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Kniouegvie cnosa:
HCKYCCTBEHHOE 3aMOP)KMBAHUE
IPYHTOB, JI€ZIONIOPOIHOE
OrpakJCHHE, 3aMOPaKHBAIOLIAsT
KOJIOHKA, TOPOJIHBIIf MaCCHUB,
obparHas 3anaya Credana,
IIaXTHBIC CTBOJIBL, yPaBHEHIE
TEIUIONPOBOAHOCTH, (ha30BbIit
Hepexo]l, YHCICHHOE
MOZEIIPOBAHHE, KOHTPOIbHAS
CKBa)XUHA, HECOBMECTHOCTh
BXOJIHBIX JaHHBIX,
AIIPOKCUMALIISL, MUHHMH3AL[Us
(yHKIMOHAIA, METO
rPaJUEHTHOrO CIIyCKa,
HHTErpaibHas OKa3aTeIbHast
dyHKIHS.

Mathematical statement of direct and inverse problem of Stefan for horizontal layer of rock massif with homogenous and
isotropic thermophysical properties is presented. It is assumed as a hypothesis that heat transfer in vertical direction is negligible
compared to heat exchange in horizontal plane. At the initial moment, the rock massif has a uniform temperature and the
temperature on surfaces of freezing columns was the same for all columns and constant in time. A method proposed allows
getting an approximate solution of the direct Stefan problem for a single freezing column with a small consumption of
computational resources. Based on a proposed method, a high-speed algorithm for solving inverse Stefan problem for the case
of a single freezing column is built. An algorithm is based on the gradient descent method. The effect on the solution of
different types of functions used is analyzed. Functions approximate the temperature field in a cooling zone. It is established
that time dependence of the radius of a phase transition front essentially depends on the type of an approximation function. The
most preferable is an integral exponential function that is a solution to the one-dimensional heat equation in cylindrical
coordinates. Then, proposed technique and algorithm are considered for the case of variety of freezing columns that form circle
counter and random number of control wells. Results of the calculation of inverse Stefan problem for conditions of the shaft
No. 1 of the mine being under construction at the Petrikovsky ore mining and processing enterprise are presented. The
calculation included well inclinometry based on geological data. It was studied how measurements of the temperature made at
different wells can affect obtaining solution. Options of interpretation of inconsistency of temperatures measured in control
wells are offered. Probabilistic analysis of ice wall thickness is carried out.

