Perm Journal of Petroleum and Mining Engineering. 2020. Vol.20, no.2. P.115-125. DOI: 10.15593/2224-9923/2020.2.2

BECTHUK ITHUITY. T’EOJIOI'USL. HE(I)T'ETMOEQE N T'OPHOE JEJ

ISSN 2224-9923 =
Volume / Tom 20 _Ne2< 2020

ikepStu.Tu/geo/ -‘;A
UDC 622/276+550.834(252.6)

Atrticle / Ctatbs © PNRPU / ITHUITY, 2020

OBTAINING HIGH-QUALITY SEISMIC DATA
IN THE NORTHERN PERM KRAI SWAMPY AREAS

lurii M. Zakharov, Ivan S. Putilov

PermNIPIneft branch of LUKOIL-Engineering LLC in Perm (3a Permskaya st., Perm, 614015, Russian Federation)

NONYYEHUE KAYECTBEHHbIX CEUCMUYECKUX OAHHbIX
HA 3ABOJIOYEHHbIX TEPPUTOPUAX CEBEPA NEPMCKOI'O KPAA

l0.M. 3axapos, WU.C. NMyTunos

®umman 000 «JTIYKONI-Umxuaupunry» «TepmHUITAHeGTs» B T. IlepMu (614015, Poccus, T. Iepms, yi. Ilepmckast, 3a)

Received / TTonmyuena: 14.02.2020. Accepted / [Ipunsta: 15.04.2020. Published / Ony6aukoBana: 15.06.2020

Key words: The study undertakes to solve the problem of obtaining reliable seismic data in swampy areas. Raw hydrocarbon deposits in
seismic exploration, processing, the North of Perm Krai are a promising asset, but their geological survey is constrained due to problematic surface
interpretation, excitation source, conditions. Seismic exploration is the most detailed and reliable remote method of geological subsurface studies, but any
seismic receiver, seismogram, state-of-the-art seismic 3D survey requires covering a much larger surface area than an actual area of a targeted subsurface
blast well, swampy areas, Geoton, survey. Swamps tend to strongly attenuate seismic waves, thus complicate a further geological interpretation of obtained
GS-ONE, GS-20 DX. data, and significantly limit the choice of engineering tools and techniques of surveying. Also it is impossible to avoid the

influence of hard surface conditions in territories extending over hundreds of square kilometers. In order to explore the
possibility of obtaining high-quality data in such conditions, we offer a comprehensive pilot survey using various recording
and seismic wave excitation facilities. We analyzed and explored the possibility of solving this problem by using advanced
seismic exploration methods. The study looks into the technology of obtaining primary data and into the stage of
information processing for its further geological interpretation. This is the first time that Geofon seismic pulse source and GS-
ONE high-sensitivity seismic receivers have been used for these purposes. According to the findings, there is an obvious
advantage of using the blast over pulse source, especially in the swamp bed itself. At the same time, Geoton proved to be highly
eco-friendly and safe, which makes it possible to use it in seismic exploration works of inhabited areas. The results of
processing the pilot survey data show that the single seismic receivers produce wave patterns with the best quality and accuracy.
The paper offers the seismic exploration techniques in swampy conditions and in territories that have increased
requirements to environmental protection and safety.

