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Article proposes a statistical approach in predicting the gas-dynamic danger in potash mines, which can significantly
reduce the dependence of the final prediction results on subjective factors by introducing a model of informative strictly
defined criteria. Obtaining the most appropriate forecasting models of reality is only possible through an integrated
approach, displaying factors of generation, migration, accumulation and preservation for a long period of geological time
gas clusters and centers of gas-dynamic phenomena in the salt rock mass. In the mathematical model development for of
gas-dynamic phenomena's prediction method on geological data a parametric mathematical model of forecasting method
was used based on discriminant analysis, which is a powerful statistical method and in depth of data analysis and the results
significance is among the most effective methods of statistical analysis. In case of compliance with conditions of
multidimensional data normal distribution and equality of covariance matrices the parametric model leads to optimal results
in forecasting. In case of non-compliance with these restrictions in the use of robust evaluation model allows to compensate
the incorrect prediction's probability growth. A statistical analysis of geological information in the field of gas-dynamic
phenomena (GDP) in the potash mines was performed. Learning samples were formed, the mathematical model of
forecasting method for zones dangerous because of GDP was developed based on multivariate discriminant analysis with
classical and robust statistical procedures. Decision rules to predict the geological data of areas dangerous because of GDP
were obtained for conditions of Verkhnekamskoie potash salt deposit. Forecast maps were created for zones dangerous
because of GDP for the Ust-Yaivinskii mine field conditions on the base of PJSC "Uralkali" and Polovodovskii area of
Verkhnekamskoie potash salt deposit. The adequacy estimation was given for the method of forecasting mining operations’
practice on potash layers dangerous because of GDP in conditions of potash mine fields PJSC "Uralkali".

TIpe/utoxeH CTATHCTHYECKHiT TTOIXO HPH MPOTHO3UPOBAHMY Ta30AMHAMUYECKON OMACHOCTH B KATMHHBIX PYIHHUKAX, KOTOPBIA
M03BOJISIET CYIIECTBEHHO CHH3HTH 3aBHCHMOCTH KOHEUYHBIX PE3YyJIBTATOB IPOTHO3UPOBAHMS OT CYOBEKTHBHBIX (DAKTOPOB MyTeM
BBEJICHHS B MOJIE/Ib CTPOTO ONPE/IE/ICHHBIX HH(POPMATHBHEIX KputepreB. ITomyuenne Hanbonee aJeKBaTHBIX JCHCTBHTEIBHOCTH
MoJIesIell POrHO3UPOBAHMST BO3MOXKHO TOJBKO C MOMOLIBIO KOMIUIEKCHOTO MOAXO/d, OTOOpakaromiero (akTopbl TeHepariH,
MUTPALMH, AKKYMYJSIUA M COXPAHCHMsS B TEUCHHE JUIMTEIBHOIO I'COJIOTMYECKOrO BPEMEHM Ta30BbIX CKOIUICHMH M OYaroB
ra30/IMHAMUYECKHX SIBIICHHI B COJITHOM TOPOJHOM MaccuBe. Ilpu pa3paboTke MaTeMaTHyecKOil MOJEIn METofa
HPOrHO3UPOBAHNUS TA30/IMHAMHYECKUX SIBJICHHIT [0 TEOJIOTMYECKNM JJAHHBIM HCIIONIb30BAJIach MapaMeTpuyecKasi MaTeMaTnyecKast
MOJIeTb METOIa TIPOrHO3UPOBAHKS, OCHOBAHHAS HA JIMCKPUMHUHAHTHOM aHAJIM3e, KOTOpask SIBIISICTCSl MOIHBIM CTATHCTHYCCKHM
METOJIOM U 110 ITyOMHE aHajn3a JaHHBIX U [EHHOCTH IOJIy4aeMbIX Pe3yJbTaTOB OTHOCHTCS K CaMbIM d((MEKTHBHBIM METOiaM
CTAaTUCTHYECKOro aHanu3a. B cirydae coOmoaeHust ycaoBuiA HOPMaIbHOCTH PacTIpe/ieNIeHHsl MHOTOMEPHBIX JaHHBIX M PABEHCTBA
KOBAapUAIOHHBIX MATPHI] MapaMeTpHyeckas MOJENIb NPHBOAUT K ONTUMAIBHBIM pe3yJbTaTaM IPU MPOrHO3MpoBaHMH. IIpu
HEBBINOJIHCHUH YKA3aHHBIX OTrPaHMYCHHH TpUMEHEHHE B MOJCIM POOACTHBIX OIICHOK MO3BOJIIET KOMIICHCHPOBATH POCT
BEPOSITHOCTH OLIMOOYHOTO MPOTHO33. BEHIMONHEH CTaTUCTHYECKHIl aHAM3 IeoOrHYeckoi MH(pOPMAIMM B MECTaX pPa3BUTHS
razoauHammdeckux  seieHnit  (TZ[SI) B kaymmiinbix  pymaukax. ChopMmupoBaHbl OOydarone BBIOOPKH, paspaboTaHa
MaTeMaTHYeckasi MOJIeTh METOZa MPOTHO3a 30H, onacHeIX 1o I'JISl, Ha OCHOBE MHOrOMEPHOTO JIMCKPUMHMHAHTHOTO aHANIN3a C
HCIIONIE30BAHNEM KIIACCHYIECKUX M POOACTHBIX CTATHCTUYECKUX Mpoueayp. [TomydueHs! penraomnme Ipasria 11 POrHO3HPOBAHHS
10 TEOJOTMYECKHM JaHHBIM 30H, omacHeIX mo [JISl, s ycnoBuii BepxXHEKaMCKOro MECTOPOXKICHHS KATMHHBIX COJCH.
TlocTpoeHs! MPOrHO3HBIE KApThI 30H, OIACHBIX MO Ta30MHAMUYECKUAM SIBICHHSM, /UIS YCIOBHIl IIAXTHOTO MOJISI CTPOSILErOcs
Yere-SitBunckoro pymauka [TAO «Ypankamiity u IlomoBogoBckoro ydactka BepxHekamMcKOro MeCTOPOXKACHHMS KalMHHBIX
coeid. JlaHa OLeHKa a[IeKBATHOCTH METO/[a IIPOrHO3UPOBAHNUS NIPAKTHKE BEICHUS FTOPHBIX Pa0OT Ha KAIMHHBIX IIACTAX, ONACHBIX
o I'JIf1, B ycnoBHsIX IIaXTHBIX HoJeH KammiHbIX pyaHUKoB [TAO «VYpankamuii».
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Introduction

