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The article is devoted to the development of new methodology of gas-logging interpretation based on materials from drilled
wells of the Pavlovsky oil field in the Lower-Middle-Visayan terrigenous oil and gas complex in the interval of the Tula
terrigenous horizon C,y, with using elements of mathematical statistics - stepwise discriminant analysis, for which the gas
chromatographic data were used as variables - the total gas content of hydrocarbons in the drill mud and component
composition of the gas-air mixture, as well as data of luminescent-bitumen analysis of drill cuttings. In addition, logging
data were used — gamma-ray logging, neutron-neutron logging for thermal neutrons and the difference between the bit
diameter and the well diameter. Based on the results of the analysis, the probability of attributing observations to oil-
saturated sandstones, which takes into account gas logging and well logging, was calculated. In addition to oil-saturated
sandstones, rocks occurring in this oil-gas-bearing complex were studied: mudstones, aleurolites, clayey sandstones and
non-oil saturated sandstones. To visualize the results, a geological and geophysical diagram was plotted on which were
shown: rock saturation according to well survey, rock saturation according to well logging and lithological column
according to well survey and logging, as well as all variables that participated in the discriminant analysis. Based on the
discriminatory analysis, three ranges of values were identified: 1) an area with observations related to oil-saturated rocks;
2) an area with observations related to non-oil-saturated rocks and 3) an area with observations of unclear saturation with
indicators that are intermediate (the transition zone is possibly oil-saturated or washed reservoirs).

Cratbs MOCBsIIIEHA pa3pabOTKe HOBOI METOIMKH HHTEPIIPETALMK Ta30BOr0 KapoTaka [0 MaTepuaiaM MpoOypEeHHbIX CKBaKHH
T1aBnOBCKOrO HE(PTIHOrO MECTOPOXKACHHUS B HIDKHE-CPEIHEBH3CHCKOM TEPPUTCHHOM HE(TEra3soHOCHOM KOMILICKCE B
HHTEPBAJIe TYJICKOTO TEPPUTEHHOro ropu3onTa Ciq ¢ IPUMEHEHHEM IEMEHTOB MaTEMaTHYECKON CTATHCTHKH — MOLIaroBOro
JIICKPUMHMHAHTHOTO aHaNM3a, JUIsl TIPOBEICHHSI KOTOPOro B Ka4YeCTBE MEPEMEHHBIX ObLIM HCIOJIb30BaHbI JaHHBIC Ta30BOrO
XpoMaTorpaduyueckoro aHajam3a — CyMMapHOe Ta30cojepikaHue Hed)TeHaChIIeHHbIX YITIeBOJIOPOJOB B OYpPOBOM pacTBope U
MOKOMITOHEHTHBI COCTaB Ta30BO3/YLIHOM CMECH, a TaKKe JaHHBIC JFOMHHECICHTHO-OUTYMHHOJIOTHYECKOTO aHajn3a
OypoBoro nuiama. Kpome Toro, ObUIM HCIIONB30BaHBI JaHHbIe Teodusnueckoro uccnenosanus ckBaxuH (I'MC) — ramma-
KapoTaka, HEUTPOH-HEUTPOHHOTO KapoTaka IO TEIUIOBBIM HEWTPOHAM M PasHHLA MEXIY AUAMETPOM J0JI0Ta U JMAMETPOM
ckBaxuHbl. [l0 pe3ynpraraM aHaum3a Oblla pacCcYMTaHa BEPOSTHOCTH OTHECEHMs HAOMOACHMH K He(TEHACHIIICHHBIM
TecyaHuKaM, KOTOpas YYHMTHIBAaeT IOKasaTenu razoBoro kapotaxa m ['MC. Taxxke mpu pa3paboTKe METOIHMKH, KpoOMe
He(TCHACBIIICHHBIX TECYaHUKOB, HCCIIEAOBAINCH IOPOJbI, IOMAJAIONINECS B [JaHHOM HE(TEra30HOCHOM KOMILIEKCE:
ApPTHJUTHTBI, AICBPOJIMTHI, INIMHUCTBIC ECYAHHKH U HEeHEe()TCHACHIIEHHbIE TTeCYaHnKu. sl BU3yalln3aliy pe3y IbTaTtoB Oblia
MOCTPOCHA TE0JIOro-reoU3MIecKasl JuarpaMma, Ha KOTOPOM OBUIM HAHECEHBI: HACBILIICHHE IIOPOA COMIACHO TI€OJIOr0O-
TexHonorndeckuM uccnegosanusiM (I'TH), maceimenne nopox cornacHo ['MC n nutonormyeckas konoHka mo gaHaemM ['TH
u TUC, a takke Bce MEpeMEHHbIC, KOTOPbIE YYaCTBOBAIM B JMCKPUMHHAHTHOM aHamu3e. Ha OCHOBaHHHM HPOBEIECHHOIO
aHaiam3a ObUIM BBIAENCHBI TPH 00JacTH 3HaveHHil: 1) 007acTh ¢ HAONIOACHHSMH, OTHOCSIIMMUCS K HE()TCHACHIIICHHBIM
nopoaam; 2) 007acTh ¢ HAOIFOACHUSIMH, OTHOCSIMMHUCS K HEeHe(TEHACHIIIEHHBIM TOpoaaM U 3) 001acTh ¢ HAOMIOACHUSIMHI
HESICHOTO HACBIIICHUs C II0KA3aTe/sIMH, 3aHUMAIOLIMMH HPOMEXYTOYHOE IMOJIOKEHHE (MepexoiHas 30Ha — BO3MOXKHO,
He(TEBOIOHACHIIICHHBIE WM POMBITHIC ILTACTHI).
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Introduction

