УДК 51-72, 74

И.П. Попов

Курганский государственный университет, Курган, Россия

МОДЕЛИРОВАНИЕ СОСТОЯНИЯ ОБЪЕКТА В ВИДЕ СУПЕРПОЗИЦИИ СОСТОЯНИЙ

Показано, что при решении некоторых задач динамики целесообразным и зачастую единственно приемлемым является представление состояния объекта в виде суперпозиции его граничных состояний, при этом промежуточное состояние зависит от значений функций состояния. характеризующих изменчивость состояния объекта. Отмечено, что во многих случаях функции состояния являются нелинейными, а их аналитическое изображение чаще всего неизвестно, однако для рассматриваемых моделей с взаимоисключающими равновеликими граничными состояниями функции состояния, как правило, являются непрерывными и монотонными на исследуемом интервале, при этом величина функций состояния изменяется от нуля до единицы. При этих условиях функции состояния почти в любом случае являются аналитическими на исследуемом интервале и могут быть представлены в виде разложений в ряды, например, Тейлора. Показано, что характерным типом практических задач, которые могут быть решены с применением предлагаемого метода, является расчет динамики платформы с сыпучим грузом при совершении линейных колебаний в горизонтальной плоскости; основная трудность этой задачи состоит в отсутствии даже приблизительных сведений об обобщенном коэффициенте динамического трения, поскольку на его величину существенно влияют перемещения фрагментов груза во всем его объеме, а не только в плоскости соприкосновения с платформой. Показано, что представление состояния груза в виде суперпозиции его подвижного и неподвижного состояний позволяет решать эту и подобные задачи.

Ключевые слова: суперпозиция, граничные состояния, функции состояния, переменная состояния.

I.P. Popov

Kurgan State University, Kurgan, Russian Federation

MODELING OF OBJECTS IN THE FORM OF SUPERPOSITION OF STATES

It is shown that the solution of certain problems of the dynamics appropriate and often the only acceptable is the presentation of the state of the object in a superposition of its boundary conditions, and the intermediate state depends on the values of state functions that characterize the variability of the state of the object. It was noted that in many cases are non-linear function of the state, and their analytical representation often unknown, but for the model with mutually by equal boundary conditions state function, as a rule, are continuous and monotone on the interval studied, and the value of state functions varies from zero to unity; under these conditions, the state function in almost any way are investigated for the analytical range and can be represented as a series expansions, for example Taylor. It is shown that the characteristic type of practical problems which can be solved using the proposed method is to calculate the dynamics of bulk cargo platform in the commission of linear oscillations in a

horizontal plane; main difficulty of this problem is the lack of even approximate data on dynamic friction coefficient of the generalized because its value significantly affect fragments move cargo in its entirety, and not only in the plane of contact with the platform. It is shown that the representation of the cargo as a superposition of its movable and stationary states can solve this and similar problems.

Keywords: superposition, the boundary condition, function of the state, the state variable.

Введение

Пусть состояние объекта оценивается величиной ξ , при этом $\xi \in [\xi_a, \zeta_z] \subset \mathbb{C}$. Представление ξ в виде суперпозиции граничных состояний ξ_a и ξ_z имеет вид

$$\xi = \varphi_a \xi_a + \varphi_z \xi_z, \tag{1}$$

где ϕ_a и ϕ_z – функции состояния.

Принцип суперпозиции состояний широко используется в квантовой механике. В соответствии с ним если система может находиться в состоянии, изображаемом волновой функцией ψ_1 , и в состоянии ψ_2 , то может иметь место состояние $\psi = c_1\psi_1 + c_2\psi_2$, где комплексные функции c_1 и c_2 определяются из условия нормировки ψ [1]. При этом в квантовой механике принцип суперпозиции трактуется в более широком смысле, чем (1), поскольку ψ_1 и ψ_2 не обязательно являются граничными состояниями.

В некоторых случаях выражение (1) существенно упрощает решение задач.