TpeacraBieHa MaTeMaTH4YecKasi MOCTAHOBKA MpsMOM M oOpatHO# 3amady CredaHa 1Uisi TOPU3OHTAIBHOTO CIOSI TIOPOTHOTO
MAacCHBa C OJIHOPOIHBIMH ¥ H30TPOIHBIMU TEIIOQH3MIECKHMHU CBOICTBaMU. B kauecTBe THIIOTE3BI IPUHATO, UTO TEIIIOOOMEH
B BEPTHKAIBHOM HANpPaBICHHH INPEHEOPEKNUMO Mall MO CPAaBHEHUIO C TEIIOOOMEHOM B TOPHU3OHTAIBHON IUIOCKOCTH,
B HA4YaIbHBII MOMEHT BPEMCHH IIOPOAHBII MACCHB MMEET OAHOPOAHYIO TEMIEpaTypy, a TEMIepaTypa Ha MOBEPXHOCTSIX
3aMOPaKHBAIONINX KOJIOHOK OJIMHAKOBA JUISl BCEX KOJOHOK M HEM3MEHHAa BO BpeMeHHM. IIpemnoxkeH MeToj, MO3BOJIAIOIIMI
¢ MaJbIMU 3aTPaTaMM BBIYUCIHTENBHBIX PECYPCOB MONYYHThH aNIPOKCHMAIMOHHOE pelleHue npsiMoi 3agaun Credana juist
Cllydasi OQMHOYHON 3aMOpakmBaromieil kKogoHkn. Ha OCHOBaHMH NMPEIIOKEHHOTO METO/a MOCTPOCH CKOPOCTHOH aIropuTM
pemenns obpartHoit 3amaum Credana Juist cioydas OXMHOYHOW 3aMOpaKMBAIONICH KOJIOHKM, OCHOBAaHHBIH Ha MeToje
rpaJiMeHTHOro ciycka. ITpoBefieH aHau3 BIMSHUS HA PEIICHHE BUJA UCIONb3YyeMbIX (DYHKIHH, arlpOKCHMUPYIOUHX 10N
TeMIepaTtyp B 30HE OXJIAKICHMS. YCTAaHOBICHO, YTO BPEMEHHAs 3aBHCHMOCTh paamyca (poHTa (pa3oBOro mepexona
CYIIECTBEHHO 3aBHCUT OT BHIOOpA aIPOKCHMALOHHOM (yHKIHH, a Hanboee MpeAoYTUTENbHBIM ABIISCTCS NCIIONB30BaHHE
HHTETPAIBHOW  IMOKa3aTeNbHOH  (YHKUHMHM, SIBISIIONICHCS —pEIIeHHEeM OJHOMEPHOTO yPaBHEHHs  TEILIONPOBOIHOCTH
B IWIMHIPUYECKHX KOOpAMHATAX. B janpHeHIIeM MNPEUIOKEHHBIC METOJ M aIrOPUTM pPACHPOCTPAHSIOTCS Ha Ciydait
MHOJKECTBA 3aMOPaXKMBAIOIIMX KOJIOHOK, OOpa3yIOIMX KPYroBOH KOHTYP, M TIPOM3BOJIEHOIO KOJIMYECTBA KOHTPOIBHBIX
ckBakuH. [IpesicTaBieHbl pe3ysibTaThl pacuera odpartHoi 3agaun Credana Uit ycIoBHi MIaXTHOTO cTBoja Ne | crposierocst
pyauuka IIeTpuKOBCKOr0 ropHO-000raTHUTENBHOTO KOMOMHATA C y4ETOM MHKIMHOMETPHH CKBAKHH Ha OCHOBAHHM JAHHBIX
TeoJIOTHH. PaccMOTPEHO BIMSHME HECOBMECTHOCTH M3MEPEHHIT TeMIepaTyphl HECKOIBKHMU KOHTPOJIBHBIMI CKBaKHHAMH Ha
nosy4yaemoe pereHue. IIpeuioskeHsl BapuaHThl HHTEPIPETAii HECOBMECTHOCTU M3MEPEHHBIX B KOHTPOJIBHBIX CKBOKMHAX
TeMIepaTyp, MPOBEICH BEPOSITHOCTHBIN aHAIN3 TOJIINHBI JICOMOPOJHOTO OrPaXKACHHS.
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Introduction

Artificial freezing of rocks is one of the most
universal and reliable ways of vertical shafting in
complex hydrogeological conditions [1]. The
technique is about drilling of a ring of wells around
the designed shaft section and then installation of
freezing columns in the wells that provide coolant
circulation. After a while a fence that protect the
mine against the groundwater entry during its
construction is created. A fance consits of the
frozen water-containing ground. Effectiveness of
such a protection fence, which is called an ice wall,
ultimately depends on its sealing and thickness.

Shafting after freezing is allowed to be started
only after sealed contour of designed thickness is
obtained. At the same time, during the freezing of
the rock massif it is important to carry out
continuous monitoring of a current state of an ice
wall and timely determine the moment when
sufficient thickness and contour continuity from
the frozen rocks are achieved [2].

During the last years imperfection of existing
methods to control the formation of the ice wall and
insufficient accuracy of calculations of its parameters
have caused problems with not providing the ice wall
sealing. That problem has been faced by the mining
enterprises that develop such fields of high water cut
as Gremyachinskiy Ore Mining and Processing
Enterprise of EuroChem Group AG, Garlykskiy Ore
Mining and Processing Enterprise of State Concern
Turkmenchemistry and  Head  Office  of
Verkhnekamskoe deposit of potassium and
magnesium salts [3]. As a result, accidents happend
during the construction of shafts led to a decrease in
the safety of mining and appearance of additional
financial costs.

Therefore, today Department of Aerology and
Thermophysics of the Urals Branch of the Russian
Academy of Sciences introduces a new promising
system for determination of sealing and thickness of
an ice wall based on the use of fiber optic
thermometry technology [3, 4]. This technology
allows obtaining the temperature distribution along the
depth of control wells located at some distance from
the freezing column contour and monitor the current
thermal regime of the rock massif at any time.

At that, there is a problem arises of restoring
the temperature distribution in the entire rock
massif from temperature measurements in control

wells, the number of which is usually small
(3-5 pieces). Mathematically, this leads to the
formulation of the inverse Stefan problem [4].