In recent years, more and more forces have
to be spent on the fields of the Perm Region to
increase, and in some cases just to maintain
hydrocarbon production at the current level. All
the oil producing and oilfield services
companies of the Perm Region are now
concerned about this problem. The role of mud
logging (ML) in ensuring of the wells drilling
optimization is increasing. The range of tasks
and requirements for the research quality, the
speed of obtaining information, the filling of the
ML complex is expanding.

Currently, ML is an integral part of geological
and geophysical studies of oil and gas wells and is
designed to monitor the well at all stages of its
construction and commissioning to study the
geological structure, to achieve high technical and
economic indicators, and also ensure compliance
with environmental requirements [1].

ML is carried out directly while drilling a
well, without downtime in the work of the
drilling crew and drilling equipment; solve a set
of geological and technological tasks aimed at
quickly identifying promising oil and gas
reservoir formations, study their reservoir
properties and saturation, optimize core
sampling, express testing and selected objects
logging, ensuring trouble-free wells drilling and
drilling mode optimization. Gas logging is
included in the ML complex and makes up a
substantial part of it [2-3].

It is possible to divide all scientific and
technical developments carried out in the field of
mud logging into two groups: improving
equipment performance (including sensors) and
increasing the capacity of data interpretation.
The development and introduction of new
equipment is important, but they require a lot of
material costs as compared to improving the
method of interpreting the data collected by the
equipment currently installed at ML stations.
Therefore, it is proposed to improve the quality

of interpretation as a less costly process. In
particular, to improve the efficiency of gas
logging, it is possible to use methods of
mathematical statistics - stepwise discriminant
analysis, the methods and results of which are
described in this article.

General geological characteristics
of the Pavlov’s field

The geological section of the Pavlov’s field
has been studied using materials from
structural, exploration and production wells to
a depth of 2,243 m and is represented by rocks
from the Quaternary to the Upper Riphean age.

The unified stratigraphic scheme of the
Russian platform, approved in 1988, is the basis
for the dismemberment of the geological section.
Unfortunately, not all of the drilled wells have
sufficient core material with paleontological
characteristics of the rocks, so the separation of
stratigraphic horizons was carried out on the
basis of a comparison of well sections of the
Pavlov’s field with sections of other areas
(Krasnoyarsk-Kuedinskaya, Batyrbaiskaya,
Tanypskaya and others).

In the modern regional tectonic plan, the
territory of the Pavlov’s field is confined to the
area of the Chernushka rampart-like zone
complicating the northern slope of the Bashkir
arch (Fig. 1). The width of the rampart in the
south is 25-30 km, in the north, in the area of the
Tanyp Rise, 10—15 km. The rampart can be traced
across all horizons of the Upper Paleozoic.

The Pavlov’s field is associated with Upper
Devonian reef massifs within the onboard zone
of the Kama Kinel system of deflections that
form the uplifts: Berezovskoye, Detkinskoe,
Baranovskoye, Ulykskoe, Pavlovskoye,
Yuzhno-Pavlovskoye, Grigorievskoye.

In Pavlov’s field commercially oil bearing
reservoirs are: Upper-Tournaisian carbonate,
lower-srednevizeysky terrigene, Oka-
Serpukhpvsko-Bashkir ~ carbonate, Moscow
terrigenous-carbonate.