Пример 1. В \mathbb{R}^1 скорость объекта изменяется по закону $v = p - qt^2$. При этом $v_a = v(t_a) = p$, $t_a = 0$, $v_z = v(t_z) = p - qt_z^2$. Среднее значение скорости (частный случай промежуточного значения) может определяться суперпозицией его граничных состояний:

$$\overline{v} = \varphi_a v_a + \varphi_z v_z = \frac{2}{3} v_a + \frac{1}{3} v_z \,,$$

которая позволяет при вычислении перемещения объекта заменить отыскание интеграла Римана произведением \overline{v} на длину интервала интегрирования.

В ряде случаев, особенно когда ξ может быть определено лишь экспериментально, при его аналитическом описании представление (1) бывает единственно приемлемым.

Актуальность темы может быть подкреплена примером необходимости расчета динамики платформы с сыпучим грузом при совершении линейных колебаний в горизонтальной плоскости [2–5]. Основная трудность этой задачи состоит в отсутствии даже приблизительных сведений об обобщенном коэффициенте динамического трения, поскольку на его величину существенно влияют перемещения фрагментов груза во всем его объеме, а не только в плоскости соприкосновения с платформой. Представление состояния груза в виде суперпозиции его подвижного и неподвижного состояний позволяет решать эту и подобные задачи.

Дальнейшее рассмотрение ограничивается широко распространенными в практических задачах моделями с взаимоисключающими равновеликими граничными состояниями.

1. Суперпозиция взаимоисключающих равновеликих граничных состояний

Такими состояниями могут быть, в частности, ξ_a – неподвижность объекта относительно некой системы отсчета, ξ_z – его подвижность или ξ_a – твердость [6], ξ_z – пластичность [7, 8] объекта и т.п. При этом

$$\left|\xi\right| = \left|\xi_a\right| = \left|\xi_z\right|.\tag{2}$$

Из этого следует, что

$$\varphi_a + \varphi_z = 1$$

и промежуточное состояние можно представить в виде

$$\xi = \varphi_a \xi_a + (1 - \varphi_a) \xi_z = (1 - \varphi_z) \xi_a + \varphi_z \xi_z.$$

Пример 2. Инертный объект расположен на платформе, совершающей линейные колебания в горизонтальной плоскости относительно системы отсчета. Состоянию ξ_a соответствует максимальная частота колебаний ω_a , при которой груз остается неподвижным относительно платформы за счет статической силы трения. При этом он совершает колебания относительно системы отсчета с теми же частотой и амплитудой, что и платформа. Состоянию ξ_z соответствует минимальная частота ω_z , при которой груз остается неподвижным относительно системы отсчета благодаря инерции. При этом он совершает колебания относительно платформы с теми же частотой и амплитудой. Очевидно, что $\omega_a < \omega_z$.

При частоте $\omega_a < \omega < \omega_z \phi_a$ -я часть груза условно может считаться неподвижной относительно платформы, ϕ_z -я часть – подвижной.

В приведенном примере функции состояния связаны с частотой колебаний, которая является *переменной состояния*. Переменными состояния могут быть другие величины – время, скорость, температура, процентное содержание углерода или легирующих и т.д.

2. Функции состояния

Пусть x – переменная состояния, $x \in [x_a, x_z] \subset \mathbb{R}$. Переменная состояния является аргументом функции состояния.

Функции состояния могут быть линейными:

$$\varphi_a(x) = 1 - p(x - x_a), \ p \in \mathbb{R},$$

$$\varphi_z(x) = p(x - x_a),$$

$$p(x_z - x_a) = 1.$$
(3)

Во многих случаях функции состояния являются нелинейными, при этом чаще всего их аналитическое изображение неизвестно.

Для рассматриваемых моделей с взаимоисключающими равновеликими граничными состояниями функции состояния, как правило, являются непрерывными и монотонными на интервале $[x_a, x_z]$. При этом φ_a изменяется от 1 до 0, а φ_z – от 0 до 1. При этих условиях функции состояния почти в любом случае являются аналитическими на интервале $[x_a, x_z]$ и могут быть представлены в виде разложений в ряды [9], например, Тейлора:

$$\varphi_{a}(x) = \varphi_{a}(x_{w}) + \varphi_{a}'(x_{w})(x - x_{w}) + \frac{\varphi_{a}''(x_{w})}{2!}(x - x_{w})^{2} + \dots + \frac{\varphi_{a}^{(n)}(x_{w})}{n!}(x - x_{w})^{n},$$
(4)

при условии пренебрежимой малости остаточного члена. Здесь $x_w \in [x_a, x_z]$. В пользу ряда Тейлора говорит, например, то, что (3) является его частным случаем при n = 1.