At the present time about 30 deposits of
potassium and magnesium salts is developed by
underground method. In the process of
underground mining at all the developed deposits
there is the problem of intense release of
flammable and toxic gases, as well as the problem
of various types of gas-dynamic phenomena
(GDP). Intensive gas emission leads to mines gas
contamination, flares and explosions of flammable
gases, which are frequently accompanied by single
and multiple accidents, including fatalities. Gas-
dynamic phenomena in the form of sudden salt and
gas outburst, the destruction of roof rocks and soil
of mining, accompanied by gas evolution and the
combined type effects by virtue of its suddenness
and high power (up to 6.000 tons of shattered rock
mass) threaten the lives of miners, incapacitate
expensive mining equipment and disrupt the
rhythm of the work of potash mines [1-4].

The problem of forecasting of gas-dynamic
phenomena in underground mining of potash
deposits is studied for a long time. As a rule, to
solve the problem is used geological-mathematical
methods of forecasting. A statistical approach in
predicting the gas-dynamic danger allows
significantly reduce the dependence of the final
prediction results on subjective factors by
introducing a model of informative strictly defined
criteria. However, it should be noted that obtaining
the most appropriate forecasting models of reality
is only possible through an integrated approach,
displaying factors of generation, migration,
accumulation and preservation for a long period of
geological time gas clusters and centers of gas-
dynamic phenomena in the salt rock mass.

Research in the field of construction of
mathematical models of gas-dynamic localization of
the danger areas in the potash mines traditionally
were limited to the use of parametric models based
on linear discriminant functions. Studies have shown
that the parametric mathematical model of
forecasting method for zones dangerous because of
GDP is a powerful statistical method, both in depth
analysis of the data and the value of the results
belongs to the most effective methods of statistical
analysis. The model is sufficiently simple, concise,
well interpreted, convenient to consider the
geometric illustrations of separation areas of the
array into the dangerous and non-dangerous GDP
zones. The parametric mathematical model of
forecasting method allows to to select the most
informative indicators, which makes it possible to

reduce the dimension of the original space of the
features and drop uninformative variables. In the case
of compliance with the terms of multidimensional
data distribution normality and equality of covariance
matrices parametric model leads to optimal results in
forecasting. In case of non-compliance with these
restrictions in the use of robust evaluation model
allows to compensate the incorrect prediction's
probability growth. Thus, in dealing with applied
problems of forecasting zones dangerous because of
GDP, parametric mathematical model based on
linear discriminant analysis using robust estimators is
the most preferred among the other well-known
parametric models.