Kuiouesvie cnosa: PaccmarpuBaercsi mpobiemMa IOTydeHHS JOCTOBEPHBIX —CEHCMHYECKMX [JaHHBIX Ha 3a00JI0OYCHHBIX — YyYacTKax.
ceiicMopasBe/Ka, 00paboTKa, MeCcTOpOXACHHUST YTIEBOJOPOAHOTO CHIPBSI CEBEPHBIX TEPPUTOPHiA ITepMCKOro Kpas SIBISIOTCS BEChbMa MEPCICKTHBHBIMH
HHTEPHPETALHs, HCTOYHHK aKTUBAaMHU, HO JOCTATOYHO CJIOXHBI IJI TE€OJOTHYECKOTO M3YYCHHs, TaK KaK PACIIOJI0MKEHBI B CIOXKHBIX TOBEPXHOCTHBIX
BO30YKICHHUS, CCHCMOIPHEMHHUK, yenoBusx. CelicMopa3sBezika SBISCTCs HanOoIee ACTAIbHBIM M JOCTOBEPHBIM IUCTAHIIMOHHBIM METOIOM I€0JIOTHYECKOro
ceiicMorpamma, B3pbIBHAs H3YYCHHsl HEIp, HO COBPEMEHHbIC ceficMuyeckue 3D-chbeMkH TpeOylOT MOKPBIBaTh CEThIO Npoduieil 3HauYMTEIbHO
CKBaXHHA, 3200JI0YCHHbIC GOJIBIIIYIO TEPPUTOPHUIO HA TIOBEPXHOCTH, YEM 3aHUMAET caM OOBEKT MOKCKa B NIyOHHe. 3a00I0YCHHBIC YYaCTKU HE TOJIBKO
TeppUTOpHH, 0OpabOTKa, CYIIECTBEHHO OCNAOJISIOT CeHCMUYECKUE BOJHBI, YTO MPUBOAUT K MOJIYUCHHIO CIOXKHBIX JUISl AabHEillIel reonornueckoit
I'eoton, GS-ONE, MHTEpIpeTaluy JaHHBIX, HO M HAKJIaJblBalOT CYLIECTBEHHbIE OTPAaHUUYEHUS HA TEXHUYECKUE M METOAMYECKHUE aCIEKThI
GS-20 DX. U3YYeHHs, a N30ekKaTh BIMSAHHUS CIOMKHBIX NMOBEPXHOCTHBIX YCJIOBHH HA TEPPUTOPUH ILUIOMIAJBIO B COTHHM KBaJPaTHBIX

KHJIOMETPOB HEBO3MOXKHO. C IENIbI0 OLIEHKH BO3MOMKHOCTEH IIOJTy4eHHs! KaueCTBEHHBIX JAHHBIX B MOJOOHBIX YCIOBUAX
OBbLIM TIPOBEJIEHBl PACHIMPEHHBIE ONBITHBIE PAOOTHI C IIPUMEHEHHEM DA3JMUYHBIX THUIIOB PETMCTPUPYIOIIErO |
BO30YsK/Ialolero ceiicMuueckue BONHBI 00opynoBaHus. IIpefcTaBieH aHauM3 M JaHa OLIEHKAa BO3MOMKHOCTH pelleHHs
JITAaHHOW TIpOOJIEMBI TNPH MOMOIIM COBPEMEHHBIX METOJAMK B obmactu ceiicmopasBenkn. MccnenoBanue 3aTpoHyIo
TEXHOJIOTUIO TIOJYYCHHs IEPBUYHBIX JAQHHBIX M 3Tal 00pa0OTKM MH(OPMALHHU C LENbI0 e¢ NalbHEeHIIeil reoJornyeckoi
MHTEpIpeTaliy. PacCMOTPeHBI Takue HOBINECTBA, KaK HMITYJIbCHBIM HMCTOUHHMK celicMuueckux KosebaHmit «['eoTom» u
BBICOKOUYBCTBUTENbHBIE ceficMonpueMHnkn «GS-ONE». B pesynmbrate crenaHbl BBIBOABI O HEKOTOPOM IPEHMYIIECTBE
B3PBIBHOTO HCTOYHMKA HAJl MMITYJbCHBIM, OCOOCHHO HEIOCPEACTBEHHO Ha TOJIIE OONOTa, HO ONHOBPEMEHHO OTMEYEHA
BBICOKAsl SKOJIOTUYHOCTh M 0€30aCHOCTh UCTOYHMKA «I €OTOH», YTO (POPMHPYET BO3MOKHOCTb €r0 LIMPOKOTO MPUMEHECHHUS
IpU CeHCMOpPa3BEIOUHBIX paboTaxX B HACENCHHBIX IMyHKTaX. ITo pesynbraTaM 06pabOTKH JaHHBIX OIBITHBIX PabOT OTMEYEHO
JIydIlIee Ka4eCTBO U JETAIbHOCTh BOJHOBON KapTHHBI, 3aPETMCTPUPOBAHHOIN OJMHOYHBIMH CEfICMOIPUEMHHKAMH.