Величины

$$\varphi_a(x_w), \varphi_a'(x_w), \varphi_a''(x_w), ..., \varphi_a^{(n)}(x_w)$$
(5)

можно рассматривать как *параметры функции состояния*. Для их определения необходимо найти, например, экспериментально помимо $\phi_a(x_w)$ еще *n* конкретных значений функции состояния $\phi_a(x_1)$, $\phi_a(x_2), \ldots, \phi_a(x_n)$ и составить в соответствии с (4) систему из *n* уравнений с *n* неизвестными.

Поскольку граничные значения функции состояния известны, границы интервала $[x_a, x_z]$ без труда можно определить в соответствии с (4).

Если, в частности, ξ_a – неподвижность, а ξ_z – подвижность объекта (как в примере 2), то $\varphi_a(x)$ можно рассматривать как *функцию непод*вижности, а $\varphi_z(x)$ – как *функцию подвижности*. При этом (5) являются параметрами функций подвижности и неподвижности.

Если ξ_a – твердость, а ξ_z – пластичность объекта, то $\varphi_a(x)$ можно рассматривать как *функцию твердости*, а $\varphi_z(x)$ – как *функцию пла-стичности*. При этом переменной состояния может быть процентное содержание углерода или легирующих.

Аналогичным образом могут определяться функции для других состояний.

Пример 3. Для системы, описанной в примере 2, экспериментально получены следующие данные: $n_w = 8 \text{ c}^{-1}$ (рабочий режим) ($n = \omega/2\pi$), $\varphi_a(n_w) = 0,320$; $n_1 = 3 \text{ c}^{-1}$, $\varphi_a(n_1) = 0,822$; $n_2 = 5 \text{ c}^{-1}$, $\varphi_a(n_2) = 0,579$; $n_3 = 12 \text{ c}^{-1}$, $\varphi_a(n_3) = 0,122$. Система уравнений для этих данных в соответствии с (4) имеет вид

$$\begin{cases} 0,822 = 0,320 + \varphi_a'(8)(3-8) + \frac{\varphi_a''(8)}{2!}(3-8)^2 + \frac{\varphi_a'''(8)}{3!}(3-8)^3, \\ 0,579 = 0,320 + \varphi_a'(8)(5-8) + \frac{\varphi_a''(8)}{2!}(5-8)^2 + \frac{\varphi_a'''(8)}{3!}(5-8)^3, \\ 0,122 = 0,320 + \varphi_a'(8)(12-8) + \frac{\varphi_a''(8)}{2!}(12-8)^2 + \frac{\varphi_a'''(8)}{3!}(12-8)^3. \end{cases}$$

Решение системы:

$$\phi'_{a}(8) = -6,825 \cdot 10^{-2}, \ \frac{\phi''_{a}(8)}{2!} = 5,456 \cdot 10^{-3}, \ \frac{\phi'''_{a}(8)}{3!} = -1,977 \cdot 10^{-4}$$

Таким образом, функция неподвижности (4) имеет вид

$$\varphi_a(n) = 0,320 - 6,825 \cdot 10^{-2} (n-8) + 5,456 \cdot 10^{-3} (n-8)^2 - 1,977 \cdot 10^{-4} (n-8)^3$$
.

Функция подвижности соответственно -

$$\varphi_{z}(n) = 0,680 + 6,825 \cdot 10^{-2} (n-8) - 5,456 \cdot 10^{-3} (n-8)^{2} + 1,977 \cdot 10^{-4} (n-8)^{3}.$$

По известным граничным значениям функций состояния (0 и 1) определяются граничные значения переменной состояния: $n_a = 1,8 \text{ c}^{-1}$, $n_z = 17,2 \text{ c}^{-1}$.

