К ВЫБОРУ СКВАЖИН

 ДЛЯ ПРОВЕДЕНИЯ ГИДРОРАЗРЫВА ПЛАСТА НА ПРИМЕРЕ ОБЪЕКТА БС10 ЮЖНО-ЯГУНСКОГО МЕСТОРОЖДЕНИЯД. А. Холодницкий, В. Н. МезРин
Пермский государственный технический университет

В последнее время в отечественной практике добычи нефти и газа активно используется гидравлический разрыв пласта (ГРП). В Западной Сибири освоение ГРП начато в конце $80-\mathrm{x}$ годов, на месторождениях ОАО «Сургутнефтегаз» с 1993 г. выполнено более 1000 скважино - операций с возрастающими темпами внедрения и уменьшающейся долей низкоэффективных ГРП (рис. 1).

Дополнительная добыча нефти, тыс.т

Рис. 1. Динамика объемов проведения ГРП

Южно-Ягунское месторождение расположено в северо-восточной части Сургутского нефтегазоносного региона Тюменской области. В тектоническом плане оно приурочено к Ягунскому куполовидному поднятию, расположенному на северо-восточном погружении Сургутского свода.

Нефтегазоносность связана с терригенными отложениями меловой и юрской систем мезозоя (пласты БС10, БС11 и ЮС1). Наибольшая доля начальных извлекаемых запасов нефти (70%) приходится на основной объект разработки - пласт БС10. Этот пласт развит по всей площади месторождения. Залежь пластово-сводового типа с элементами литологического экранирования.

Пласт - коллектор представлен песчаниками и крупнозернистыми алевролитами, общая толщина которого в среднем 10,5 м при коэффициенте песчанистости 0,8 ; коэффициент нефтенасыщенности $-0,61$; проницаемость изменяется от 0,008 до 0,250 мкм ${ }^{2}$ при средней 0,130 мкм ${ }^{2}$.

Наибольшее количество ГРП (35 скв. - опер.) было проведено в 2001 году. Из них 28 оказались успешными (коэффициент успешности 0,8). В настоящее время ГРП применяется и при освоении скважин после бурения в зонах сложного геологического строения. В 2004 году выполнены ГРП на 10 скважинах залежи БС10, в том числе на четырёх действующего добывающего фонда, данные по которым приведены в табл. 1.

Таблица 1
Результаты гидроразрыва пласта в добывающих скважинах

$\begin{aligned} & \text { E } \\ & \stackrel{0}{\theta} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{0}{0} \\ & 01 \\ & 01 \end{aligned}$	Дата ввода после ГРП	Режим работы						\% воды на ко- нец года	$\Delta q_{\text {н }}$. после ГРП, т/сут
			до ГРП			после ГРП				
			$\begin{gathered} q_{\mathrm{H}}, \\ \mathrm{~T} / \mathrm{cyт} \end{gathered}$	$\left\|\begin{array}{c} \text { \% } \\ \text { воды } \end{array}\right\|$	$\begin{gathered} q_{\text {ж, }} \\ \text { т/сут } \end{gathered}$	$\begin{gathered} q_{\mathrm{H}}, \\ \mathrm{~T} / \mathrm{cyT} \end{gathered}$	\% воды	$\begin{gathered} \mathrm{q}_{\text {ж, }} \\ \text { т/сут } \end{gathered}$		
1	637	07.2004	1,2	5	1,3	16,0	50	32,0	45	14,8
2	2741	05.2004	2,9	7	3,1	6,9	73	25,6	61	4,0
3	607	06.2004	2,4	3	2,5	15,4	63	41,6	52	13,0
4	598	07.2004	1,4	8	1,5	13,2	51	26,9	48	11,8

Как видно из таблицы, при увеличении дебита нефти от 2,5 (скв. 2741) до 13 раз (скв. 637) дебиты по жидкости увеличились в $8 \ldots 26$ раз. Резкий рост обводненности продукции скважин связан с вытеснением жидкости из ранее заводненных участков пласта. Некоторое снижение процента воды на конец текущего года можно объяснить тем, что после проведения ГРП в продукции скважин присутствовала связанная пластовая вода из дренируемых скважинами зон пласта. Такое вполне возможно при коэффициенте нефтенасыщенности 0,61 и поровом типе коллектора.

По результатам анализа параметров пласта, влияющих на выбор скважины кандидата для ГРП, предложены две скважины в северо - восточной части залежи БС10. Параметры пласта, фактические и ожидаемые приросты удельного дебита нефти на метр эффективной нефтенасыщенной толщины по скважинам представлены в табл. 2.

Параметры пласта и скважин

Параметры пласта	Скважины с проведенным ГРП				Скважины, предлагаемые для проведения ГРП	
	637	2741	607	598	2716	780
$h_{\hat{y} \hat{0} .}, \mathrm{m}$	6	3	6	5,8	3,9	3,5
$k_{i \text { ioìièo., } \text { мкм }^{2}}$	0,024	0,011	0,0251	0,138	0,018	0,024
	0,58	0,75	0,74	0,71	0,71	0,73
$\Delta q_{\text {óä. }}$, ò / ñóò $\cdot i$	2,5	1,3	2,2	2,0	2,0	2,0

Рис. 2. Карта эффективных нефтенасыщенных толщин и текущих отборов жидкости участка

Проведенное ГТМ на скв. 2741 оказалось малоэффективным из-за близости контура нефтеносности (рис. 2).

Таким образом, в результате анализа проведения ГРП на скважинах залежи БС10 Южно-Ягунского месторождения отмечено следующее:

1. Значительная эффективность ГТМ для пласта БС10.
2. При высоком обводнении продукции скважин после ГРП достигаются большие приросты дебита нефти за счет многократного увеличения дебита жидкости.
3. При выборе скважины - кандидата для ГРП следует учитывать ее расположение относительно контура нефтеносности.
