ИССЛЕДОВАНИЕ ГАЗОНОСНОСТИ СИЛЬВИНИТОВОГО ПЛАСТА КРІІІ ШАХТНОГО ПОЛЯ РУДНИКА БКРУ-4 ОАО «УРАЛКАЛИЙ»

O. A. Hocob
Пермский государственный технический университет

Abstract

В статье изложена методика определения газоносности соляных пород по свободным газам. Проведены экспериментальные исследование газоносности сильвинитового пласта КрІІІ шахтного поля рудника БКРУ-4 ОАО «Уралкалий».

Газоносность пород на Верхнекамском месторождении изучалась по всем шахтным полям по мере ввода в эксплуатацию действующих рудников разными исследователями. Установлено, что газы в отрабатываемых пластах и вмещающих породах распределены крайне неравномерно. Скопления газа в массиве и различные формы его связи с породой, получившие в литературе разные названия, приводят к различного рода последствиям и осложнениям при ведении горных работ.

Если рассматривать характер газовыделений в зависимости от газоносности, то при ведении горных работ по породам с обычной газоносностью в атмосферу выработок происходят обычные газовыделения. В других случаях возможны газодинамические явления. Так, межслоевые и приконтактные скопления свободного газа способствуют развитию газодинамических разрушений и обрушений (разрушений) слоистых пород кровли и почвы выработок. Внутрипластовые скопления свободного газа - источники суфлярных газовыделений, они могут служить причиной отрывов пород под действием суфлярного газа. Порода с повышенной поровой газоносностью выбросоопасна. В этом случае возможны внезапные выбросы породы и газа при проведении выработок комбайном или выбросы породы и газа, спровоцированные взрыванием при буровзрывном способе отбойки породы.

Содержание связанных газов изменяется от тысячных долей до $0,4 \mathrm{~m}^{3}$, свободных - от нуля до нескольких десятков кубических метров газа на 1 м 3 породы. Таким образом, в большинстве случаев преобладающее значение для оценки общей газоносности соляных пород имеет свободный газ (за исключением выбросоопасных пород и пород, содержащих сероводород).

На основе анализа существующих способов определения газоносности соляных пород и горнотехнических условий проведения исследований был принят

метод, разработанный сотрудниками ПГТУ Г. Д. Поляниной, Н. Ф. Красюком и А. Н. Земсковым [1, 2]. Данный метод определения газоносности пород по свободным газам производится путем шахтных наблюдений за газовыделениями из шпуров и отбора проб шпуровых газов. В свежеобнаженном забое или в стенке выработки последовательно с шагом 0,5 м бурятся шпуры глубиной от 1,0 до 3,0 м, которые сразу после бурения герметизируются на расстоянии $0,5 \mathrm{~m}$ от забоя шпура с помощью герметизатора (рис. 1).

В течение 30 с после герметизации шпура по прибору ПГ-2МА снимаются отчеты газового давления. По ним, с помощью заранее построенных графиков зависимости $\mathrm{X}=f\left(\mathrm{P}_{\mathrm{r}}\right)$ (где $\mathrm{X}-$ газоносность, $\mathrm{m}^{3} / \mathrm{m}^{3}, \mathrm{P}_{\mathrm{r}}$ - величина начального газового давления), определяются показатели газоносности.

По данным Н. Ф. Красюка и Г. Д. Поляниной для соляных пород Верхнекамского месторождения функция зависимости газоносности пород по свободным газам от величины начального газового давления имеет следующий вид [1]:

$$
X=\left(4,4+12,9 \cdot P_{\mathrm{r}}\right) / 71,94 \cdot \mathrm{P}_{\mathrm{r}}^{0,16} .
$$

Для подтверждения полученных по данной методике значений газоносности пород параллельно определялась газоносность пород по свободным газам в каждом конкретном случае (отдельном шпуре). Прибором ПГ-2МА замерялась скорость истечения газов из шпуров, секундомером фиксировалось время изменения скорости. Полученный объем выделившихся из шпура газов соотносился к объему зоны дренирования вокруг шпура.

Для сравнительно однородных соляных пород, находящихся вне зоны технологической трещиноватости, на средней для калийных рудников глубине залегания пластов (400 м) размер зоны дренирования составляет $24,4 \mathrm{~cm}^{2}$ вокруг шпура диаметром 4,2 см (для загерметизированного участка шпура длиной 50 см объем зоны дренирования - $1220 \mathrm{~cm}^{3}$).