B pesyibrate oCylIeCTBICHHON pabOThI BbIJAHBI METOAMYECKUE PEKOMEHIALMH ULl IPOBEJICHUs CEHCMOpa3BeoYHbIX paboT B
YCIOBHSIX 3200JI04€HHOCTH U Ha TEPPUTOPHSAX C MOBBILIEHHBIMH TPEOOBAHUAMH K SKOJOTMYHOCTH U O€30MIaCHOCTH.
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Introduction

Obtaining reliable seismic data in seismically
restrained swampy areas is somewhat problematic.
Behavior of deformation waves in inhomogeneous
media has always been in the focus of studies of
geophysics, geologists and even builders [1, 2].
Their interest is associated with the fact that the
anomalies caused by the influence of these media can
have a substantial effect on the wave pattern in the
target survey intervals. Now specialists note that the
survey focus lies in small-size and low-amplitude
targets, while the confounding factor of near-surface
section (NSS) anomalies can change or completely
hide such a target [3].

Apparently, multiple methods for factoring in the
NSS anomalies exist and are actively used [4-8].
However, according to the author’s personal findings
accumulated over the past 10 years of work with the
seismic exploration data in various Russian territories,
some of the anomalies can be so powerful that it
appears to be impossible to factor them at the
processing stage. Therefore, it is advisable to minimize
them at the stage of obtaining primary data, i.e. during
field seismic exploration works [9].

The problem of concern is highly relevant for the
territory of Perm Krai, since the main bulk of seismic
exploration works is performed using compact
drilling rigs that are incapable of drilling blast wells
deeper than 10 m, which excludes the influence of a
swampy bed on a seismic signal generation. Apart
from the signal attenuation, suboptimal conditions of
excitations produce intense waves, i.e. noise events,
where Rayleigh waves and ringing pulses [10] are the
most impactful. It is not possible to use more
powerful machinery, as it violates the regionally

adopted environmental protection standards [11],
which forbid cutting down trees.

Materials, Research Methods
and Analysis of Results

In order to analyze the possibility of improving the
quality of the material obtained in the restrained surface
and geological conditions, a pilot survey was made in
Privolzhsky Federal Okrug, in the territory of
Krasnovishersk District, the Northern part of Perm
Krai. The 2D common depth point method profile
entered the swamp (adverse surface conditions),
forested area and the river Vilva flood plain. Such a
diversity of surface conditions enabled obtaining the
necessary wide range of data for the analysis.

The surveyed site is located in a zone highly
unfavorable for seismic and geological works,
characterized by pronounced wave field distortions,
seismic energy absorption and dissipation, and
high level of intense noise waves [12]. The
effectiveness of the seismic exploration works
deteriorates due to an over three-meter-thick peat bed
covering the ground surface (which dampens seismic
energy and causes reoccurring low-frequency
vibrations), argillaceous-marl bed and Solikamsk
horizon limestones. Such mechanical characteristics
greatly influence generation of elastic waves [13].
Fig. 1 shows NSS velocity-depth model with
lithology columns, demonstrating the surface and
subsurface conditions of the test profile’s location.
The near-surface section throughout the profile is
expressly inhomogeneous; the selected area has
widely diverse surface and subsurface conditions,
which corresponds to the objectives of the pilot
production works.
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Fig. 2. Amplitude-frequency curves in GS-ONE seismic
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Fig. 3. Wave pattern registered using GS-ONE single seismic
receivers (@) and GS-20 DX geophone groups (b)

These works offer a practical value due to the fact
that hard-to-reach areas are seldom included in the
scope of seismic exploration works, whereas
the wells that are drilled in them hardly ever
undergo geophysical surveys. In these conditions,
unreliable seismic data can deteriorate reliability of

recommendations for a well laying [14], which entails
significant financial risks.