Before, there was no attention paid to inverse
problems of heat conduction (IPHC) and inverse
Stefan problem (ISP) in the existing studies of ice
wall formation. The mathematical apparatus used to
study the formation of ice wall in Russia and abroad
represent direct heat conductivity and Stefan's
problem only [1, 5-12]. At that, there is a number of
studies devoted to the analysis of the correctness of
the establishment of IPHC and ISP in the general
case [13, 14] and analysis of numerical methods for
solving IPHC and ISP [15-18]. Two groups of
methods for obtaining stable solutions of inverse
problems are classically distinguished. Those are
self-regulation at which measure of the proximity of
the resulting solution is controlled to the exact one by
varying the parameters of the computational
algorithms, and regularization by the method of
AN. Tikhonov, implying the construction of a
regularizing operator, smooth functional and its
subsequent minimization [14]. There is a class of
descriptive regularization methods presented in
papers as well. Additional stabilizing constraints are
introduced in those methods for the desired solution
[18]. Common drawbacks of existing methods are as
follows: algorithmic complexity, significant costs of
computing resources and need for additional checks
on the convergence and stability of the solution.

The purpose of this paper is to develop a rapid
method for solving Stefan's inverse problem for
analyzing the formation of an ice wall of mine
shafts under construction. The work is relevant due
to the necessity to determine actual thickness and
continuity of an ice wall on field quickly and with
acceptable accuracy. The idea of the work is to
determine the approximate analytical form of the
temperature distribution in a horizontal array
section for the case of many wells and its use for
solving the Stefan inverse problem. That will be
reduced to determination of an obvious
dependence for the temperature mismatch function
in control wells and its minimization by the
gradient descent method.

Mathematical statement
of direct and inverse Stefan problems

The authors consider a horizontal layer of
a rock massif with homogeneous and isotropic
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thermophysical properties. It is assumed, that heat
exchange in a vertical direction is negligible compared
to heat exchange in a horizontal plane. At the initial
moment, the rock massif has a uniform temperature
Ty, temperature 7, on surfaces of freezing columns is
assumed to be the same for all columns and
unchanged in time (Fig. 1). It is assumed, that there is
a complete conversion of water into ice [19, 20].

Fig. 1. The contour of freezing columns in the horizontal
section of the rock massif: / is for the ice zone;
2 is for the cooling zone, dashed line is for the
current position of the phase transition boundary

In this case, mathematical statement of the
two-dimensional direct Stefan problem in polar
coordinates reduces to the following system of
equations [5]:

2 2

O _ k(0T 10 10%)
ot pe\or ror r o
2 2

Uk (I 10T 10T
ot  p,e,\ Or" ror v op
o7, o7, dar ,

k—t—k,—* =pL——, 3

( Yor Y oor jr, P dt 3

TI th :7-'2 rph 2 (4)

Ij. =T, (5)

bl =T (©)

t=0: T,=T,, I',=T, (7)

where k; is for thermal conductivity of the medium
in the ice zone, W/(m:°C); k, is for thermal
conductivity of the medium in the cooling zone,
W/(m-°C); ¢, is for specific heat of the medium in
the ice zone, J/(kg-°C); ¢, is for specific heat of the
medium in the cooling zone, J/(kg-°C); p is for
medium density, kg/m3 ; Ty 1s for phase transition

temperature, °C; L is for specific heat of ice
melting, J/kg; w is for moisture content of the
massif, kg/kg; I, is for surface of freezing
columns; I',; is for interface of a phase transition;
R, is for the radius of the outer boundary of a
computational domain, m; 7, is for temperature of
walls of freezing columns, °C; T, is for
temperature of undisturbed rock massif at the
distance, °C.

The Stefan coefficient inverse problem is
formulated to the direct problem (1)-(7) as
described below. Considering that dependence of
temperature on time at the surface of control wells
I, 1s known

(r,(p) el :T=T,(rt0), 8)

it is required to find the wvalues of the
thermophysical properties of the rock massif ki, &,
c1, ¢2, L at 0 < ¢ < T and find the function 7(r, o, ?),
which would satisfy the problem (1)-(7).

In addition, restrictions on thermophysical
properties of the rock massif that correspond
minimum possible and maximum possible values are
imposed. Those values are determined on the basis of
engineering and geological surveys [21, 22].

Approximation of the direct Stefan
problem solution for the case
of a single freezing column

First of all, the present study consider the
simplest case of a single freezing column. The goal
was to find an approximate analytical solution of
the direct Stefan problem for the given case.