Statement of the problem

The objective is basing on a set of geological
parameters to determine zone as dangerous or non-
dangerous because of GDP, the particular area of
deposit or a mine field. According to the
mathematical model of forecasting method is the
decision rule, which is substituting with the values
of geological parameters, allows the highest
possible chance to assess considered area from the
standpoint of the gas-dynamic danger.

The mathematical formulation obtaining a
decision rule is reduced to the definition of a finite
set of of geological parameters, the intervals of
their values, inherent to both dangerous and non-
dangerous zones because of GDP, as well as finding
the most efficient in terms of the probability of a
correct forecasting of statistical procedures.

Formally, each record of available geological
data represents a multi-dimensional observation of
P-dimensional space with a finite set of attributes X.
The set of observations belonging to a class of D,
forms a "cloud" in the same space. Therefore for
successful forecasting is necessary that the "cloud" of
D; was concentrated in a certain region R; of the
space X and a small part of D;, according to another
class, got into region R;. In general, the construction
of a decision rule for classifying the
multidimensional observation to a particular class
can be viewed as the problem of finding £ disjoint
regions R; (i = 1, k), satisfying the above conditions.
If the P-dimensional observation of space X Ecmu
P-mepnoe nabmonenne npoctpancta X falls in the
region R;, then we assume that the decision on an
object belonging to D; is accepted. By using such a
forecasting rule in some cases, an object can be
assigned to another class. So we denote the
probability of misclassification of objects through
P(i/)), then the criterion of the average probability of
an erroneous forecast is as follows:
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k-1

D> > aPil ), (1)

i=

0

where a; — a priori probability of the object
occurrence from the domain D,.

The solution of this task is carried out at presence
of a training set, which should consist of observations
relating to both classes (dangerous and non-
dangerous GDP zones). Therefore we consider that
the training set for D; class is a sampling of a general
set of objects with the distribution density of P(X).
Forecasting rule that minimizes the loss function QO
is as follows:

xeD,if ¥na)1§ajP(X/j):aP(X/i). (2)
<j<

To find the probability meaning of the expression
k

(2), we assume that P(X)= = Za P(X]j). The
i=1

value P(j/X)=a,P(X/j)x [P(X)]f1 represents

the conditional probability that the P-dimensional
observation X belongs D;. Therefore, the expression
(2) is called forecasting rule on a maximum of
conditional probability, as it gives the smallest value
of the loss function (1). In reality, the exact location of
the "clouds" of objects and their density P{(X) is
unknown, and there are training set that give a rough
idea about it. The training set is a set of multivariate
observations obtained from research. The matrix of
the original data is also included observations
belonging to any class that is not clearly established.
At present it is known a large number of pattern
recognition methods for constructing decision rules on
the training set, or the so-called statistical
classification, which are divided into two groups:
parametric and nonparametric methods [5-11]. The
parametric methods of obtaining the decision rules for
predicting traditionally is used the assumption of
homogeneity of training samples for each class,
measuring all the components of the feature vectors,
accessories conditional probability distributions for
multivariate Gaussian family, independence of sample
values. The most well known of parametric methods is
the linear discriminant analysis based on linear
discriminant function (LDF). Discriminant analysis
based on LDF is characterized by rigorous
mathematical justification, physical interpretability,
visual presentation of the results. The disadvantages of
this method are the requirements for the homogeneity
of samples, belonging to a multivariate normal
distribution and independence of the sample values.
Non-parametric methods of obtaining the decision
rules for predicting ignore a priori assumptions about

the homogeneity of the samples of each class, the
availability of measurements of all components of the
feature vector, Gaussian conditional probabilities of
features distribution. The most well-known non-
parametric methods is "k-nearest neighbor algorithm"
method and Rosenblatt-Parzen window method
[12-14]. These methods are relatively easy, work well
in predicting, but require constant memorization of
training samples and are very sensitive to small
amounts of training samples in which the risk of
misclassification increases dramatically. At the same
time robustness factor (sustainability), representing a
relative increase of the probability of classification
error, with the volume of training data for more than
20 non-parametric methods are 2-4 times greater than
for linear discriminant analysis based on the LDF [14].
To obtain the decision rules for predicting zones
dangerous because of GDP is used training samples,
the volume of which far exceeds the 20, allowing give
preference to a parametric model for obtaining
decision rules for forecasting zones dangerous because
of GDP.