Seismic signal recording was conducted via two
receiver lines, using groups of twelve GS-20 DX
geophones on the one line and GS-ONFE single seismic
receivers on the other. The receiver lines were unreeled
alongside one another in identical surface conditions.
Regardless of the type of surface conditions, the seismic
dataset obtained using GS-ONE seismic receivers has
certain differences from the data obtained using
GS-20 DX geophones. In the first case, the wave pattern
contains a wider spectrum of registered frequencies but
with smaller amplitudes (Fig. 2) and is confounded by
noise influences, which are especially obvious in the
microseism area (Fig. 3, a). Wind is the main noise
event, which is quite difficult to exclude during the
recording, but it can be suppressed during processing by
powerful tools designed for this purpose [15, 16].
Excessive levels of noise are caused by a higher
sensitivity of GS-ONE single seismic receivers,
amounting to 78.7 (V/m/s) against 19.7 (V/m/s) of one
GS-20DX device [17]. A higher level of amplitudes in
using a group of geophones (Fig. 3, b) is achieved
through the group statistic effect [18, 19]. The
attenuation effect of the surface-type noise waves
through grouping was not fully achieved in these
conditions. Probably, the geophone group (being an
interference system) failed to provide a sufficient
degree of the intense noise wave suppression due to the
NSS complex structure, fluctuations of kinematic and
dynamic parameters of useful waves and noise effects.

Another reason of this failure was that the noise
wave suppression technology was designed as a system
customizable to the individual elastic wave fields that
vary across regions [20, 21, 22]. Grouping seismic
receivers with constant parameters not only reduce the
noise wave suppression capability, but also distort them
upon recording, which is counterintuitive, taking into
account the existing methods for surface waves’
interpretation [23].

Notably, the use of single seismic receivers
makes reeling and unreeling of the field equipment
significantly easier, as the weight and size of
GS-ONE receivers is much less (about 0.2 kg vs.
almost 2.0 kg weight of GS-20 DX), which enables a
more effective use of the seismic crew personnel,
thus, improves the overall performance and reduces
the costs of the field operations [24].

At the stage of the seismic data processing, time
sections obtained using the single seismic receivers
will be taken into account. However, further analysis
of the primary seismic data will only be based on the
materials obtained using GS-20 DX geophones, since
the wave pattern they produce is more expressive and
visually representative.
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The seismic signal excitation in the test profile was
achieved using a traditional method with shallow
drilling (down to 10 m) and the technology for blast
charge laying below the base of the low-velocity layer
(LVL) at the depth of 20 and 30 m. Besides, Geoton-15
compact pulse source was used as the vibration
excitation source. The device belongs to the new
generation of pulse sources and meets the requirements
of environmentally safe operations.

In the southern, dry-land part of the profile, sand-
and-gravel deposits occur at the depth below 25 m.
These conditions adversely impact the seismic signal
excitation, which affects the wave pattern obtained
when the blast charge was placed at a depth of 30 m.
Compared to the seismogram registered with the
20-m charge depth, it has lower amplitude-frequency
characteristics. The difference between the records from
the depths of 20m and 8m is minimal. The seismogram
obtained from the eight-meter well has a more
pronounced sound wave train, which has somewhat
narrowed the frequency spectrum, but can be easily
excluded at the stage of the seismic data processing.
Fig. 4 (I) shows the amplitude-frequency characteristics
of the seismic records obtained during the works in the
dry land part of the profile, where it is clear how
quickly the seismic signal attenuates when excited from
the depth of 30 m.

In the central, swampy part of the profile, the
record obtained from the signal excitation at the
depth of 30 m shows an apparent continued impact of
sandy deposits on the amplitude-frequency
characteristics of the signal (Fig. 4, II a), albeit less
than in the forested part. The records obtained from
the depths of 20 m and 8 m differ by frequency: the
eight-meter record has a narrower spectrum,
associated with the influence of low-frequency noise
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waves, which intensity grows as the blast charge
laying depth decreases.

The data shown in Fig. 4 (I, b, ¢) make it possible
to trace the impact of the low-frequency constituent of
the record on the general wave pattern; the spectrum
becomes narrower.