ISSN 2224-9923. Bectuuk [THUITY. I'eonorus. Hedrerazoroe u ropHoe aeno. 2019. T.19, Nel. C.39-55



ISSN 2224-9923. Perm Journal of Petroleum and Mining Engineering. 2019. Vol.19, no.1. P.39-55 41

Techniques of the gas logging interpreting
are described in [1]. The primary data
obtained from the well are processed in the
interpretation center. Interpreter, studying the
relative composition of the gas and the
absolute percentage of hydrocarbon gases in
the gas-air mixture, coming together with the
drilling fluid from the well, gives a
conclusion about the layers saturation. At the
same time, errors associated with differences
in the approach to interpretation are possible,

% Tanyp's atoll
|

________

i Gabysh@;%

O O Svetl%orsk

Novosen\unskoye

o
N, lgkinskoye

J
cpandvskoye

th Chdrpiigh?
koeg

©

o

Boundaries
- = » large tectonic structures

=== reef-like structures
===« paleoplato and atolls

—— barrier reef

Kama-Knnel system of deflections

i.e. human factor. It is proposed to use
mathematical methods in order to create a
uniform interpretation method, which will
take into account all the necessary parameters
for the reservoirs identification according to
the type of fluid saturation and, thus, will
mathematically explain the interpretation of
gas logging, i.e. selection of oil-saturated
rocks in the studied intervals. One possible
tool for this purpose may be linear
discriminant analysis.
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Fig. 1. Copying from the consolidated tectonic zoning scheme of the Perm region

The development of multidimensional
models for oil-saturated sandstones
allocation

Discriminant analysis is used to decide
which wvariables distinguish (discriminate)
two or more arising aggregates (groups).
We first define the concept of separation
(discrimination) and show how it differs from
the concept of classification. Suppose that
there are two groups of samples of shale,
which are known in advance that they were
formed in the freshwater and marine basins.
This can be determined on the basis of a study
of the remains of fossil organisms. Fossil
residues in freshwater and marine basins

differ, which makes it easy to distinguish shale
from each other, but in practice there are
examples of shale without fossil residues, so it
i1s necessary to find another criterion for the
separation of these groups of shale. A number
of geochemical characteristics were measured
in the samples: the content of vanadium,
boron, iron and other elements. The task is to
find such a linear combination of these
variables, which will give the maximum
possible difference between the two previously
defined groups. If we manage to find such a
function, then we will be able to use it to
assign new samples to one or another initial
group. In other words, new samples of shale
that do not contain diagnostic fossil residues
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can be divided into marine and freshwater
based on the linear discriminant function built
on their geochemical components (This
problem was considered by Potter, Shimp, and
Witters [4-5]).

The classification task can be illustrated with
a similar example. Suppose we collected a large
collection of shale samples, each of which was
subjected to geochemical analysis. Is it possible,
based on the values of the measured variables, to
divide the sample into relatively homogeneous
groups (clusters) that are different from each
other? Numerical methods for solving such
problems are well developed and belong to a
branch of science called taxonomy. There are
several obvious differences between these
methods and discriminant analysis methods.
The classification is internally closed, that is,
unlike the discriminant analysis, it does
not depend on a priori information about
the ratio between the samples. In the
discriminant analysis, the number of groups is
specified in advance, while the number of
clusters that are obtained as a result of
classification cannot be predetermined. Each
sample from the original set in the discriminant
analysis belongs to one of the specified groups.
In most classification tasks, a sample can be
included in any of the groups resulting from the
classification. Other differences will become
apparent when considering these two
procedures. As a result of shale cluster analysis
samples are distributed into groups. It 1is
interesting to conduct geological comprehension
thus found groups [5].

In the same way, the problem considered in
this article can also be described: in order to
determine which variables belong to certain
intervals with oil-saturated rocks, data on the
following variables were collected:

1. Ggum, abs. % — the total gas content of oil-
saturated hydrocarbons in the drilling fluid;

2.C,, rel. % — Is the relative content of
methane (CH,) in the gas-air mixture;

3.C,, rel. % — Is the relative content of
ethane (C,Hy) in the gas-air mixture;

4.Cs, rel. % — Is the relative content of
propane (C;Hg) in the gas-air mixture;

5.C4, rel. % — Is the relative content of
butane (C4H,) in the gas-air mixture;

6.Cs, rel. % — Is the relative content of
pentane (CsHj,) in the gas-air mixture;

7.LBA, points — data of the
luminescent-bitumen analysis;

8. GR, pR/h — gamma ray logging readings;

9.NNT, rel. units — readings of neutron-
neutron logging for thermal neutrons;

10. DS, mm - the difference between the
diameter of the bit and the diameter of the well.

Log data (gamma logging, neutron-neutron
logging for thermal neutrons and borehole
diameter) were added to divide more precisely
the sample into the five classes: argillite,
aleurolite, clayey sandstone, non-oil saturated
sandstone, oil-saturated sandstone.

Then you can use the discriminant analysis for
the determination of such a decision rule
(discriminant function), which would allow
assigning a specific interval to a particular class.

For the study, data from the well gas logging
of the Tula terrigenous horizon C;; in the Lower-
Middle-Visayan terrigenous oil and gas complex
of the Pavlov’s field were taken. After collecting
the data, the number of observations in different
classes varied greatly, so a random sample was
taken in order to equalize the number of
observations in all classes (total number of
observations n = 1535).

