АНАЛИЗ РАБОТЫ ДОБЫВАЮЩИХ СКВАЖИН И СКВАЖИННОГО ОБОРУДОВАНИЯ С ПРИМЕНЕНИЕМ ПРОГРАММЫ «ФАКТОР-М»

М. С. ТУРБАКОв, В. А. МОРДВИНОВ
Пермский государственный технический университет

Основным показателем, характеризующим работу оборудованных установками скважинных штанговых насосов (УСШН) добывающих скважин, является коэффициент подачи. Формулу для его определения можно записать так:

$$
\begin{equation*}
\alpha_{\text {под }}=\beta_{\text {нап }} \cdot \gamma_{\text {деф }} \cdot \delta_{\text {ус }} \cdot \chi_{\text {ут }}, \tag{1}
\end{equation*}
$$

где $\alpha_{\text {под }}$ - коэффициент подачи (отношение фактической подачи к теоретической);
$\beta_{\text {нап }}$ - коэффициент наполнения насоса;
$\gamma_{\text {деф }}$ - коэффициент, учитывающий упругие деформации насосных штанг и насосно-компрессорных труб (НКТ);
$\delta_{y c}$ - коэффициент, учитывающий усадку нефти, то есть уменьшение объёма единицы массы нефти, находящейся в насосе, после её дегазации на поверхности;
$\chi_{\text {ут }}$ - коэффициент, учитывающий утечки жидкости в скважинном насосе и в колонне НКТ.
Количественная оценка коэффициентов $\beta_{\text {нап }}, \gamma_{\text {деф }}$ и $\delta_{\text {ус }}$ для каждой скважины с УСШН может быть выполнена по известным данным, характеризующим условия работы скважины и скважинного оборудования: динамическому уровню жидкости, дебиту (по жидкости), обводнённости, газовому фактору, вязкости откачиваемой жидкости и др. Коэффициент учёта утечек $\chi_{\text {ут }}$ для новых насосов при соосном расположении плунжера в цилиндре составляет от 0,92 до 0,97 . В скважинных условиях взаимное расположение плунжера в цилиндре может быть произвольным. При несоосном расположении утечки в этой паре увеличиваются, поэтому для новых насосов можно принять $\chi_{\text {уг }}=0,90$.

При анализе работы насосной установки, после определения расчётным путём коэффициентов $\beta_{\text {нап }}, \gamma_{\text {деф }}$ и $\delta_{\text {ус }}$, значение $\chi_{\text {ут }}$ определяется по формуле

$$
\begin{equation*}
\chi_{\mathrm{yr}}=\frac{\alpha_{i \hat{i} \hat{a}}}{\beta_{i \hat{a} \ddot{l}} \cdot \gamma_{\dot{a} \hat{a} \hat{o}} \cdot b_{\partial \hat{n}}} \tag{2}
\end{equation*}
$$

Для оценки состояния скважинного подземного оборудования, определяемого степенью износа насоса и герметичностью колонны НКТ, можно принять следующую градацию скважин в зависимости от величины $\chi_{\text {ут }}$:

I группа: $\chi_{y \mathrm{y}} \geq 0,7$ - состояние скважинного оборудования вполне удовлетворительное;
II группа: $0,5 \leq \chi_{\text {ут }}<0,7$ - состояние скважинного оборудования удовлетворительное;
III группа: $\chi_{\text {ут }}<0,5$ - состояние скважинного оборудования неудовлетворительное.
Если $\chi_{\text {ут }}<0,5$, то есть утечки жидкости составляют половину и более от теоретической подачи насоса, необходимо проведение работ по динамометрированию и ревизии насосной установки с заменой насоса или восстановлением герметичности колонны НКТ. Коэффициент подачи при $\chi_{\text {ут }}<0,5$ даже для самых высоких значений коэффициентов $\beta_{\text {нап }}$, $\gamma_{\text {деф }}$ и $\delta_{\text {ус }}$ имеет значения не более $0,43 \ldots 0,45$.

Расчёты по (2) могут выполняться с помощью программы «Фактор-М» в режиме «Анализ». Работа с программой включает:

подготовку исходных данных;

расчёт и построение кривых распределения давления в интервалах: забой - приём насоса; приём насоса - динамический уровень (в затрубном пространстве); выкид насоса - устье скважины (в подъёмных на-сосно-компрессорных трубах);
расчёт коэффициента подачи насосной установки и определяющих его величину составляющих: коэффициента наполнения, коэффициентов учёта деформаций штанг и труб, усадки и утечек;
расчёт максимальных и минимальных нагрузок и приведенных напряжений для колонны насосных штанг.

При заданном значении динамического уровня программой выполняется расчёт забойного давления в скважине; если задаётся забойное давление, выполняется расчёт для динамического уровня.