На рисунке изображены функции состояния для рассматриваемого примера.

Рис. Функции состояния

Состояние груза на рабочей частоте $n_w = 8 \text{ c}^{-1}$ определяется суперпозицией его граничных состояний

$$\xi = \varphi_a(n_w)\xi_a + \varphi_z(n_w)\xi_z = 0.32\xi_a + 0.68\xi_z.$$

Для определения инерционных и диссипативных нагрузок привода платформы суперпозиция граничных состояний может быть распространена на массу груза m. Для этого выражение (2) следует разделить на $|\xi|$ и умножить на m:

$$m = \varphi_a(n_w)m + \varphi_z(n_w)m = 0.32m + 0.68m.$$

Это можно условно интерпретировать таким образом, что груз массой 0,32*m* совершает колебания вместе с платформой, внося вклад в инерционную нагрузку, а груз массой 0,68*m* за счет подвижности относительно платформы создает силу трения и соответствующую диссипативную нагрузку.

Этот способ может использоваться для объектов с другими параметрами и состояниями.

3. Пример алгоритма экспериментального определения значений функций состояния

Платформу в примерах 2 и 3 можно заменить на две платформы с общим приводным валом, совершающие колебания с одинаковыми фазами или в противофазах. При отсутствии груза измеряется мощность P, развиваемая приводом на частоте n_c . Она состоит из двух не-известных частей – P_{11} и P_{21} , обусловленных соответственно инерционными и диссипативными нагрузками.

После этого от общего вала платформам сообщают колебания той же частоты n_c , сдвинутые друг относительно друга на четверть периода колебаний. В этом случае платформы обмениваются кинетической энергией между собой, а не с приводом, для которого в этой связи часть мощности, обусловленная инерционной нагрузкой, равна нулю [10]. Измеренная мощность привода равна P_{21} . По измеренным P и P_{21} определяется P_{11} .

На платформы размещается груз и на той же частоте n_c выполняются аналогичные измерения, в результате которых становятся известными величины P_{12} и P_{22} .

Искомая часть массы груза $\varphi_a(n_c)m$, вносящая вклад в инерционную нагрузку, определяется разностью $P_{12} - P_{11}$.

Часть массы груза $\varphi_z(n_c)m$, вносящая вклад в диссипативную нагрузку, определяется следующим образом:

$$\varphi_z(n_c) = m - \varphi_a(n_c)m.$$

По части диссипативной мощности $P_{22} - P_{21}$ и $\varphi_z(n_c)m$ можно определить обобщенный коэффициент динамического трения системы груз – платформа, в том числе для сыпучего груза.

Заключение

Не всегда имеется возможность определить граничные состояния исследуемого объекта ξ_a и ξ_z . В этом случае вместо (1) можно использовать его обобщение:

$$\xi = \varphi_b(x)\xi_b + \varphi_y(x)\xi_y, \ \xi \in [\xi_b, \zeta_y] \subset [\xi_a, \zeta_z].$$

Таким образом, представление состояния объекта в виде суперпозиции его известных состояний является удовлетворительной моделью для ряда задач.

Список литературы

1. Блохинцев Д.И. Основы квантовой механики. – М.: Наука, 1976. – 664 с.

2. Заика П.М. Динамика вибрационных зерноочистительных машин. – М.: Машиностроение, 1977. – 278 с.

3. Лапшин И.П., Косилов Н.И. Расчет и конструирование зерноочистительных машин. – Курган: Зауралье, 2002. – 168 с.

4. Основы теории и расчета сельскохозяйственных машин на прочность и надежность / под ред. П.М. Волкова, М.М. Тетенбаума. – М.: Машиностроение, 1977. – 310 с.

5. Косилов Н.И. Состояние и тенденции развития зерноуборочных машин. – Челябинск: Изд-во Челяб. ин-та механики и электрификации сельского хозяйства, 1983. – 100 с.

6. Переладов А.Б., Камкин И.П. Автоматизация режимноинструментального оснащения операций шлифования с использованием компьютерных моделей инструмента и процесса обработки. – Курган: Изд-во Курган. гос. ун-та, 2014. – 94 с.