At the first stage of the classification attempt,
it is necessary to compare the average values in
the classes (Table 1).

This shows that the fluids from the oil-
saturated intervals have a more “heavy” gas
composition (the predominance of complex
hydrocarbons compared to the other intervals).
The highest values of Gsum (0.184)
correspond to oil-saturated sandstone, lower
values (0.100) — to clayey sandstone; most

sludge
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likely, these readings are related to the
transition  zone  between  oil-saturated
sandstone and argillites. The component
composition of gas in oil-saturated sandstones
indicates a high content of ‘“heavy”
hydrocarbon gases and a low methane content
and inverse characteristics in other classes, for
example, mudstone has the highest relative
methane content and low relative gas content
(from ethane to pentane). The highest average
values of the DS variable are attributed to the

argillites, which is probably due to the outfalls
from the borehole walls, the values of the DS
in the oil-saturated and non-oil-saturated
sandstones are the lowest, which can be
explained by the mud cake formation.

Thus, for the allocation of oil-saturated
intervals, all these variables should be used
together. This problem was solved using
elements of mathematical statistics — stepwise
discriminant analysis, the results of which are
described in this article.

Table 1

. . x*to
Average values of variables in classes (—)
min — max

Indicator Argillite Aleurolite Clayey sandstone Non-oil saturated Oil saturated
sandstone sandstone

Gsum, abs. % 0.040+0.074 0.050+0.098 0.100£0.375 0.039£0.079 0.184+0.359
0.001-0.388 0.001-0.551 0.001-2.599 0.001-0.396 0.004 —2.899

C,. rel. % 70.359£18.638 66.701£14.776 66.358£13.032 69.026£14.918 61.648£13.938
25.698 —100.000 34.712-94.820 36.034-96.748 28.974-100.00 23.155-91.704

C,. rel. % 15.881+11.685 17.439+£8.831 18.348 £8.795 16.969 £9.415 18.146 £ 6.863
0.001-52.936 0.001—45.052 0.001-55.847 0.001-45.240 4.552-39.829

Cy. rel. % 7.746 £7.378 9.955+6.500 10.845£7.365 10.190£8.014 12.628 £ 6.981
0.001-29.060 0.001-27.323 0.001-37.057 0.001-41.480 0.001-41.287

C,. rel. % 4.309+4.843 4.029+3.393 3.253+3.258 2.684£3.195 5.158+4.608
0.001-20.670 0.001-14.429 0.00-14.205 0.001-18.533 0.001-22.977

Cs. rel. % 1.687£2.632 1.896 £3.764 1.216+£2.039 1.160+£1.817 2.397+3.276
0.001-13.265 0.001-41.186 0.001-9.792 0.001-10.325 0.001-15.194

NNT. rel. units 2.397+2.216 7.540+£2.552 9.751£5.120 8.243+4.902 8.835+5.606
0.573-16.418 4.000-14.976 2.459-22.353 2.807-23.236 2.532-22.406

GR. uR/h 10.620£3.793 14.200 £ 2.475 7.014+£1.597 2.836+0.812 2.807+0.791

0.930-20.441 10.119-26.025 4.26-10.048 1.065-4.495 0.910—-4.485

DS, mm 17.697 £24.779 4.823+£6.430 1.111+4.442 -1.267£2.631 —1.428+2.986
—8.385-151.745 —14.000 —29.000 —7.400-39.635 —7.148 - 26.000 —13.000-30.000

Performed analysis of the average values of
densities and distributions of variables studied
showed that it is not possible to divide the above
variables into any of the classes. Therefore, for
complex (joint) use of the studied parameters,
we will use linear discriminant analysis (LDA).
Its capabilities for solving similar problems are
given in [6-21].

Simple linear discriminant function
converts original set of measurements included

in the sample into a single discriminant
number. This number, or converted variable
determines the position of the sample on the
line defined by the discriminant function.
Therefore, we can imagine the discriminant
function as a way to transform a
multidimensional problem into a one-
dimensional problem [22, 23].

Discriminant analysis is based on finding a
transform that gives the minimum ratio of the
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difference between multidimensional means
for a certain pair of groups and
multidimensional dispersion within two
groups. If we depict our two groups as sets of
points in a multidimensional space, then it is
easy to find a direction along which these sets
are clearly separated and at the same time
have the smallest convexity. We will show on
the graph the possibility of identificating oil-
saturated sandstones and mudstones by the
two most informative parameters (Fig. 2).
If we use the variables “GR, pR/h” and “LBA,
points”, then we cannot achieve a satisfactory
identification of groups A (oil sands) and B
(mudstones). However, it is possible to find a
direction along which the separation of the sets
is obvious, and the convexity is minimal.
The coordinates of points of this direction
are given by the equation of a linear
discriminant function. The overlaps of
distributions for groups A and B along the
axes “GR, pR/h” and “LBA, points” are
indicated; projecting on the discriminant line
allows to distinguish two groups [5].