The essence of constructing the decision rule
based on the linear discriminant function is as
follows. If we denote by Xj; the variable number i
at the observation point number j, taken from the
sample, characterizing zones dangerous because of
GDP, we obtain the matrix V' of order pxn; of
results of this sample observations:

X, X In,
V= 21 2 2 ' 3)
Xp1 sz XP"I

Let Xj as the result of measurement of the
variable with index 7 at point with index j, taken
from the sample characterizing the non-dangerous
zone because of GDP. The result is a matrix W of
the order pxn,:

Xll XIZ Xlnz
W= 21 22 2n, ’ ()
Xpl sz XP"z

where p — number of variables (indicators); n;, n, —
the volume of the indicator samples.

Then using these data for each group are
calculated the average and sum of the cross
products of deviations from the averages. The
average is calculated from the formula.
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)?ik :[ > Xijkj(nk )_1 5 ®)

i=1

where k — the number of groups (kK = 2); n; — the
size of the sample in the group k; j = 1, 2, ...,
p — variables.

Then find sum of the cross products of the
deviations from the average:

S =Z(Xijk_)?jk)(Xilk_)?lk)9 (6)

wherej=1,2, ...,p;1=1,2,...,p.
The next step is the calculation of the
combined variance matrix

R

where g — the number of groups (¢ = 2).
Calculate the overall average for both groups:

X, =(ink Xj{an , (®)

where X ; —averages of variable j in group k; ;. — the

size of the sample in group k;j =1, 2, ..., p— variables.
Then for each group calculated inverse
elements of the combined dispersion matrix D:

[d,]=D". )

Discriminant ~ function  coefficients  are
calculated according to the formula

P _
a,=.d; X,
j=1
where i = 1,2, ..., p; k— the number of groups.

Then constant of discriminant functions are
calculated:

p_ P _ _
b,=-0,5>>d, X, X,.

j=1 =1

(10)

(11

For the case of two classes D; and D,
(dangerous and non-dangerous zones because of
GDP) we obtain two linear discriminant function
of the form

(12)

Subtracting less discriminant function from a
greater is reduced to a single linear discriminant
function of the form

aX +a,X,+...+a,X,-b=0. (13)

For the case of two classes the use of linear
discriminant functions based on two assumptions.
The first assumption is that the regions R; and R,
containing the most part of objects corresponding to
D, and D, classes (non-dangerous and dangerous
zones because of GDP) can be divided by (p—1) —
dimensional hyperplane. The equation of this
hyperplane and is an expression of (13). Here a1, a,,

., a, — coefficients characterizing the slope of the
hyperplane to the coordinate axes, and b — parameter
characterizing the distance of the hyperplane to the
origin. The hyperplane (13) splits the p-dimensional
space into two half-R1 and R,, which are defined by
inequalities

Ri/z(X)<b and Ro/z(X) >b, (14)

p
where z(X) = Zai X,
i=1
Consequently, inequality (14) gives us a
decision rule for classifying the multidimensional
vector of observations for one of the two zones —
dangerous or non-dangerous because of GDP. Let
us agree to refer the observation to Dy, if z(X) <b,
and to D, — otherwise. Equation (14) allows to
switch from p-dimensional random variables to the
classification of one-dimensional value z (X).
Denote through z; random value z(X), when XeD,.
The second assumption provides a method for
determining the coefficients of the separating
hyperplane such that separation was the best.
Suppose that the division will be the better, the
farther apart the average values of the random
variables z; and z,, the distance is measured in
terms of the dispersion:

h(za) =(m, —m, )Dz'l, (15)

where m; = E z;; D, — the dispersion of z; (i = 1, 2),
assumed the same for both classes.

Vector A, delivering maximum /4*(4), given
by the equation

A = [Z(rj‘z -4 )]_1 ’ (16)

where p1 — a mean vector for D;; £ — covariance
matrix considered to be the same for both classes.