При изучении газоносности соляных пород для качественного определения компонентного состава выделившихся газов применен следующий способ отбора проб. Стеклянная бутылка с пробкой, имеющей две трубки, заполняется насыщенным рассолом. Затем, после замера начального газового давления в шпуре, к одной из трубок подсоединяется шланг от герметизатора, по которому шпуровые газы поступают в бутылку, а из другой трубки вытесняется рассол (рис. 2). После полного вытеснения из бутылки рассола - обе трубки плотно закрываются пробками. Таким образом, полностью исключается попадание атмосферного воздуха в пробу.

Данный способ отбора проб шпуровых газов использовался в связи с тем, что применявшийся ранее вакуумный способ имел большую погрешность за счет различной степени вакуумирования бутылок и невозможности их абсолютной изоляции от атмосферного воздуха. При этом снижалось качество

химического анализа компонентного состава газов в пробах: увеличение содержания кислорода, снижение доли горючих газов - метана и водорода.

Исследования по определению газоносности пород пласта КрIII в условиях шахтного поля рудника БКРУ-4 проводились в 5-6-м блоковом транспортном штреке 10 -й юго-восточной панели. В ходе исследований газоносности пласта КрІІІ пробурено 20 шпуров глубиной от 1,0 до 3,0 м. При этом газоносность не превышала $0,28 \mathrm{~m}^{3} / \mathrm{m}^{3}$ при среднем значении $0,11 \mathrm{~m}^{3} / \mathrm{m}^{3}$. Ввиду малого объема выделившегося из исследовательских шпуров свободного газа, отбор проб на химический анализ не представлялся возможным.

Газоносность пород кровли (пласт КрII-КрIII) также незначительна, среднее значение $-0,13 \mathrm{~m}^{3} / \mathrm{m}^{3}$. Среднее значение газоносности пород пласта КрІІ в местах изучения газоносности пород пласта КрІІІ составляло $0,31 \mathrm{~m}^{3} / \mathrm{m}^{3}$ [3].

В 2005 году проводились исследования в конвейерном штреке 4 -го западного блока 1 юго-западной панели, пробурено 8 шпуров глубиной от 1,0 до 3,0 м. Газоносность пласта КрІІІ изменяется от 0,20 до $2,39 \mathrm{~m}^{3} / \mathrm{m}^{3}$, среднее значение составляет $0,76 \mathrm{~m}^{3} / \mathrm{m}^{3}$ (рис.3). Состав свободных газов следующий: $\mathrm{CH}_{4}-32,45 \%$; $\mathrm{H}_{2}-1,38 \% ; \quad \mathrm{C}_{2} \mathrm{H}_{6}-0,85 \% ; \quad \mathrm{C}_{3} \mathrm{H}_{8}-1,0 \% ; \quad \mathrm{C}_{4} \mathrm{H}_{10}-0,32 \% ; \quad \mathrm{iC}_{4} \mathrm{H}_{10}-0,39 \%$; $\mathrm{C}_{5} \mathrm{H}_{12}-0,37 \% ; \mathrm{N}_{2}-61,62 \%$ (рис.4).

Проведенные исследования газоносности сильвинитового пласта КрІІІ позволяют сделать вывод, что свободные газы в пласте распространены крайне неравномерно и, вероятно, связаны с зонами замещения сильвинита каменной солью. В районе 10 юго-восточной панели зоны замещения не выявлены, максимальная газоносность не превышала $0,28 \mathrm{~m}^{3} / \mathrm{m}^{3}$. Однако на 1 юго-западной панели, в которой присутствуют зоны замещения, газоносность пласта КрІІІ доходила до $2,39 \mathrm{~m}^{3} / \mathrm{m}^{3}$. В связи с этим при проходке подготовительных выработок по пласту КрIII необходимо проводить профилактические мероприятия по предотвращению газодинамических явлений.

Рис. 1. Схема расположения герметизатора в шпуре при измерении газоносности соляных пород

Рис. 2. Схема отбора проб шпуровых газов для определения их компонентного состава

Рис. 3. Распределение средней газоносности по пластам в районе 1 юго-западной панели рудника БКПРУ-4

Рис. 4. Диаграмма компонентного состава свободных газов в породах пласта КрІІІ

Литература

1. Красюк Н. Ф. Исследование газоносности соляных пород и ее роли взрывного внезапных выбросах: Автореф. дис. канд. техн. наук - Л., 1975.-19 с.
2. Полянина Г. Д., Земсков А. Н. Экспериментальные исследования распределения газа в приконтурном массиве при разработке калийного пласта // Разработка соляных месторождений. - Пермь, 1977. - С.120-123.
3. Оценить газоносность продуктивных пластов на новых участках шахтных полей рудников ОАО «Уралкалий» // Отчет о НИР. ГИ УрО РАН; Рук. Андрейко С. С. - Пермь, 2004. - 33 с.