Discriminant analysis has the following
objectives:

1. Definition of discriminant functions or
linear combinations of independent variables
that best distinguish (discriminate) the
categories (groups) of the dependent variable.

2. Check for the existence of significant
differences between groups in terms of
independent variables.

3. Identify predictors that contribute the
most to intergroup differences.

4. The assignment of cases to one of the groups
(classification) based on the values of predictors.

5. Evaluation of the data classification
accuracy into groups [24-29].

Discriminant function is a linear combination
of independent variables derived by discriminant
analysis, with which one the categories of the
dependent variable may be best distinguished
(discriminated) [21].

= Group B
2\ (Mudstones)

Group A
(Oil Saturated A
Sandstone)

LBA, points

GR, pR/h

Fig. 2. Graphic representation
of two two-dimensional distributions

The discriminant analysis method is
described by the number of categories the
dependent variable has. If it has two categories,
the method is called two-group discriminant
analsysis. If three categories or more are
analyzed, the method is called multiple
descriminant analysis. The main difference
between them is that if there are two groups,
only one discriminant function can be derived.
Using multiple discriminant analysis, several
functions can be calculated [30, 31].

Using LDA, it is possible to build optimal
surfaces (discriminant functions) Z in the feature
space dividing the entire space into regions
corresponding to objects of different classes.
These surfaces (functions) serve as boundaries
between regions and provide optimal separation
of objects belonging to different classes. The
classification rule in this case consists in
determining, by the magnitude of the
discriminant function, that the object belongs to
one of the selected areas. Belonging to the
corresponding area means belonging to the
corresponding class [5].

The number of discriminant functions is
defined as K-1 or P-1, where K is the number of
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groups, and P is the number of variables. As a
rule, the smallest of these numbers is chosen to
determine the number of necessary discriminant
functions [32-34]. This analysis is wused
10 variables and 5 groups, i.e. discriminant
functions should be four.

Performing discriminant analysis includes
the following steps: problem formulation,
calculation of the discriminant function
coefficients, determination of significance,
interpretation and reliability verification.

The first step in discriminant analysis is to
formulate a problem by defining goals,
dependent variables and independent variables.
The dependent variable must consist of two or
more mutually exclusive and mutually
exhaustive categories.

If the dependent variable is measured by
the interval or ratio scale, it should be first of
all converted into a categorical status. The next
step is to split the sample into two parts. One
of them — the analysis sample — is used to
calculate the discriminant function. The other
part, the validation sample, is designed to test
the discriminant function. This is called double
cross validation [34-38].

Often the distribution of the number of
cases in the analysis and validation samples
is evident from the distribution in the total
sample. For example, if the total sample
contains 50 % of oil-saturated and 50 % non-
oil-saturated intervals, then the analysis and
validation samples should each contain 50 %
of oil-saturated and 50 % non-oil-saturated
intervals. In another case, if the sample
contains 25 % of oil-saturated and 75 % non-
oil-saturated intervals, you should select the
analysis and validation samples in such a
way that their distributions reflect a similar
pattern (25 vs. 75 %).

Finally, the validation of the discriminant
function 1is proposed to be performed
repeatedly. Each time the sample should be
divided into two parts: for analysis and

verification.  Calculate the discriminant
function and perform a model reliability
analysis. Thus, the assessment of reliability is
based on a number of tests.

After determining the analysis sample, we
can calculate the discriminant function
coefficients by wusing two methods. Direct
method — calculation of the discriminant
function with the simultaneous introduction of
all predictors.

In this case, each independent variable is
taken into account. Moreover, its
discriminatory power is not taken into account.
This method is more suited to the situation
where the analyst, based on the results of a
previous study or a theoretical model, wants
all the predictors to be in the distinction basis.

In stepwise  discriminant  analysis,
predictors are introduced sequentially, based
on their ability to distinguish (discriminate)
groups. This method is best used in situations
where the researcher wants to select a subset
of predictors for inclusion in the discriminative
function. There is a two stepwise analysis of
the varieties:

1. Stepwise analysis with inclusion. In a
stepwise analysis of discriminant functions,
the model of discrimination is built in steps.
More precisely, at each step, all variables are
viewed and the one that makes the greatest
contribution to the difference between groups
is found. This variable must be included in the
model at this step, and the transition to the
next step takes place.