The maximum value of 4’(a) is called the
Mahalanobis distance between classes of D; u D,
and equals

D’ =Zzp:dyznk (X _)_(i)()_(;k —)_(,-)- (17)

p k
i=l j=1 k=1
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Mabhalanobis statistics can be used to check the
significance of the discriminant function. If we
assume a normal multivariate distribution, then
D*-statistics is distributed as y* with p(g—1)
degrees of freedom. Comparing the calculated
value D* with % at the 5 % significance level, if
D? > %?, one can say that that the resulting linear
discriminant functions have meaning and can be
used as decision rules in forecasting. At the stage
of exploratory analysis establish that the objects
from D; (i = 1.2) are distributed according to a
multivariate normal distribution with identical
covariance matrix. Therefore, the decision rules
(14) based on linear discriminant functions (10)
and (11) are the best that is delivering to the
functional Q (1) the smallest possible value.

It is necessary to note one more very important
aspect in finding the decision rules by linear
discriminant functions. If at the stage of exploratory
analysis found "clogging" of training samples by
"emissions" and these anomalous observations could
be of interest in studies, then it is advisable to use the
distribution parameter estimation procedures that are
not sensitive to the data structure. Such evaluation
procedure called robust or stable [6, 15-22]. The
following robust procedures could be used in the
permutation discriminant analysis for obtaining of
stable decision rules: winsorized estimators,
truncated assessment, Huber weighted estimates,
Hampel piecewise-linear M-assessment. If there is
distortion in the training samples and using classical
estimates of distributions parameters in the decision
rules the probability an erroneous forecast is
significantly increased, therefore it is necessary to
use robust estimates.

If there are "emissions" in the training samples,
you can use any of the following stable estimates.
If the training sample is formed from distributions
with "heavy-tailed" or different from the normalit
is better to to apply the weighted estimates of
Huber and Hampel. Huber robust iterative
estimation is defined the following relations:

A A

Xi,Zi — estimation of parameters calculated in the
previous step;x,,...,x, — training sample for the

class 7; n; — the volume of training sample for the
class i. Classic estimates of the parameters are used
as an initial approximation.

In general parametric mathematical model of
forecasting method for zones dangerous because of
GDP, based on the discriminant analysis is a
powerful statistical method both in depth analysis of
the data and the value of the results belongs to the
most effective methods of statistical analysis. The
model is sufficiently simple, concise, well
interpreted, convenient to consider the geometric
illustrations of separation areas of the array into the
dangerous and non-dangerous GDP zones. The
parametric mathematical model of forecasting
method allows to to select the most informative
indicators, which makes it possible to reduce the
dimension of the original space of the features and
drop uninformative variables. In the case of
compliance with the terms of multidimensional data
distribution normality and equality of covariance
matrices parametric model leads to optimal results in
forecasting. In case of non-compliance with these
restrictions in the use of robust evaluation model
allows to compensate the incorrect prediction’s
probability growth.

The procedure for obtaining decision rules

Taking into account the existing ideas about
the formation’s mechanism of the gas-dynamic
phenomena’s centers are the salt rock mass of
Verkhnekamskoie potash salt deposit [23, 24].
Formation of the training sample was conducted
the following way. All documented cases of GDP
in mining AB formation in the southern part of
Verkhnekamskoie potash salt deposit on the mine
fields of Mine-2 and Mine-4 and their
corresponding geological indicators was a priori
assigned to zone dangerous because of GDP.
(Group 2). The rest of the total sample was related
to zone non-dangerous because of GDP (Group 1).
We investigated 658 observations, 478 are
classified as non-dangerous because of GDP
(Group 1) and 180 as dangerous (Group 2). To
obtain the decision rules we used the following
indicators: X; — formation thickness B, m; X, — the
content in the formation B of potassium chloride
(KCl), %; X3 — the content in the formation B of
magnesium chloride (MgCl,), %; X4 — the content
in the formation B of sodium chloride (NaCl), %;
X5 — the content in the formation B of bromine
(Br), %; Xs — the content in the formation B of
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calcium sulfate (CaSQ,), %; X7 — the content in the
formation B of insoluble residue, %,; Xz —
occurrence depth of formation B roof, m; Xy —
absolute mark of formation B roof, m.