In this case, the system (1)-(7) is simplified.
The dependence on an angle ¢ disappears and
surface I',, of the freezing columns reduces to a
circle of radius 7,,.

It is proposed to write the general solution of
the system (1)-(7) for the case of a single freezing
column in the form of a superposition of local
solutions separately for the ice zone and cooling
zone. Conjugation of these two local solutions will
occur along the boundary of the phase transition
Vph = rph(t)'

In the ice zone a logarithm corresponding to
the case of quasistationary propagation of heat was
considered as the local solution [9]:

T, =TW+Mln(r/rw). )
ln(rph / rw)
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As the preliminary numerical calculations of
the direct Stefan problem for the case of a single
well have shown, this approximation introduces an
error in determination of the radius of an ice wall
front by no more than 10 % in the investigated
range of times and thicknesses of the ice wall [3].

There were several options of functional forms
of local solutions considered in the cooling zone
sach as an exponential form, trigonometric form
and form of the integral exponential function:

T(r,t)=T,+(T, - T,)x

2

T,-T

r— [4atln| 20
ZV_Z) >

4a,t

(10)

xexp| —

T(r0)=T,,+(T, —Tph)garctg(—%j (1)
n a,t

T, -T 2
T,=T +—2 " Ei|-——|. (12
2 0 2 4
Ei| -2 !l
4a,t

Here a, is for thermal conductivity of the medium
in the cooling zone, m%/s.

The only physically feasible option here is the
integral exponential function, which is an
elementary solution of the cylindrical one-
dimensional heat conductivity equation [23]. Only
this function ensures the implementation of the law
on the conservation of the amount of thermal
energy. Two additional cases of local solutions
should be interpreted as a purely mathematical
technique of selecting an approximation to a
solution of the direct Stefan problem for a single
freezing column in the cooling zone. At that, the
parameter a, for equations (11) and (12) is not
anymore the thermal conductivity in the strict
sense.

The proposed basis functions (10)-(12) are
presented in Fig. 2. Calculation parameters of the
problem are temperature of the undisturbed massif
+10 °C, temperature of the surface of freezing
columns —20 °C, calculation time 40 days.

The Fig. 2 shows that an exponential function
is sufficiently close to an exact solution of the

cylindrical equation of thermal diffusion (integral
exponential function). In this case, a trigonometric
function underestimates values of temperatures in
the cooling zone (up to 1.5 °C), but this can be
corrected by normalizing the coefficient of thermal
conductivity in the formula (10).

0 5 10 15 20
R,m
Fig. 2. Approximate solution of the direct
cylindrical Stefan problem using various approximating
functions in the cooling zone: / — exponential form;
2 — trigonometric form; 3 — form of integral
exponential function

The approximate analytical solution (9)-(12)
should not only correctly reflect the temperature
distribution in the zone of ice and cooling but also
provide an adequate prediction of the time
dynamics of the phase transition front #(¢).
Function 7(¢) is determined from the solution of
equation (3) after substituting in it the temperature
gradients calculated from the function (9) and one
of the functions (10)-(12).

The Fig. 3 shows the time dependence of the
radius of the phase transition front calculated for each
of the functions (10)-(12). The calculation was
performed numerically using the explicit 4™ order
Runge-Kutta method [24]. As it follows from the
Fig. 3, all three functions chosen for the cooling zone
manage the task of an adequate prediction of time
dynamics of the phase transition front (mismatch is
less than 6 %). The strongest estimation for the
radius of the phase transition front is given by a
solution in the form of an integral exponential
function. Thus, it is better to use an integral
exponential function to represent the solution when
solving only the direct Stefan problem.
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0.5F

t, days

Fig. 3. Time diagram of the phase transition front using
various approximating functions in the cooling zone:
1 — exponential form; 2 — trigonometric form;

3 — form of integral exponential function

An algorithm to solve inverse Stefan
problem for the case of a single
freezing column

Previously it was mentioned in the paper, that
the integral exponential function gives the
strongest value from the bottom for the radius of
the phase transition front for solving the direct
Stefan problem. Since calculation of a thickness of
an ice wall is made from measurements in control
wells such a value looses its significance in
analysis of the inverse Stefan problem.

Based on the condition (8) it is possible to
write down the following temperature mismatch
function in the control wells, which will later be a
subject for a minimization procedure:

I:ZHT (t)—T(rq,t)H—)min. (13)

The summation in the equation (13) is carried
out on reference wells e;.