2. Stepwise analysis with the exception. You
can also move in the opposite direction; in this
case, all variables will be included in the model
first, and then at each step, variables that make a
small contribution to the predictions will be
eliminated. Then, as a result of successful
analysis, only important variables in the model
can be saved, i.e. those variables whose
contribution to discrimination is more than
others [39—40].
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Mathematically, discriminant functions can
be described by the following equation:

Zg=a+ by +bynt ...+ by,

where a is a constant; b — the standardized
coefficient (with average 0 and selective
dispersion 1), allows to estimate

the contribution of each variable to this
discriminant function [7].

Let’s consider the possibility of using the
linear discriminant function method on the
example of a number of wells in the Pavlov’s
field in the interval of the Lower-Middle-Visean
terrigenous oil and gas complex. The values of
gas logging parameters obtained at each point
were grouped into five classes: argillite,
aleurolite, sandstone, clayey sandstone, and oil-
saturated sandstone. The grouping was carried
out according to the mud log interpretation data.

Thus, a grouping variable (rock) and
independent variables (gas logging parameters —
Gams Cy, Gy, G5, Cy, Cs, LBA and log data — GR,
NNT, and DS) will be used for discrimination.
Since all these variables have different units of
measurement, there are situations when a more
significant parameter, with a small value of
magnitude, overlaps with a less significant one,
whose value is larger. Thus, we get information
of poor quality, i.e. data may not be comparable.
To eliminate such a situation, data was
normalized — the transformation of formal
parameters or criteria, expressed in general terms
in different units, to a dimensionless form for the
purpose of their comparison and comparative
assessment. The following formula was used for
normalization:

,  X,—min(X))
" max(X;)-min(X,)

Further, in order to follow up on what
happens at each step of the discriminant
analysis, a stepwise analysis was performed
with the inclusion, allowing introducing
variables into the model one by one, each

time choosing the one that makes the greatest
contribution to discrimination. This analysis
will be carried out until one of the following
events occurs:

1. All variables are entered or discarded.

2. The maximum number of steps has been
reached.

3. There are no other variables outside the
model that have a larger F statistic value than
the specified F-enable value, equal to 1, and
when there are no other variables in the
model that have a smaller F value than the
F-delete value, equal to 0. For stepwise
analysis with inclusion variables for
inclusion are selected, giving the most
significant single (additional) contribution to
discrimination between groups, i.e. variables
are selected with the largest F value (greater
than the corresponding F-enable value, equal
to 1). When executing steps with an
exception, the least significant variables are
selected for exclusion, i.e. variables with the
smallest F value (smaller than the
corresponding F-delete value, equal to 0).

4. Any variable in the next step has a
tolerance value less than the tolerance value of
0.01. At each step, for each variable, the
multiple correlation (R?) with all other
variables that were included in the model is
calculated. Thus, the value of the tolerance of
a variable is calculated as 1 - R?, therefore the
value of tolerance is a measure of the
redundancy of the variable. It should also be
noted that when one or more included variable
becomes too redundant, the matrix of
dispersions/covariances for the variables
included in the model may be irreversible and
discriminant analysis cannot be performed.
Consequently, the marginal value of tolerance
was set to 0.01, because if the wvariable
included in the model is reduced by 99 % with
other variables, then its practical contribution
to improving the quality of discrimination is
very insignificant. More importantly, if you set
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a significantly lower tolerance value, then
rounding errors can lead to unstable results [4].
The results of the stepwise discriminant
analysis are presented in Table. 2. Significance
criteria were obtained, which are listed below.
Wilks' lambda criterion is the standard
statistic used to denote the statistical significance
of the discrimination power in the current model.
Its wvalue changes from 1 (there is no
discrimination) to 0 (full discrimination).

Table 2

The results of the discriminant
functions analysis

Variable Wilks' Partial F-exclude plevel
lambda | Lambda (2.447)
GR 0.390462 | 0.232090 1258.947 0.000000
LBA 0.118121 | 0.767203 115.457 0.000000
NNT 0.107498 | 0.843015 70.856 0.000000
DS 0.102912 | 0.880579 51.602 0.000000
Cy 0.092164 | 0.983277 6.471 0.000037
C, 0.092219 | 0.982682 6.706 0.000024
C, 0.091740 | 0.987821 4.691 0.000915
Ggum 0.091702 | 0.988229 4.532 0.001216
Cs 0.091327 | 0.992283 2.959 0.018916

Partial Wilks' lambda — is Wilks lambda
statistics for a single contribution of the
corresponding variable to discrimination
between groups. This value can be considered
as an analogue of the partial correlation
coefficient. A lambda with a value of 0 means
complete discrimination, therefore, the lower
its value, the greater the single contribution of
the corresponding variable to the degree of
discrimination.