Based on the assessment of the primary seismic
data, a conclusion was made that blast charge
positioning below the LVL base is not always justified:
seismic signal generation depends to a larger extent on
the immediate lithological conditions of the charge
placement than on the depth of its embedding.

In order to obtain reliable high quality field data
in the conditions of swampy areas, it is necessary to
know exactly the depth of the swamp’s bottom, since
it is crucial to place the charge in a dense rock. Apart
from establishing favorable conditions for seismic
signal excitation, the opportunity to observe these
parameters will help to avoid the risk of the charge
surfacing, which is against the safety rules of blasting
operations [25].

The described situation suggests a high degree of
NSS lateral inhomogeneity, posing yet another
challenge to the seismic exploration, i.e. a detailed
forecast of NSS lithological composition in order to
determine the optimum charge laying depth. The
microseismic logging is a sufficiently reliable
method for the necessary forecast, but it proves to be
cost ineffective at high well spacing density. As a
rule, a network with a density of 1 well per 1 km” is
used, which does not provide a detailed picture of
NSS lateral variability.

It has recently become popular to combine
seismic  exploration works with  geoelectric
surveying. We believe one of these methods to be
quite promising. In particular, it is the continuous
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Fig. 4. Amplitude-frequency curves of records obtained by blasting: I) on land in a well with the depth
of 30m (a), 20 m (b) and 8 m (c); I) in a swamp in a well with the depth of 30 m (a), 20 m (b) and 8 m (c)
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electromagnetic scanning (EMS) of the section using
the method of time-domain electromagnetics and
georadar profiling (GRP) [26, 27]. The results obtained
by this technology confirm feasibility and effectiveness
of the method for NSS study.

The seismic vibration pulse source Geoton-15
represents an alternative means of exploration in
swampy areas. It is compact, low-weight, deforms the
surface insignificantly during use and is convenient for
transportation in groups or individually. These features
make it a good option for exclusive zones such as
various types of water areas, environmentally restricted
areas, inhabited areas, or industrial areas. Notably,
PISC Permneftegeofizika specialists developed an
effective system aimed at conducting the seismic
exploration works in water areas and bottom drilling
from ice during winter seasons [28]. However, the
authors of this method [29] confirm that this technology
is unfeasible in channel parts of the water areas with a
layer over 10 m.

The Geoton source can be used in almost any
territory [30]. Slavneft-NPC LLC has demonstrated a
unique example of its use for seismic signal
excitation during seismic exploration works using the
3D common depth point method in the East
Lokosovskoe field area in extremely complicated
surface conditions, including the main channel and
flood plain of the river Ob. The use of pulse sources
resulted in minimizing irregularities of the employed
acquisition systems.

In ice cover areas, the Geoton sources were
successfully used [31]. It is notable that a group of
sources towed by an all-terrain vehicle still has certain
limitations as to the minimum ice thickness, since its
weight reaches 10 tons. This is much less than the large
sources like Yenisey [32], but quite a lot during warm
winters that are more often now. From time to time
researchers discuss the possibility of creating even
lighter sources, however, a pulse that would be
sufficiently powerful to ensure the exploration depth
exceeding 1 km, has to be produced by a source having
a respectively large weight [33-36].

In the course of the aforementioned works, the
Geoton source has been used in Perm Krai for the first
time. The wave pattern registered during the dry-land
part of the exploration area appeared to be quite
different from the acquisitions in the swamps. In the dry
land, the obtained data were comparable to the blast
data, first events were clear, fragments of the reflected
waves were visible in the primary material (Fig. 5, a).
The record registered in the swampy conditions was
distorted by powerful low-frequency noise waves
associated with the unstable icy bed of the swamp
surface and caused by the surface swaying effect during
the source operation (Fig. 5, b).

However, seismic exploration is a complex and
staged process where the primary data obtaining is
just the first step. A.V. Cherepovsky, a well-known
Russian scholar working in seismic exploration
studies, stated in his book, "many geophysics still
stick to the old belief that if there is no (visible)
signal in the initial data, it will not appear in the final
sections. The time has come to call this idea in
question."[37]

A priori time sections (after summation but before
processing) obtained using a blast source located below
the LVL base have the best quality of summation;
reflections correlate practically throughout the entire
recording interval.