In order to estimate the deviation of the
solution from the required values on the time
interval [¢, #,] the following scalar quantity (norm
in Lebesgue space) is accepted as a norm in
formula (14) L, [25]:

lr@l, .= (14)

It is required to determine the parameters by
which the functional (13) is minimized. Classically
[13], there are several inverse problems of heat
transfer such as:

1) retrospective: initial conditions are adjustable
parameters;

2) boundary: boundary conditions ensure the
control;

3) coefficient: physical properties of the heat
conducting medium are varied (identification of
a thermal conductivity operator is performed).

Studies [21, 22, 26, 27] show, that during the
construction of a mathematical model of ice wall
formation physical properties of the rock massif
and groundwater contained in them are least
reliable. That is caused by heterogeneity of the real
rock massif, imperfection of the methods for
determination of physical and mechanical
properties of the rock massif on the extracted core
samples, statistical sample series are not enough
etc. Due to the reasons mentioned, inverse Stefan
problem is considered in this study to be a
coefficient problem. Up to the four independent
thermophysical parameters of the medium as
variable parameters can be adopted. This is caused
by the fact that the solution 7{(r, ¢, f) depends on
the four dimensionless numbers problem (1)-(7)
such as Fourier in the ice zone Fo; and cooling
zone Fo,, Stefan in the ice zone Ste; and cooling
zone Ste,.

The paper considers the case of two variable
thermophysical parameters such as the thermal
conductivities of the medium in the ice zone %; and
cooling zone k,. A valid range is set for each of

these parameters k e [klmi“ ,klma"] and

k, e[kzm "k a"] based on engineering and

geological surveys.

Thus, problem statement represent
minimization of the functional (13) in terms of
thermal conductivity parameters k; and k, of the
rock massif.

There was an iterative algorithm for solving the
inverse Stefan problem chosen in the paper which
ia as follows:

1. Determination of initial approximations for
minimization parameters — heat conductions &; and k.

2. A numerical calculation of a dependence of
a phase transition front radius 7,,(f) on time using
the explicit 4™ order Runge-Kutta method.
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3. Numerical integration of temperature

I,)-T (rel_,t)” for each reference

mismatches

well for current thermal conductivities (41, k,) and
conductions deviated from the (i, k») on the small
value (k) + Ak, k) and (ky, k» + Ak). Calculation of
an integral of mismatches / and its first derivatives.
Comparison of the error integral [ with the
required accuracy I,.. If I < I, then exit from the
procedure and completion of the calculation.

4. Calculation of the increments for
minimization parameters is performed by the
gradient descent method [28, 29]. Setting new
values of heat conductivitys k; and k,. Check of the

Integral exponential function

™ T T T T T

t, days
a

Exponential function

T T T T T

new values of thermal conductivities for the
limiting minimum and maximum values.
5. Return to the step 2 (new iteration).

Example of solution
of inverse Stefan problem.
Case of a single control well

The Fig. 4 and 5 present an example of
solution for the inverse Stefan problem by
minimization of an approximating function for the
case of a single control well with a given
temperature dependence with time in the form

T, ()= S—Sarctan[ (15)

345600)'

Trigonometric function

T T T T T T

Fig. 4. Time diagram of temperature of the massif
at the surface of a control well: / — objective
function; 2 — initial approximation of the solution;
3 — solution of the inverse Stefan problem by
minimization of an approximating function
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Input parameters of the problem are as follows:
thermal conductivity of the medium in the ice zone
2,5 W/(m-°C); thermal conductivity of the medium
in the cooling zone 1,5 W/(m-°C); specific heat of
the medium in the ice zone 800 J/(kg-°C); specific
heat of the medium in the cooling zone
850 J/(kg-°C); density of the medium 2000 kg/m’;
phase transition temperature 0 °C; specific heat of
ice melting 330 kJ/kg; massif moisture 0,3 kg/kg;
freezing temperature of the well wall —20 °C;
temperature of undisturbed rock massif at a
distance +10 °C.

Integral  exponential, trigonometric  and
exponential ~ functions are considered as
approximating ones. It was possible to achieve
good convergence of the solution for all three
types of functions. Nevertheless, temperature
distributions that result values of thermal
conductivity coefficients and thicknesses of an ice
wall are essentially different (see Fig. 4, 5).