Thus, according to the results of the
stepwise discriminant analysis, it can be
concluded that the variable GR makes the
greatest  contribution to the overall
discrimination — this is due to the
identification of clay intervals from the
reservoir intervals (the GR readings are

increased in mudstones and lowered in
sandstones). The second most important
variable is the LBA — this parameter

distinguishes the intervals of oil-saturated

sandstones, since the luminescence of the
sludge during LBA is a direct indication of
the presence of oil in the reservoir. The third
important parameter is NNT — it is most likely
associated with the separation of argillite
from other classes. The fourth parameter in
importance is the DS — it most likely also
separates the intervals of mudstones from
other classes, but also contributes to the
identification of sandstones with reservoir
properties. This can be seen if we compare
the average values of DS in different classes
(see Table 1) — sandstones with good
reservoir properties during drilling are
covered with a mudcake, and the well is
narrowing. The remaining variables have
virtually no effect on the data discrimination
by classes, showing low values of
contributions to discrimination.

To find out how the four variables separate
different classes, find the actual discriminant
function. Using canonical analysis, we
calculate various independent (orthogonal)
discriminating functions. Each subsequent
discriminant function will contribute less and
less to the overall discrimination. The
maximum number of estimated functions is
equal to the number of variables or the number
of classes minus one, depending on which
number is less. In our case, four discriminating
functions are evaluated. First, we determine
whether both discriminant functions (roots) are
statistically significant (Table 3).

Table 3 shows a report on the stepwise
criteria with inclusion for all canonical roots.
The first line contains the criterion of
significance for all the roots, the second - the
data on the significance of the roots remaining
after the removal of the first root, etc. Thus, this
table shows how many canonical roots
(discriminatory functions) should be interpreted.
In our case, four statistically significant
discriminant functions have been obtained that
can be used to divide into classes.
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Table 3
Criteria y* consecutive roots
Excluded roots | Wilks' lambda r p-level
0 0.090622 3666.409 0.000000
1 0.511245 1024.473 0.000000
2 0.771769 395.600 0.000000
3 0.981939 27.831 0.000101

In order to calculate the weights of the
discriminant  function and record the
discriminant functions, we find out the initial
coefficients for the canonical variables (Table 4).

Table 4
Initial coefficients for canonical variables
Parameter Z Z, Z3 Zy
GR 0.44205 | 0.141440 | —0.03656 | 0.00967
LBA ~0.23902 | 0.320572 | —0.64354 | —0.09412
NNT ~0.03586 | 0.144381 | 0.05269 | —0.11102
DS 20.00210 |-0.044725 | —0.03096 | —0.05547
C, 0.05188 |-0.105805 | —0.07426 | —0.11248
C, 0.04584 |—0.048629 | 0.01273 | —0.17474
C 0.03131 |-0.047732] 0.02560 | —0.15797
Geum —0.17723 | 0.206584 | —0.89272 | —0.52816
C; 0.01530 [-0.031519| 0.04850 | —0.14971
Constant -5.99788 | 2.447964 | —1.31175 | 16.69311
iﬁiﬁ‘éﬁ'ﬁlﬁ 0.85293 | 0.946577 | 0.99662 | 1.00000

The first discriminant function uses the
most informative variables GR, LBA and Gy,
(the highest initial coefficients, see Table 3).
The second and third discriminant functions
are weighted by the heaviest variables of the
LBA and Gy, The fourth function is
weighted by the heaviest variable of Gy,
Other variables also contribute to these
functions, but smaller.

Z,=-5.998+0.442 GR - 0.239 LBA —

— 0.036NNT—0.002 DS+0.052 C, +
+0.046 C, +0.031C, —0.177 G, +0.015 Cy;

Z,=-2.448+0.141GR — 0.321LBA —
— 0.144NNT - 0.045DS+0.106C, +
+0.049C, +0.048C, —0.207G,, +0.032C;;

Z, =-1312+0.037GR — 0.644LBA —
— 0.053NNT —0.031DS +0.074C, +
+0.013C, +0.026C, —0.893G,,, +0.049C;;

7, =16.693+0.010GR — 0.094LBA —
— 0.111INNT - 0.055DS+0.112C, +
+0.175C, +0.158C, —0.528 G, +0.150C;.

Table 4 shows the eigenvalues (roots) for
each discriminant function and the
cumulative distribution of the explained
variance accumulated by each function. As
you can see, the first function is responsible
for 85.29 % of the variance explained, i.e.
85.29 % of the total discriminating power is
due to this function. Thus, it is clear that the
first function is most important.

We now know which variables are
involved in discrimination between different
classes. The next task is to determine the
nature of discrimination for each canonical
root. The canonical averages of the first step
are presented in Table 5.

