КОНТРОЛЬ УПРУГИХ СВОЙСТВ ПРИКОНТУРНОГО МАССИВА С ИСПОЛЬЗОВАНИЕМ СКВАЖИННЫХ ГИДРОДАТЧИКОВ

B. Н. ТОКСАРОВ
Горный институт УрО РАН

В работе приведены результатьь определения модуля деформации горных пород в приконтурной части массива соляных пород и целиках рудника СКРУ-3 Верхнекамского калийного месторождения с использованием скважинных гидравлических датчиков.

Для размещения трансформаторных подстанций питания, аппаратуры управления и приводов ленточных конвейеров главных направлений (западного и восточного) вблизи околоствольного двора рудника СКПРУ-3 пройдены камерные выработки большого сечения. Массив характеризуется значительной изрезанностью (рис. 1). В соответствии с проектом в камерах приводов оставлены технологические целики, предназначенные для обеспечения устойчивости кровли камер на весь срок службы рудника. Средняя длина целиков - 10 м, ширина - 5 м.

Спустя 10 лет после начала эксплуатации рудника в поддерживающих целиках появились трещины, началось заколообразование в стенках и пучение в почве камер. Так как магистральные конвейера предназначены для обслуживания рудника на весь срок его службы, то встал вопрос о разработке комплекса мер для обеспечения устойчивого состояния камер приводов магистральных конвейеров.

Исследования, выполненные сотрудниками ГИ УрО РАН в 1993 году, показали, что целики, расположенные в западной камере приводов, находятся в удовлетворительном состоянии и опасений не вызывают. Целики, расположенные в камере приводов конвейеров восточного направления, особенно целик № 1, разрушаются. Со всех трех сторон данного целика наблюдаются открытые трещины с шириной раскрытия $1-2$ см, имеющие различную ориентацию, имеются также многочисленные отслоения породы. В камерах управления приводами наблюдается пучение почвы, достигающее $0,6-0,8$ м. Для обеспечения устойчивости камер был разработан комплекс мероприятий, включающий создание разгрузочных щелей в почве, установку рамной крепи над конвейерными ставами для обеспечения устойчивости кровли выработок, укрепление целика № 1 железобетонными штангами (из канатов диаметром 25 мм) по сетке $1,0 \times 1,0$ м для стабилизации их несущей способ-

ности. Повторные исследования, выполненные в 2003 году, показали, что поддерживающие целики в восточной камере приводов продолжают разрушаться. Для оценки степени устойчивости кровли камер приводов проведен комплекс экспериментальных геомеханических исследований состояния поддерживающих целиков, включающий оценку степени нарушенности приконтурного массива, определение деформационных свойств пород в массиве и величины напряжений, действующих в целиках.

Измерения проводились на трех замерных участках: в средней части целиков № 1 и 2, а также (для сравнения) в краевой части ненарушенного массива. При выполнении экспериментов в каждой замерной точке бурились по $2-3$ шпура диаметром 42 мм и глубиной $1,5-2,5$ м. Оценка деформационных свойств пород приконтурного массива производилась путем нагружения контрольного участка шпура гидравлическим деформометром.

Комплект аппаратуры (рис. 2) включал: зонд (гидравлический датчик) (1); трубопровод (2), соединяющий датчик с регистрирующей аппаратурой; образцовый манометр (3); вентильные устройства (4); пресс-расходомер (5), обеспечивающий создание рабочего давления в автономной гидросистеме и регистрацию изменения количества жидкости в камере расходомера; ручной насос (6) для быстрого заполнения жидкостью гидросистемы и создания в ней начального давления.

Деформирование пород в окрестности шпура осуществлялось изменением давления в гидравлическом датчике, помещенном в шпур. Измерения производились в нескольких точках по глубине шпура. В процессе эксперимента фиксировались давление в гидросистеме и расход жидкости. По результатам экспериментов на каждой точке измерения с учетом тарировочного графика строились диаграммы «давление - объем рабочей жидкости».

Приращения деформаций в единичном интервале нагружения рассчитывались по формуле [1, 2]:

$$
\Delta \varepsilon_{\Theta_{i}}=\left(k_{1} \cdot \Delta V_{i}\right) /\left(2 \pi \cdot l_{g} \cdot R^{2}\right)
$$

где k_{1} - коэффициент влияния базы измерений; ΔV - приращение объема рабочей жидкости; R - радиус шпура; l_{g} - база измерений (длина датчика).
При использовании гидравлических датчиков типа ГД-6М $-k_{1}=1,7, l_{\mathrm{g}}=0,2 \mathrm{м}$.
Радиальные напряжения на поверхности скважины рассчитывались по измеряемому давлению:

$$
\Delta \sigma_{r_{i}}=0,95 \Delta P_{i}
$$

Типичная диаграмма «напряжение-деформация» представлена на рис. 3. Расчет модуля деформации пород, вмещающих скважину, выполнялся согласно соотношения [1]:

$$
D=2(1+v) \cdot \sigma_{r} / 2 \varepsilon_{\Theta}
$$

Обобщенные результаты исследований приведены на рис. 4. Исследования показали, что на всех участках в приконтурном слое пород отмечается снижение деформационных свойств пород. Вместе с тем, если для массива с удалением от контура выработки сохраняется достаточно стабильный характер изменения модуля деформации при относительно высокой его величине (порядка 1 ГПа), то для пород приконтурного слоя поддерживающих целиков имеет место значительная вариация деформационных свойств во всем интервале измерений. Среднее значение модуля деформации пород целика № 1 составило 0,35 ГПа, что в 3 раза ниже, чем в краевой части массива. В целике № 2 этот показатель несколько выше - 0,7 ГПа.

Полученные результаты свидетельствуют о существенном снижении механических свойств материала поддерживающих целиков. Породы приконтурного слоя целика № 1 находятся на стадии запредельного деформирования и характеризуются низкими деформационными свойствами. Несущая способность целика № 1 практически полностью исчерпана. Устойчивость кровли камеры приводов обеспечивается только за счет своевременной установки рамной крепи. Обследование закрепного пространства подтвердило, что крепь вступила в работу. Забутовка из круглого леса смята на 15-20 \%.

Литература

1. Руководство по оценке состояния и свойств угольного массива скважинными гидравлическими датчиками.- Новосибирск.: ИГД СО РАН, 1978.
2. Аксенов В. К., Штейн М. Ш., Федоренко В. К. К определению физикомеханических характеристик и напряжений в массиве горных пород. // ФТПРПИ.- 1976.- № 1.

Рис. 1. Схема расположения камер приводов магистральных конвейеров

Рис. 2. Комплект оборудования для определения деформационных свойств массива:
1 - гидродатчик; 2 - трубопровод; 3 - образцовый манометр;
4 - вентиль; 5 - пресс-расходомер; 6- ручной насос

Рис. 3. Типичная диаграмма «напряэнение-деформаиия», полученная при испытании пород околошпурового пространства

Рис. 4. Графики изменения модуля деформации пород приконтурного массива в зависимости от расстояния до стенки выработки