04F

. 03F

0.2F

01 0 2 4 6 8 10 12 14
t, days
Fig. 5. Solution of the inverse Stefan problem,;

a time diagram of the phase transition front with use
of various approximating functions in the cooling zone:
1 — integral exponential function type; 2 — trigonometric

type; 3 — exponential type

As can be seen from the graphs on the Fig. 4,
each solution 7' = T{(r,r) would apapproach a given
function 7,(¢) as close as it was possible considering
the limits of a functional type of this solution as
well as boundatry and initial conditions. Differences
in a functional type of the solution also led to
differences in the resulting coefficients of thermal
conductivity of the medium, that iterative
procedures of the ISP solution algorithm (Table 1)

and differences in thicknesses of an ice wall
converged to (see Fig. 5).

Table 1
Heat conductivity coefficients
obtained by solving the ISP
Thern?a! Integral_ Exponential | Trigonometric
conductivity | exponential function function
coefficient function
Ice zone 3.5 3.0 2.8
Cooling zone 2.6 0.6 1.5

If we assume that the curve r,(f) is valid for
the integral exponential function, then the error in
determination of thickness of an ice wall on the
15" day for the selected calculation parameters
using trigonometric and exponential functions is
20 and 50 % respectively.

A solution for inverse Stefan problem
for the case of a set of freezing columns

The proposed method for solving the inverse
Stefan problem can be transferred to the case of a
set of freezing columns and set of control thermal
wells (Fig. 6).

-10 -5 0 5 10

Fig. 6. Distribution of temperatures in a horizontal
section of the rock massif obtained as a result
of solving the inverse Stefan problem

For the case of a set of freezing columns the
approximate dependence of temperature on time,
spatial coordinates and thermophysical parameters of
the problem can be determined as given below. The
calculation area is divided into three subarea such as:

1) ice zone near the freezing columns,
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2) cooling zone inside the contour of freezing
columns,

3) cooling zone outside the contour of freezing
columns.

A functional type of the temperature field in
the ice zone near the freezing columns is still
determined by the formula (9). Since the function
(9) is potential type, then its superposition for a set
of wells does not lead to violation of the equality
in the equation (1):

Nf T
T=NT -T —2  _n(r/r.
2 T T ) ) e
xcw,+Tph.

Here Ny is for a number of freezing columns;
rwi 1s for a radius vector of a center of a freezing
column No. #; r,, is for half-thickness of an ice
wall (distance from the front of the phase transition
to the contour of freezing columns); c., is for
a calibration parameter introduced to satisfy the
fulfilment of the boundary condition (5).

Such a method uses an approach according to
which inner and outer phase transition fronts move
with the same velocity. The approach allows
operating with a half-thickness of an ice wall 7,
which is equal to the distance from any of two
phase-transition fronts to the contour of freezing
columns.

A functional type of the temperature field in
the cooling zone outside the contour of freezing
columns is determined by the function (12). The
temperature field at a distance from the contour of
freezing column becomes axisymmetric by several
radii of the column r, (see Fig. 5). So, the
temperature field in this problem becomes similar
to a temperature field from a some single abstract
freezing column with a radius equal near to the
sum of the radius of the contour of freezing
columns 7. and current value of half-thickness of

an ice wall r,;:
T —T 2
w0 _Eil-L—|. (17)
)2 4a,t

Ei —L o
4a,t

T,=T +

2 0

The functional type of the temperature field
in the cooling zone inside a freezing column
contour is determined using the Fourier-Bessel
series [30]:

2(TO —Tph) )
rc _rph

18
JO(XZJ”) (18)

N
g ;7\/,"]1(}\‘1‘(’/0 =i ))

exp(—azkft).

The number of terms in the Fourier series is
determined based on the preliminary analysis of
the convergence of the series for a given time. For
the times when an ice wall is formed of # = 10-100
days 5-10 first members of Fourier series are
converged.

The functions (16)-(18) are joined on inner
and outer fronts of the phase transition. There
is in equations (16)-(18) a value of the phase
transition radius 7,,, in the general case, is a
problem's parameter. It can be considered as an
optimization parameter or can be found from the
numerical solving an ordinary first-order
differential equation (3) after substituting the
temperature gradients calculated from functions
(16)-(18) into it.

It should be noted that within the frame of the
proposed approach it is considered that freezing
columns form a regular circular contour
(no inclinometry). The proposed approach will
have an additional error. The higher the
inclinometry of wells the higher the error.

