
.

2 42 2

U s Y s
s s

 
 
 = +
  + +    

  

Now by using the inverse Laplace transform we obtain 

( ) ( ) ( ) ( )3 2 1
sin 2 cos 2

4 2
u x x x x y x

 
= −  
 

  

or  

( ) ( ) ( )( ) ( ) ( )( ) ( )
1

0

3 2 1
sin 2 cos 2 .

4 2

x

A K y x x t x t x t y t dt
−  

− = − − − − 
 
  

Then for ( ) ( )cos 2g x x=  and ( ) ( )sin 2f x x=  we get 

( )
( )( ) ( ) ( )( ) ( )

( ) ( )

1

0

2

3 2 1
sin 2 cos 2 cos 2

4 2

5 2 1
sin 2 cos 2 ,

16 8

x

A K g

x t x t x t x dt

x x x x

−
− =

 
= − − − − = 

 

= −

  

( )
( )( ) ( ) ( )( ) ( )

( ) ( ) ( )

1

0

2

3 2 1
sin 2 cos 2 sin 2

4 2

1
7 2 sin 2 7 2 cos 2 .

16

x

A K f

x t x t x t t dt

x x x x

−
− =

 
= − − − − = 

 

 = − − 

   
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Further we compute 

( ) ( ) ( ) ( )1
21

Φ 2 7 2π sin 2 14 cos 2 ,
32

A K g
−   − = − π − π π    

 

( ) ( ) ( )
21 2 2 9 2

Φ cos 2 sin 2 ,
16 2 16 2

A K f
−  π π − = − π − π +       

 

( ) ( ) ( ) ( )
1

1

2

16 2
Φ .

7 2 cos 2 2 7 sin 2 16 2
nI A K g

−−  − − =     π π + π − π +
 

Substituting these values into (13) we obtain (18). ▲ 
Example 2. The next linear Volterra loaded integro-differential equa-

tion 

 ( ) ( ) ( ) ( ) ( )
0

3 cos sin 2 8 sin ,
x

u x x t u t dt u x x′′ ′+ − − π = π −  (19) 

u(0) = 0, u′ (0) = 0,  u(x) ∈ 2
0C [0, π], 

has the unique exact solution 

 u(x) = sin2x − 2x. (20) 

Proof. If we compare the equation (19) with (8) it is natural to take n =  

= 2, m = 1, A u (x) = ( )u x′′ , D( A ) = ( ){u x ∈ C2[0, π]: u(0) = 0, ( ) }0 0u′ = , 

Ku(x) = − ( ) ( )
0

3 cos
x

x t u t dt′− , Φ(u) = u(π), Bu = A u − Ku − gΦ(u), D(B) =  

= D( A ), g(x) = sin x, f(x) = (2π − 8)sin x. Note that |Φ(u)| = |u(π)| ≤ ||u||C. 

This means that Φ ∈ C[0, π]∗. We can use Theorem 2. Let 1, −   be the op-

erators of the direct and inverse Laplace transforms, respectively. Denote by 
  [u(x)] = U(s) and   [y(x)] = Y (s). The functions sin x, cos x are continu-
ous on each closed interval [0, b], b < ∞ and of exponential order 0. So we 
can use Laplace transform. Note that every solution of (19) on [0, ∞) is also 
the solution of (19) on [0, π]. From 

( ) ( ) ( ) ( ) ( ) ( )
0

3 cos ,
x

A K u x u x x t u t dt y x′′ ′− = + − =  ( )0 0,u =  ( )0 0,u ′ =  
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by using the Laplace transform and convolution operator we get 

( ) ( ) ( )
2

2
2

3

1

s
s U s U s Y s

s
+ =

+
 or ( ) ( ) ( )

2

2 2

1
,

4

s
U s Y s

s s

+=
+

  

or 

( ) ( )2 4

3 1 1 1
.

4 4 4
U s Y s

s s
 = + + 

 

Now by using the inverse Laplace transform we obtain 

( ) ( )3 1
sin2

8 4
u x x x y x

 = + 
 

 

or 

( ) ( ) ( ) ( ) ( )
1

0

3 1
sin2 .

8 4

x

A K y x x t x t y t dt
−  − = − + −    

Then for g(x) = sinx and f(x) = (2π − 8)sinx we get 

( ) ( ) ( )
1

0

3 1 sin2
sin2 sin

8 4 4 8

x x x
A K g x t x t tdt

−  − = − + − = −     

and 

( ) ( ) ( ) ( )

( )

1

0

3 1
sin2 2 8 sin

8 4

sin2
2 8 .

4 8

x

A K f x t x t tdt

x x

−  − = − + − π − =  

 = π − − 
 


 

Further we compute 

( ) ( ) ( )
1 1

Φ / 4,A K g A K g
− −   − = − π = π   

   
  

( ) ( ) ( ) ( )
1 1

Φ 2 8 / 4,A K f A K f
− −   − = − π = π − π   

   
  

( )
1

1 4
Φ .

4nI A K g
−−  − − =   − π  

 

Substituting these values into (13) we obtain (20). 
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