ТИХОХОДНЫЕ АСИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ МАЛОЙ МОЩНОСТИ

А. М. БУРМАКИН, Е. М. ОГАРКОВ
Пермский государственный технический университет

Abstract

В статье рассматриваются два варианта конструктивного исполнения тихоходных асинхронных двигателей и их сравнительный анализ.

Одной из современных тенденций развития электропривода является объединение машины - двигателя и машины - орудия, их сращивания. Такое объединение является прогрессивным и позволяет отказаться от механической передачи, упрощает установку, делает ее более надежной.

Привод обычного машинного агрегата состоит из рабочей машины, механической передачи (редуктора) и приводного электродвигателя. В связи с тем, что обычные серийные асинхронные двигатели малой мощности выпускаются со скоростью не менее 750 оборотов в минуту, для получения более низких скоростей в промышленности применяют редуктора.

Общая масса редуктора с принадлежностями составляет до 120 кг на 1 кН•м. Каждый одноступенчатый редуктор имеет десять главных поверхностей износа: четыре подшипника, четыре цапфы двух валов и две поверхности зацепления. Для смазки мощного электропривода требуется до 10 кг масла на 1 кН•м наибольшего момента, передаваемого редуктором. В системе смазки привода циркулируют тонны смазочных масел, минутный перебой в подаче смазки выводит агрегат из строя на десятки и сотни часов. Из-за износа и повреждений деталей и узлов контактного привода простои за год составляют более 15% рабочего времени. При низких температурах окружающей среды простои еще более продолжительны: сталь зубчатых колес становится хрупкой и легко ломается, смазка твердеет и перестает выполнять свои функции.

Исходя из вышеизложенного и ряда других причин, необходимо решить задачу по расчёту и проектированию тихоходного кругового электродвигателя, благодаря которому отпала бы необходимость в применении редукторов для понижения скорости.

Критерий оптимизации электрических машин определяется, как правило, минимумом суммарных затрат, т. е. минимумом стоимости материалов, затрат на изготовление и эксплуатацию. Стоимость эксплуатации зависит от КПД, $\cos \varphi$, качества машины, простоты обслуживания, надёжности в работе, ремонтоспособности и ряда других факторов.

Исходя из этого, дадим оценку вышеуказанных параметров в круговом (серийном) варианте тихоходного асинхронного двигателя.

Выполненные расчеты показывают, что тихоходный асинхронный электродвигатель малой мощности с круговым статором получается малой длины по сравнению с диаметром. Это обусловлено ограничением по индукции $\mathrm{B} \leq 1,4$ Тл и плотности тока $\mathrm{J} \leq 6,5 \mathrm{~A} / \mathrm{m}^{2}$. Ограничение по индукции и плотности тока вытекает из того, что при увеличении индукции - увеличиваются потери в стали и возрастает намагничивающий ток, дальнейшее увеличение плотности тока ведёт к повышенному нагреву двигателя. Соответственно, ограничение по плотности тока дает ограничение по току I. Согласно выражению $\mathrm{F}_{\text {уд }}=\mathrm{B} \cdot 1 \cdot \mathrm{I}$, следует, что удельное тяговое усилие $\mathrm{F}_{\text {уд }}$ является постоянной величиной ($\mathrm{F}_{\text {уд }}=$ const). Тяговое усилие рассчитывается по формуле $\mathrm{F}=\mathrm{P} / \mathrm{V}_{0}$. Здесь $\mathrm{V}_{0}=2 \cdot \tau \cdot \mathrm{f}_{1}$ м/с - скорость движения магнитного поля статора. Для создания тихоходного асинхронного электродвигателя с хорошими массогабаритными и энергетическими показателями должно выполняться следующее условие $\tau \geq 100 \cdot \delta$. Воздушный зазор δ тихоходных электродвигателей может быть около 0,5 мм, поэтому величина V_{0} в данном случае относительно велика и при малой мощности тяговое усилие F является величиной малой.

Площадь индуктора находится через тяговое усилие и удельное тяговое усилие ($\mathrm{S}_{\text {инд }}=\mathrm{F} / \mathrm{F}_{\text {удд }}$) и, как следствие, есть величина малая. Диаметр рассчитываемого двигателя напрямую зависит от скорости вращения вала $d \approx 90 / n$. В виду малой скорости ($\mathrm{n}_{0}=150$ об/мин.), диаметр получается большим. Таким образом, при малой площади индуктора и большом диаметре получаем малую длину $\left(1=\mathrm{S}_{\text {инд }} /(\pi \cdot \mathrm{d})\right.$).