Анализ работы с применением программы «Фактор-М» выполнен для добывающих скважин Первомайского нефтяного месторождения (залежь в отложениях турнейского яруса), оборудованных установками СШН. Характеристика технологических режимов работы скважин приведена в табл. 1, в табл. 2 приведены результаты выполненного анализа.

По пяти скважинам ($31,3 \%$) коэффициенты подачи не превышают 0,384 , поэтому данные скважины следует отнести к третьей группе ($\chi_{\text {ут }}<0,5$) и по ним необходимо проведение работ по динамометрированию насосной установки и ревизии скважинного оборудования.

Для всех скважин расчётное значение $\beta_{\text {нап }}$ несколько превышает 0,9 . С учётом возможного наличия и влияния на этот коэффициент так называемого вредного пространства в насосе, не учитываемого при расчёте, величина $\beta_{\text {нап }}$ принята равной 0,9 .

Коэффициент утечек ($\mathrm{K}_{\mathrm{yr}}=1-\chi_{\mathrm{yт}}$) в табл. 2 указывает на то, какая часть (в долях единицы) поступающей в насос жидкости теряется из-за утечек и не поступает на поверхность при работе скважины с УСШН.

Таблица 1
Обобщённая характеристика технологических режимов работы скважин

№ п. п.	Показатели	Наименьшее значение	Наибольшее значение	Среднее значение
1	Коэффициент продуктивности, м $/$ (сут•МПа)	0,13	8,34	1,11
2	Глубина подвески насосов, м	925	1200	1031
3	Динамический уровень, м	169	1116	670
4	Статический уровень, м	0	500	173
5	Депрессия на пласт, МПа	2,2	11	6,4
6	Дебит по нефти, т/сут	0,6	11,3	3,08
7	Дебит по жидкости, м ${ }^{3} / с у т ~$	0,7	18,17	4,44
8	Обводнённость, \% об.	9,87	60,53	42,72
9	Коэффициент подачи УСШН	0,09	0,83	0,56

Таблица 2
Результаты анализа технологического режима работы скважин и скважинного оборудования

№ п. п.	№ скв.	Давление на выкиде насоса, МПа	Давление на приёме насоса, МПа		Давление на забое, МПа	Газосодержвние у приёма насоса,$\mathrm{m}^{3} / \mathrm{m}^{3}$	Коэффициенты					
							$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { B } \end{aligned}$		\qquad			$\begin{aligned} & \text { 点 } \\ & \text { 2 } \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$
1	823	10,9	9,1	2,1	14,4	7,1•10	0,724	0,9	0,985	0,990	0,825	0,175
2	827	9,6	7,6	2,0	13,7	0,0026	0,812	0,9	0,987	0,991	0,922	0,078
3	831	11,8	3,5	2,2	8,0	0,0233	0,757	0,9	0,945	0,992	0,897	0,104
4	832	10,4	3,1	2,2	9,0	0,0274	0,623	0,9	0,955	0,993	0,730	0,270
5	833	11,8	2,4	2,4	7,7	0,0408	0,602	0,9	0,951	0,994	0,708	0,292
6	887	12,2	1,9	1,1	6,5	0,0453	0,384	0,9	0,923	0,995	0,465	0,535
7	948	10,1	7,6	1,2	12,8	0,0027	0,643	0,9	0,965	0,990	0,748	0,252
8	967	9,9	4,9	1,3	11,7	0,0094	0,828	0,9	0,956	0,994	0,968	0,032
9	969	10,8	5,9	1,3	11,2	0,0067	0,462	0,9	0,967	0,992	0,535	0,465
10	982	8,8	1,4	0,8	7,0	0,0906	0,384	0,9	0,953	0,994	0,451	0,549
11	983	12,8	8,0	0,7	12,6	9,5•10	0,216	0,9	0,948	0,996	0,254	0,746
12	984	10,6	8,2	0,7	12,6	0,0016	0,581	0,9	0,975	0,990	0,669	0,331
13	985	11,1	4,9	0,8	8,7	0,013	0,093	0,9	0,940	0,989	0,111	0,890
14	1009	10,2	2,0	1,1	6,2	0,0546	0,820	0,9	0,921	0,992	0,997	0,003
15	1010	11,6	4,4	1,3	9,3	0,0103	0,463	0,9	0,949	0,995	0,544	0,456
16	1011	11,6	2,0	1,3	6,2	0,0582	0,172	0,9	0,927	0,992	0,208	0,792
$\begin{gathered} \text { Сре } \\ \text { знач } \end{gathered}$	днее ение	10,9	4,8	1,4	9,9	0,0243	0,535	0,9	0,953	0,992	0,627	0,373