7. Влияние параметров процесса пластической деформации на формирование технологических остаточных напряжений / Е.В. Кузнецова, Г.Л. Колмогоров, В.Н. Трофимов, А.Ю. Вавель // Прикладная математика и вопросы управления. – 2015. – № 1. – С. 26–35.

8. Няшина Н.Д. Математическая модель деформирования стали при мартенситных переходах // Прикладная математика и вопросы управления. – 2015. – № 1. – С. 36–46.

9. Попов И.П. О некоторых ограничениях применения интеграла Фурье // Прикладная математика и вопросы управления. – 2015. – № 1. – С. 19–25.

10. Popov I.P. Free harmonic oscillations in systems with homogeneous elements // Journal of Applied Mathematics and Mechanics. -2012. - Vol. 76, iss. 4. - P. 393–395.

References

1. Blokhintsev D.I. Osnovy kvantovoi mekhaniki [Principles of Quantum Mechanics]. Moscow: Nauka, 1976. 664 p.

2. Zaika P.M. Dinamika vibratsionnykh zernoochistitel'nykh mashin. [Dynamic vibration winnowing machines]. Moscow: Mashinostroenie, 1977. 278 p.

3. Lapshin I.P., Kosilov N.I. Raschet i konstruirovanie zernoochistitel'nykh mashin [Calculation and design of grain cleaners]. Kurgan: Zaural'e, 2002. 168 p.

4. Osnovy teorii i rascheta sel'skohoziaistvennykh mashin na prochnost' i nadezhnost' [Fundamentals of theory and design of agricultural machines for strength and reliability]. Ed. P.M. Volkov, M.M. Tetenbaum. Moscow: Mashinostroenie, 1977. 310 p.

5. Kosilov N.I. Sostoianie i tendentsii razvitiia zernouborochnykh mashin [Status and trends of grain machines]. Cheliabinski: Cheliabinskii institut mekhaniki i elektrifikatsii sel'skogo khoziaistva, 1983. 100 p.

6. Pereladov A.B., Kamkin I.P. Avtomatizatsiia rezhimnoinstrumental'nogo osnashcheniia operatsii shlifovaniia s ispol'zovaniem komp'iuternykh modelei instrumenta i protsessa obrabotki [Automation of routine-instrumentation grinding operations using computer models and tools processing]. Kurgan: Kurganskii gosudarstvennyi universitet, 2014. 94 p.

7. Kuznetsova E.V., Kolmogorov G.L., Trofimov V.N., Vavel' A.I. Vliianie parametrov protsessa plasticheskoi deformatsii na formirovanie tekhnologicheskikh ostatochnykh napriazhenii [Influence of process parameters on the formation of the plastic deformation process residual stresses]. *Prikladnaia matematika i voprosy upravleniia*, 2015, no. 1, pp. 26-35.

8. Niashina N.D. Matematicheskaia model' deformirovaniia stali pri martensitnykh perekhodakh [A mathematical model of deformation of steel in the martensitic transition]. *Prikladnaia matematika i voprosy upravleniia*, 2015, no. 1, pp. 36-46.9 9. Popov I.P. O nekotorykh ogranicheniiakh primeneniia integrala Fur'e [Some limitations of the use of the Fourier integral]. *Prikladnaia matematika i voprosy upravleniia*, 2015, no. 1, pp. 19-25.

10. Popov I.P. Free harmonic oscillations in systems with homogeneous elements. *Journal of Applied Mathematics and Mechanics*, 2012, vol. 76, iss. 4, pp. 393-395.

Получено 15.05.2015

Об авторе

Попов Игорь Павлович (Курган, Россия) – старший преподаватель кафедры «Технология машиностроения, металлорежущие станки и инструменты» Курганского государственного университета (640002, г. Курган, ул. Томина, 106, e-mail: ip.popow@yandex.ru).

About the author

Igor' P. Popov (Kurgan, Russian Federation) – Senior Lecturer, Department of Mechanical Engineering, Machine Tools and Instruments, Kurgan State University (106, Tomin st., Kurgan, 640002, Russian Federation, e-mail: ip.popow@yandex.ru).