A priori sections obtained using the blast source
from the depth of 8 m show a great impact of the noise
waves (especially in the swampy part of the profile).

The lowest summation quality and almost a
complete lack of the reflections in the target intervals
were obtained in the time sections with the pulse
source (Fig. 6, ¢).
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As mentioned earlier, it would be counterintuitive
to make conclusions about the quality of seismic data
without considering material processing results. The
processing is intended for extraction of useful
information from the field seismic data. The seismic
data processing is mostly based on solving inverse
problems. An inverse problem in seismic exploration
deals with determining the structure of the
seismogeological environment from the acquisitions of
the elastic wave field occurring in it [38, 39].

A poor quality of a priori summation is related to
the influence of the surface noise waves that
typically have low frequencies and large amplitudes.
At the final processing stage, time sections for all the
excitation sources have demonstrated the quality
acceptable for a further interpretation. It is clear that
achievement of such a result requires a detailed
control of processing [40, 41].

According to the processed results, the best-quality
material in terms of wave field characteristics (higher
coherence and record resolution in time sections) was in
case of using the blast excitation sources. Sections are
mostly comparable for the charge laying depths
of 8 meters and 20 meters (Fig. 7).

The time section with the pulse source of
excitation showed a lower performance against the
blast source having produced a narrower frequency
spectrum and accuracy (Fig. 8); therefore, it may be
limited in terms of the capability of a small target
interpretation [42].

Nevertheless, owing to its technical features,
simplicity and safety of the operation, the Geoton pulse
source represents an attractive alternative source of the
seismic signal excitation.

The present study and negotiations with the source
manufacturer revealed certain details that may result in
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Fig. 9. Time sections built on the data obtained using GS-20

DX geophones (a) and GS-ONE single seismic receivers (b)

low-amplitude faults (Fig. 9). Notably, for single receivers

placed with the sufficient density (at an interval of 10-12 m),

the laboratory grouping is available, referred to as effective
by many researchers [43—45]

improving the frequency spectrum of the generated
elastic waves, thereby increasing the level of the wave
pattern accuracy.

As for the grouping impact of the seismic receivers
and single geophones on the wave pattern, it has been
discovered that in the context of these works, there is
only a small difference in the accuracy of the reflecting
horizons tracing. The single receivers tend to produce a
more detailed picture of small-sized targets and low-

amplitude faults (Fig. 9). Notably, for single receivers
placed with the sufficient density (at an interval of
10—-12 m), the laboratory grouping is available, referred
to as effective by many researchers [43—45].

Conclusion

1. Time sections obtained using different excitation
sources have nearly 100 % traceability of the target
reflections followed by processing, but the blast sources
perform better in terms of detail and resolution.

2. After the entire set of the data processing
operations, the sections with the blast excitation source
in the wells with the depth of 8 meters and 20 meters
showed an equal quality of the target reflections.
Therefore, it appears to be counterintuitive to drill
deeper wells that require much more funds and efforts.
Special attention should be paid to analyzing the NSS
lithological features when selecting the blast charge
laying depth.

3. It is advisable to conduct a preliminary study of
the NSS structure using methods alternative to the
seismic exploration, e.g. EMS and GRP showed
promising results. The detailed picture of the NSS
lithological structure will help to avoid the charge
placement in adverse conditions and exclude an
excessively deep laying.

4. The pulse sources produce time sections with a
lower resolution and detail. Nevertheless, if we consider
the seismogeological area complexity, lack of their field
use experience and novelty of such materials for
processing, we believe that such sources might be
helpful, especially in the works conducted in the zones
highly sensitive in terms of environmental protection
and safety.

5. The single seismic receivers have demonstrated a
final result comparable to that obtained using the
groups of geophones. The former have an advantage of
producing more detailed time sections, whereas the
undoubted convenience and lightweight of the field
equipment reduce the unreeling efforts.
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