Then the temperature mismatch function in
control wells is determined and minimized by the
gradient descent method. As can be seen from the
Fig. 6, distribution of temperatures in the
horizontal section of the rock massif obtained for
conditions of the shaft No. 1 of the mine being
under construction at the Petrikovskiy Ore Mining
and Processing Plant.

The Fig. 6 also shows a contour of 41 freezing
columns and four control wells such as KT-1
(-1,5 °C), KT-2 (-1,1 °C), UKLO (2,5 °C), GN-2
(5,7 °C). Temperatures of control wells correspond
to the freezing time of 60 days.

Input parameters of the problem are as follow:
phase transition temperature —2.1 °C; temperature
of walls of a freezing well —20 °C; temperature of
undisturbed rock massif at a distance +6.3 °C;
radius of the contour of freezing columns 8.2 m;
radius of a freezing column 0.17 m; density of the
medium 1960 kg/m?; initial thermal conductivity
of the medium in the ice zone 1.5 W/(m-°C); initial
thermal conductivity of the medium in the cooling
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zone 1.29 W/(m-°C); specific heat of the medium
in the ice zone 1421 J/(kg-°C); specific heat of the
medium in the cooling zone 1566 J/(kg-°C).

As a result of minimization of the temperature
mismatch functional it was found that thermal
conductivities in the ice zone and cooling zone are
equal to 1.24 and 0.97 W/(m-°C) respectively.
Thickness of an ice wall is 1.94 m.

Temperature mismatch function at the end of
the iterative procedure is 0.6 °C. Null-value of the
temperature mismatch function is caused by the
reasons that are as follows:

— error of the numerical method;

—inconsistency of conditions (8) for four
different wells.

The case of incompatibility of temperature
measurements by several control wells

During the searching for a solution of the
inverse Stefan problem for the case of several
control wells there is a question arised about the
incompatibility of conditions (8) for different
wells. For example, let us consider the problem of
a symmetrical ice wall formed near a single well
and two control wells located at the same distance
from different sides of the freezing column (Fig.
7). It is said that they have different temperature
values of the form (8) in them. It will be useless to
satisfy both of these conditions at the same time
when solving the inverse Stefan problem.

Fig. 7. Geometrical model of a rock massif with a

freezing column and two control wells: / — freezing

column; 2 — front of the phase transition; 3 — control
wells; 4 —ice zone; 5 — zone of rock massif cooling

If we construct a functional of (13) type, that
represents a sum of the mismatches for all control
wells and minimize it in any correct way, then it is
most likely possible to obtain some average
solution that somehow disagrees with each of

control wells', but given a minimum discrepancy
over the all wells in general. Such a formal
approach is most likely to be used when the
inconsistency of temperatures over the all control
wells is small and average solution obtained from
minimizing the formally constructed functional
(13) slightly mismatches each of the control wells'
values.

However, there are often cases of highly
inconsistent temperature readings on the control
wells in practice. That may be caused by both the
error of a measurement procedure in control wells
and errors in measured thermophysical parameters
of the rock massif (inhomogeneity of properties),
inaccuracy of technology variables (temperature
and flow rate of coolant injection into freezing
columns). Often it is impossible to obtain more
accurate information about these parameters
onfield for real shafts under construction.

These facts indicate the need to involve a
probabilistic approach for analyzing the thickness
of an ice wall. In the frame of the present approach
an ice wall will be represented by a probability
function of time ¢ and distance r from a freezing
column (or the contour of freezing columns).

In order to implement the probabilistic
approach, it is necessary to assume some
hypotheses about the nature of mismatch of model
temperature distribution with real experimentally
measured for each well values. The hypothesis on
unreliable readings of wells and hypothesis on a
natural anomaly are possible options.

1. Hypothesis on unreliable readings of wells.
It is considered, that the mismatch is connected to
the error in experimental measurements and is
caused by a small number of control wells in
comparison with their total number. Since it is
often necessary to deal with 3-5 control wells in
practice, it can be assumed that the mismatch is
caused by one control well. To eliminate the high
mismatch of the model temperature distribution
with a real one, it is proposed to remove the most
controversial control well from consideration.