У многополюсных машин с круговым статором, как известно, оптимальное отношение активной длины к полюсному делению l / τ близко к единице. Даже при оптимальном соотношении получаем относительно большие лобовые части, которые заметно влияют на характеристики двигателя (снижается коэффициент мощности и КПД). Так же большой диаметр и малая длина усложняют изготовление двигателя. То есть маломощные низкоскоростные асинхронные двигатели с обычным круговым статором имеют низкий КПД, сложны в изготовлении и малонадёжны.

Указанные недостатки кругового асинхронного двигателя требуют поиска лучших вариантов конструктивного исполнения тихоходных электродвигателей. Таким альтернативным решением является дугостаторный асинхронный электродвигатель.

Эти двигатели получаются большей длины по сравнению с круговыми асинхронными двигателями, вследствие того, что статор дугостаторного двигателя охватывает лишь часть поверхности ротора и для сохранения тягового усилия необходимо увеличивать длину статора. Это приведет к уменьшению влияния лобовых частей, следовательно, снизятся потери, будет выше КПД, $\cos \varphi$ и повысится надежность.

Дугостаторные двигатели имеют ещё одну особенность. При верхнем расположении дуги статора сила магнитного притяжения между статором и ротором будет стремиться поднять ротор вверх. При этом будет компенсироваться сила

тяжести ротора, и нагрузка на подшипники уменьшится. Это будет способствовать увеличению срока службы подшипников дугостаторного двигателя. При этом затраты на ремонт и обслуживание электродвигателя заметно сокращаются.

В таблице 1 приведены результаты расчётов кругового и дугового вариантов асинхронного двигателя с номинальной мощностью $\mathrm{P}_{\mathrm{H}}=4$ кВт и синхронной частотой вращения $\mathrm{n}_{0}=150$ об /мин.

Таблица 1

Вариант исполнения	M_{H}, $\mathrm{H} \cdot \mathrm{M}$	$\mathrm{M}_{\mathrm{K}} /$ M_{H}	$\mathrm{M}_{\mathrm{n}} /$ M_{H}	I_{0}, A	I_{H} A	η_{H}	$\cos \varphi_{\mathrm{H}}$	$\mathrm{B}_{\delta,}$ $\mathrm{Tл}^{2}$	$\Delta_{c} \cdot 10^{6}$, $\mathrm{A} / \mathrm{m}^{2}$	S_{H}	$\mathrm{AS} \cdot 10^{3}$, A / M
Круговой	272,5	2,304	1,505	8,83	13,87	0,716	0,61	0,659	6,115	0,066	22,603
Дуговой	272	3,14	2,34	7,9	11,18	0,771	0,703	0,457	5,56	0,053	19,13

Используемые в таблицах условные обозначения:
M_{H} - Номинальный момент;
$\mathrm{M}_{\mathrm{\kappa}}$ - Критический момент;
$\mathrm{M}_{\text {п }}$ - Пусковой момент;
I_{0} - Ток холостого хода;
I_{H} - Номинальный ток;
$\cos \varphi_{\text {н }}$ - Коэффициент мощности номинальный;
$\eta_{\text {н }}$ - Коэффициент полезного действия номинальный;
B_{δ} - Магнитная индукция в воздушном зазоре;
Δ_{c} - Плотность тока в обмотке статора;
s_{H} - Номинальное скольжение;
AS - Номинальная токовая нагрузка.
Анализируя полученные данные расчётов и учитывая конструктивные особенности, можно сделать вывод о том, что маломощный тихоходный дугостаторный асинхронный двигатель предпочтительнее кругового.

В таблице 2 приведены результаты расчётов кругового и дугового вариантов асинхронного двигателя с номинальной мощностью $P_{\mathrm{H}}=8$ кВт и синхронной частотой вращения $n_{0}=300$ об /мин.

Таблица 2

Вариант исполнения	$\begin{aligned} & \hline \mathrm{MH}, \\ & \mathrm{H} \cdot \mathrm{M} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Мк / } \\ \text { Мн } \end{gathered}$	$\begin{gathered} \hline \text { Мп/ } \\ \text { Mн } \end{gathered}$	$\begin{gathered} \hline \mathrm{I} 0, \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \hline \mathrm{IH}, \\ \text { A } \end{gathered}$	η_{H}	$\cos \varphi \mathrm{H}$	SH	$\begin{gathered} \mathrm{AS} \cdot 103, \\ \mathrm{~A} / \mathrm{m} \end{gathered}$
Круговой	267	2.4	1.59	6.69	16.28	0.853	0.873	0.057	13.9
Дуговой	267	3.17	1.51	7.75	18.04	0.779	0.864	0.032	15.43

Из этих результатов следует, что с ростом номинальной мощности и синхронной частоты вращения двигателя, круговой вариант исполнения обладает лучшими характеристиками по сравнению с дугостаторным вариантом. Отсюда следует вывод, что область применения дугостаторных асинхронных электродвигателей - это маломощный низкооборотный электропривод.