Exploratory analysis of baseline data showed
heterogeneity of the total sample, the deviation from the
normal distribution, and the presence in the sample of
"heavy tails". Due to the fact that not all of used
indicators is equally useful for the separation of the
formation into non-dangerous and dangerous because
of GDP zones, it was necessary to identify a subset of
indicators by which one can build "the best" split
between the two groups. Stepwise discriminant analysis
(SDA) was implemented to solve this problem using
the following estimates: classical estimation, Huber
weighted estimates and truncated assessment with
truncation level of 0.1. SDA used the F-statistic based
on one-way ANOVA criteria for the selection of the
most informative indicators. In fact, the SDA logic is:
nitially to determine indicator for which the average
values of the two groups "the most different". For each
indicator, X;, X5, X5 ... Xy difference is measured using
the F-statistic and one indicator, which corresponds to a
larger value of F, is selected (included). At each step of
the procedure is considered conditional distribution of
each indicator not included in the subset for given
including indicators. Then from among the non-
incluided indicators the one for which the average
values of the two groups "the most different”" is
determined once again. This difference is determined
by using F-statistics. The process ends when none of
indicators do contribute significantly to the group
separation. In the process of implementing SDA were
accepted standart value of F-inclusion minimum of
variables not included in the sought subset and F-delete
the selected variables at a significance level of 0.05. In
step 8, the value of F-delete statistic was less than
accepted minimum, equal to 3.0, hence "the best"
discriminant equation are defined in step 7. Thus
indicators X7, X5, X3, X4, X5, X and X7 were included in
the sought subset and indicators Xz and X9 — not
included. Analysis of classification matrices in the
implementation of the SDA procedure using classical
estimation, Huber weighted estimates and truncated
assessment with truncation level of 0.1 showed the
following. In the application of classical assessments
were correctly classified 62.3 % of the original grouped
cases. In case of using Huber weighted estimates and
truncated assessment with truncation level of 0.1 were
correctly classified 61,7 % and 61,5 % of the original
grouped cases.

The validity of the primary classification using
both classical and robust procedure is virtually the
same, and more than 60 %. So the final choice of the

decision rule was held after the reclassification. At
the same time raw data were regrouped, and then re-
classification procedure was carried out, which
resulted in the refinement coefficients of linear
discriminant functions for each of the groups, as well
as the assessment of the correctness of the
classification has been given. For each observation
with the use of the obtained discriminant functions
and D’statistics of Mahalanobis  posterior
probabilities of belonging to a group dangerous and
non-dangerous because of GDP were calculated.
Based on these probabilities each observation it was
classified as belonging to one of the groups and
classification matrix was compiled. Table 1 shows
the classification results wusing the classical
procedures, using weighting Huber estimates,
truncated estimates (truncation level of — 0.1).

Table 1

Classiofication matrix based on the results
of the linear discriminant analysis

Classification results
non-dangerous dangerous Total
Group because of GDP because of o,
GDP
abs. [ % | abs.

Using classical estimation

GDP non-dangerous (1) | 323 | 91.76 29 8.24 | 352

GDP dangerous (2) 18 5.88 288 | 94.12 | 306

Total 341 | 51.82 | 317 [48.18] 658

Using Huber weighted estimates

GDP non-dangerous (1) | 334 | 94.89 18 5.11 | 352

GDP dangerous (2) 8 2.61 298 [97.39 | 306

Total 342 | 51.98 | 316 |48.02 | 658

~

Using truncated assessment with truncation level of 0.

GDP non-dangerous (1) | 319 | 90.63 33 9.37 | 352

GDP dangerous (2) 24 7.84 | 282 |92.16 | 306

Total 343 | 52.13 | 315 | 47.87 | 658

As seen from Table 1 using classical statistical
procedures of linear discriminant analysis was correctly
classified 92.86 % of re-grouped observations.

By wusing linear discriminant analysis with
weighted estimates of Huber the probability of
correct classification is 96 %.

When used in linear discriminant analysis
truncated assessment with truncation level of 0.1 the
probability of correct classification is 91.34 %. By
the criterion of the highest probability of correct
classification we accept for forecasting zones
dangerous because of GDP the decision rule obtained
using weighting Huber estimates. Table 2 shows
constants and coefficients of discriminant functions
found using weighted estimates of Huber.

Since in this case there are two groups, two
discriminant functions can be reduced to a single
subtracting coefficients and constant of smaller
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function from the larger. After subtracting we
obtain a linear discriminant function of the form:

Fy=—19.98X; — 1.16X, +
+31.18X; — 3.64X, — 747.02X; +

+6.87Xs —4.57X; +310.72> 0,

where X; — formation thickness B, m; — the
content in the formation B of potassium chloride

(19)

(KCI), %; X5 — the content in the formation B
of magnesium chloride (MgCL), %; X; — the
content in the formation B of sodium chloride
(NaCl), %; X5 — the content in the formation B of
bromine (Br), %; Xs — the content in
the formation B of calcium sulfate (CaSO,), %;
X; — the content in the formation B of insoluble
residue, %.