In case the error of the most controversial test
well is significant the well can be excluded by
manual processing. In those cases where it is not
possible to determine in advance a control well
with unreliable data, it is suggested to perform a
successive  discarding of each well from
consideration and minimize the functional (13)

ISSN 2224-9923. Bectnux [THUITY. I'eonorus. Hedrerazosoe u roproe neno. 2017. T.16, Ne3. C.255-267



264 ISSN 2224-9923. Perm Journal of Petroleum and Mining Engineering. 2017. Vol.16, no.3. P.255-267

N times for each of combination of N-1 wells. The
output will be a sample of N radius r,,(¢) of an ice
wall and N corresponding to them lowest
achievable mismatches (a value of the functional
(13) within each combination of N-1 wells. Based
on received mismatches [; a function of thickness
distribution probability (7;, P;) of the ice wall in
points is calculated (Table 2).

1—21,.2
]#l (19)

J

P=3 p 00, -1) (20)

Table 2

Calculation of a probability of thickness
of an ice wall within the hypothesis
of unreliable readings of wells

Number of excluded well

Parameter 1 5 3 7

Radius of anice wallz,, m | 0.25 0.28 0.29 0.34

Mismatch /,, °C 0.582 | 0.408 | 0.336 | 0.142

Probability, % 100 84 59 32

Graphically, the probability distribution
function for thickness of an ice wall is shown on
the Fig. 8.

100 =

80r

60

D, %

40+

201

0

0.15 0.20 0.25 0.30 0.35 0.40

r,m

Fig. 8. Functions of an ice wall thickness » distribution:
I — hypothesis on unreliable readings of wells;
2 — hypothesis on a natural anomaly

2. Hypothesis on a natural anomaly. Like the
previous one, this hypothesis suggests that the
mismatch is caused by a small number of control
wells in comparison with their total number.
However, here there is a significant difference.
The least reliable wells are not excluded but taken
into account as well in calculation of thickness of
an ice wall.

A strong deviation in readings of a single
control well compared with the rest can be caused
not only by the error in readings. It can also be
associated with some geological disturbance
(crack, foreign inclusion in the rocks), leading to a
significant disruption in homogeneity of physical
properties of the rock massif in the local area.
That, in turn, can slow down formation rate of an
ice wall around the contour of freezing wells in the
local zone affected by such a geological
disturbance. Therefore, thickness of an ice wall in
that local zone may be lower than in the rest of the
contour of freezing wells.

It is proposed to construct N solutions of the
inverse Stefan problem for each control well
separately. As a result, a set of ice wall thicknesses
was obtained. At the output, we also obtain a
sample of N radii r,,(f) of an ice wall and N
corresponding to them minimum achievable
discrepancies for each well. It is considered that
geological disturbances have equal probabilities to
be. We calculate that probabilities P; equally for
each well separately from the obtained mismatches
I;. In our case of consideration of each control well
mismatches have to be small. The table 3 presents
the results of calculation of the radius »; and
probabilities that the thickness of an ice wall is
equal to at least one radius r;, with taken into
account the hypothesis on a natural anomaly.

Table 3

Calculation of the probability of an ice wall
thickness within the hypothesis on a natural

anomaly
Parameter Number of considered well
1 2 3 4
Radius of an ice wallr;, m | 0.41 0.32 0.29 0.14
Probability, % 25 50 75 100

Functions of distribution of thickness of an ice
wall » for each of the two hypotheses considered
are shown on the Fig. 8.

Conclusion

The present paper contains the study of
the inverse Stefan problem with respect to the
problem of monitoring the state of an ice wall
during the shaft excavation. The main scientific
results are as follows:

1. Mathematical statement of the direct and
inverse Stefan problem for a horizontal layer of
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a rock massif with homogeneous and isotropic
thermophysical properties.

2. The method that allows obtaining
an approximate solution of the direct
Stefan problem for a single freezing column
with a small consumption of computational
resources and for a case of random number
of freezing columns located along a circular
contour.

3. Numerical execution of the method for
solving the inverse Stefan problem for the case of a
single freezing column and case of a random
number of freezing columns arranged along a
circular contour.

4. Analysis of how the type of a function used
to approximate the temperature field in the cooling
zone affects the solution.

5. Calculation of the inverse Stefan problem
for the conditions of mine shaft No. 1 of the mine
under construction at the Petrikovskiy Ore Mining
and Processing Plant.

6. Study and interpretation of mismatch
measured in control wells, probabilistic analysis of
the thickness of an ice wall.

The study was carried out with the financial
support of the Russian Science Foundation in the
framework of the scientific project No. 17-11-01204.
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