Obviously, the first discriminant function
separates mainly argillites and aleurolites
(ie, dense clayey rocks) from other classes —
sandstones and oil-saturated sandstones
(average canonical variables vary greatly —
from —2.52714 for oil-saturated sandstones
to 3.10252 for aleurolites, while clayey
sandstones are located approximately in the
middle of this range with values of
—0.35301, but still more to the sandstones).
The second discriminant function seems
to be designed to separate argillites and
aleurolite; however, as was to be expected,
based on the eigenvalues considered earlier,
the quality is now slightly worse and
will deteriorate with each new function.
The third discriminant function most
likely divides non-oil saturated sandstones
and oil-saturated sandstones, and the fourth,
apparently, serves to separate clayey
sandstones.
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Table 5
The canonical averages of the first step
Group Zl Zz Z3 Z4
Argillites 1.75708 [-1.20724/-0.320186/-0.039617

Aleurolite 3.10252 [0.75046]0.118458|0.117952
Clayey sandstone —0.35301]0.52841(0.124485|-0.248422
Sandstone —1.99839 [-0.36809(0.792809|0.083623

Oil-saturated sandstone |-2.52714(0.32116(-0.771621{0.086569

A quick way to visualize these results is
to display the scatterplot of discriminant
functions (Fig. 3).

. Z,&Z,
4
o
2
0
N' -2
4
-6
-8 =
-10
-6 —4 -2 0 2 4 6 8 10
Z,
¢ Qil-saturated sandstone o Aleurolite

Sandstone
* Clayey sandstone

o Argillites

Fig. 3. Scatter diagrams for canonical values

From this it can be seen that the best
separation is obtained by functions 1 and 2. It
can be seen that non-oil saturated and oil
saturated sandstones are shown in the diagram
on the left, and they are separated from argillites
and aleurolites by clayey sandstones. Therefore,
the first discriminant function mainly divides
non-oil saturated sandstones and oil-saturated
sandstones from aleurolites and mudstones.
There is also some discrimination between
classes of argillites, aleurolite, and clayey
sandstones. However, discrimination here is not
as clear as for the first canonical function (root).

To summarize, we note that the clearest
discrimination is possible using the first
discriminant function. This function is marked

by negative coefficients for the presence of
sludge luminescence at LBA, the total content
of oil-saturated hydrocarbons in the drilling
fluld and NNT indications and positive
weights for the indications of GR, DS, and the
relative content of methane, ethane, propane
and butane. Thus, the greater the readings of
the GR and DS and the lower the total content
of oil-saturated hydrocarbons in the drilling
fluid, and also if there is no luminiscence of
the sludge, the more likely it is argillites and
aleurolite, i.e. non-collector rocks. After
analyzing the coefficients of the third
discriminatory function, it is clear that it can
be used to separate sandstones and oil-
saturated sandstones. This is due to the fact
that the higher the total content of oil-saturated
hydrocarbons in the drilling fluid and if there
1s a luminiscence of the sludge, the more likely
it is oil-saturated sandstones. A posteriori
probabilities for each class were also obtained
using discriminant analysis. These values
indicate the probability that the observation
belongs to a particular class. In order to
graphically depict these probabilities, a
geological-geophysical plate was created on
which were applied: rock saturation according
to mud logging, rock saturation according to
well logging and lithological column
according to mud and well logging, as well as
all variables that participated in the
discriminant analysis (Fig. 4).

In Fig. 4, the following picture can be seen:
opposite the oil-saturated rocks, the probability
curve is located on the right-hand side (values of
0.4-1.0), i.e. the probability of attributing this
interval to the class of oil-saturated rocks is high.
Opposite to dense rocks, the probability curve is
on the left side (values are about 0), i.e. the
probability of attributing this interval to the class
of oil-saturated rocks is very low. Opposite to
some intervals, the probability curve shows
intermediate values, i.e. these are the intervals to
which the interpreter should pay attention.
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Fig. 4. The dependence of the oil layers presence probability on the geological
and geophysical parameters

Conclusion

Thus, the use of stepwise discriminant
analysis made it possible to determine the
value of the probability of attributing
observations to the rock class — argillites,
aleurolites, clayey sandstones, non-oil-

saturated  sandstones, and oil-saturated
sandstones. An analysis of the distribution of
geological and geophysical data, together with
the calculated probability of assigning
observations to the class of oil-saturated
sandstones, allowed us to identify the
following areas: the first zone with probability
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values around zero (non-oil-saturated zone),
the second zone with probability values from
0.4 to 1 (oil-saturated zone) sandstones) and
the third zone — with intermediate values of
probability (zone of unclear saturation). In this
zone the interpreter must pay particular
attention, since it may contain oil-saturated

sandstones, but did not fully manifest itself
due to the lack of any data, for example, the
luminescence of the sludge at the LBA.
To interpret these obscure intervals, it is
necessary to use additional data, such as well
logging methods or the results of sampling and
description of the core, if any.
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