Table 2

The constants and coefficients of the discriminant functions
obtained using Huber weighted estimates

Group Constants of the discriminant Coefficients of the discriminant functions
functions Xl X2 X3 X4 X5 Xé X7
GDP non-dangerous (1) —385755.60 998.66 | 7678.37 | 16092.34 | 7734.02 | —-11769.6 | 7829.14|7715.20
GDP dangerous (2) —385444.89 978.68 | 7677.20 | 16123.52 | 7730.39 |-12516.62|7836.01|7710.63

Expression (19) is the desired decision rule for
classifying AB formation areas to the zones,
dangerous or non-dangerous because of GDP. When
F, > 0 observation point refers to the area dangerous
because of GDP, otyherwise to non-dangerous. For
the probabilistic interpretation of the discriminant
function, which is more convenient in constructing
forecast maps, it is advisable to use the expression

PI:I/Zq:exp(fk—f,), (20)

where P; — the probability corresponding to the
largest discriminant function; ¢ — the number of
groups (q = 2); fi, f1 — the value of the k-th and the
largest discriminant function correspondingly.

Substituting the values of indicators in discriminant
functions, which constants and coefficients are shown
in Table. 2, we obtain some values of the discriminant
functions. Then, substituting the obtained values of the
discriminant functions in the expression (20), we find
the probability of classifying the observation point to
the zone, which value of the discriminant function
larger. The value of P; varies from 0 to 1 the boundary
is a probability value of 0.5.

Assessing the adequacy
of the decision rules and forecast maps
of zones dangerous because of GDP

To assess the adequacy of obtained decision rules to
practice of mining in the forecast maps of zones
dangerous because of GDP were marked the places
where under conduction of preparatory and sewage
mining operations occurred gas-dynamic phenomena.
In developing AB formation of Mine-1 field, 8 out of
98 GDP-cases are not included in forecasting zones
dangerous because of GDP (7.8 % of the total). Thus,

the adequacy of the zones forecasting results dangerous
because of GDP in the formation AB of sylvinite mine

847

_—
oy o 2/ 191 AN}
2
s 0 "

SPMA-3

I:l Zones dangerous because of GDP

Fig. Map of zones dangerous because of GDP from a the
roof of mine workings at mining AB formation in
conditions of Polovodovsky sector of Verkhnekamskoie
potash salt deposit

field Mine-2 to practice of mining operations is 92.2 %
correspondingly. To verify the performance obtained
decision rules for forecasting zones dangerous because
of GDP, the original sample was supplemented with
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data on the mine fields of Mine-1 and Mine-4 initially
not included in the original data. Then examination of
new input data classification was carried out, which
correctness for formation of AB was 96.7 %.
Substituting the values of geological parameters
obtained as a result of the wells drilling, detailed
exploration from the surface, from underground
exploration wells and furrow sampling data in
underground mines, into decision rules allowed to
construct forecast maps of zones dangerous because of
gas-dynamic phenomena.

The figure shows a map of zones dangerous
because of GDP from the roof of mine workings at
mining AB formation for conditions of Polovodovskii
area of Verkhnekamskoie potash salt deposit.

Conclusion

As a result of scientific research a mathematical
model of the method forecasting zones dangerous
because of gas-dynamic phenomena based on linear
discriminant  analysis using robust (resistant)

procedures, allowing to increase the reliability of
multivariate forecasting was created. A method for
forecasting of zones dangerous because of gas-
dynamic phenomena in the exploration and
development of AB sylvinite formation using in
decision rules the following complex of geological
parameters: formation thickness, the content of
potassium chloride, the content of magnesium
chloride, the content of sodium, the content of
bromine, the content of calcium sulfate, the content of
insoluble residue in formation rocks. The probability
of a correct discrimination of AB sylvinite formation
sections into zones dangerous and non-dangerous
because of GDP is 0.96. Adequacy of zones
forecasting results dangerous because of GDP to
practice of mining operations on the formation of AB
sylvinite formation is 92 % correspondingly. Forecast
maps were created for zones dangerous because of
GDP for the Ust-Yaivinskiimine field conditions on
the base of PJSC "Uralkali" and Polovodovskii area of
Verkhnekamskoie potash salt deposit.
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