ТИХОХОДНЫЕ АСИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ МАЛОЙ МОЩНОСТИ

А. М. Бурмакин, Е. М. Огарков

Пермский государственный технический университет

В статье рассматриваются два варианта конструктивного исполнения тихоходных асинхронных двигателей и их сравнительный анализ.

Одной из современных тенденций развития электропривода является объединение машины – двигателя и машины – орудия, их сращивания. Такое объединение является прогрессивным и позволяет отказаться от механической передачи, упрощает установку, делает ее более надежной.

Привод обычного машинного агрегата состоит из рабочей машины, механической передачи (редуктора) и приводного электродвигателя. В связи с тем, что обычные серийные асинхронные двигатели малой мощности выпускаются со скоростью не менее 750 оборотов в минуту, для получения более низких скоростей в промышленности применяют редуктора.

Общая масса редуктора с принадлежностями составляет до 120 кг на 1 кН·м. Каждый одноступенчатый редуктор имеет десять главных поверхностей износа: четыре подшипника, четыре цапфы двух валов и две поверхности зацепления. Для смазки мощного электропривода требуется до 10 кг масла на 1 кН·м наибольшего момента, передаваемого редуктором. В системе смазки привода циркулируют тонны смазочных масел, минутный перебой в подаче смазки выводит агрегат из строя на десятки и сотни часов. Из-за износа и повреждений деталей и узлов контактного привода простои за год составляют более 15 % рабочего времени. При низких температурах окружающей среды простои еще более продолжительны: сталь зубчатых колес становится хрупкой и легко ломается, смазка твердеет и перестает выполнять свои функции.

Исходя из вышеизложенного и ряда других причин, необходимо решить задачу по расчёту и проектированию тихоходного кругового электродвигателя, благодаря которому отпала бы необходимость в применении редукторов для понижения скорости.

Критерий оптимизации электрических машин определяется, как правило, минимумом суммарных затрат, т. е. минимумом стоимости материалов, затрат на изготовление и эксплуатацию. Стоимость эксплуатации зависит от КПД, соsф, качества машины, простоты обслуживания, надёжности в работе, ремонтоспособности и ряда других факторов.

Исходя из этого, дадим оценку вышеуказанных параметров в круговом (серийном) варианте тихоходного асинхронного двигателя.

Выполненные расчеты показывают, что тихоходный асинхронный электродвигатель малой мощности с круговым статором получается малой длины по сравнению с диаметром. Это обусловлено ограничением по индукции В ≤ 1,4 Тл и плотности тока $J \le 6,5 \text{ A/m}^2$. Ограничение по индукции и плотности тока вытекает из того, что при увеличении индукции – увеличиваются потери в стали и возрастает намагничивающий ток, дальнейшее увеличение плотности тока ведёт к повышенному нагреву двигателя. Соответственно, ограничение по плотности тока дает ограничение по току І. Согласно выражению $F_{yz} = B \cdot l \cdot I$, следует, что удельное тяговое усилие F_{vn} является постоянной величиной (F_{vn}=const). Тяговое усилие рассчитывается по формуле F = P/V₀. Здесь V₀ = $2 \cdot \tau \cdot f_1$ м/с – скорость движения магнитного поля статора. Для создания тихоходного асинхронного электродвигателя с хорошими массогабаритными и энергетическими показателями должно выполняться следующее условие $\tau \ge 100 \cdot \delta$. Воздушный зазор δ тихоходных электродвигателей может быть около 0,5 мм, поэтому величина V₀ в данном случае относительно велика и при малой мощности тяговое усилие F является величиной малой.

Площадь индуктора находится через тяговое усилие и удельное тяговое усилие ($S_{uhg} = F/F_{yg}$) и, как следствие, есть величина малая. Диаметр рассчитываемого двигателя напрямую зависит от скорости вращения вала $d \approx 90/n$. В виду малой скорости ($n_0 = 150$ об/мин.), диаметр получается большим. Таким образом, при малой площади индуктора и большом диаметре получаем малую длину ($l = S_{uhg}/(\pi \cdot d)$).

У многополюсных машин с круговым статором, как известно, оптимальное отношение активной длины к полюсному делению l/τ близко к единице. Даже при оптимальном соотношении получаем относительно большие лобовые части, которые заметно влияют на характеристики двигателя (снижается коэффициент мощности и КПД). Так же большой диаметр и малая длина усложняют изготовление двигателя. То есть маломощные низкоскоростные асинхронные двигатели с обычным круговым статором имеют низкий КПД, сложны в изготовлении и малонадёжны.

Указанные недостатки кругового асинхронного двигателя требуют поиска лучших вариантов конструктивного исполнения тихоходных электродвигателей. Таким альтернативным решением является дугостаторный асинхронный электродвигатель.

Эти двигатели получаются большей длины по сравнению с круговыми асинхронными двигателями, вследствие того, что статор дугостаторного двигателя охватывает лишь часть поверхности ротора и для сохранения тягового усилия необходимо увеличивать длину статора. Это приведет к уменьшению влияния лобовых частей, следовательно, снизятся потери, будет выше КПД, *соs* и повысится надежность.

Дугостаторные двигатели имеют ещё одну особенность. При верхнем расположении дуги статора сила магнитного притяжения между статором и ротором будет стремиться поднять ротор вверх. При этом будет компенсироваться сила тяжести ротора, и нагрузка на подшипники уменьшится. Это будет способствовать увеличению срока службы подшипников дугостаторного двигателя. При этом затраты на ремонт и обслуживание электродвигателя заметно сокращаются.

В таблице 1 приведены результаты расчётов кругового и дугового вариантов асинхронного двигателя с номинальной мощностью $P_{\rm H}$ =4 кВт и синхронной частотой вращения n_0 =150 об /мин.

Таблица 1

Вариант	М _{н,}	M _K /	M _π /	I _{0,}	I _{H,}	$\eta_{\scriptscriptstyle \rm H}$	cosq _H	Β _{δ,}	$\Delta_{\rm c} \cdot 10^6$,	S _H	$AS \cdot 10^3$,
исполнения	Н∙м	M _H	M _H	A	A		1	Ιл	A/M^2		A/m
Круговой	272,5	2,304	1,505	8,83	13,87	0,716	0,61	0,659	6,115	0,066	22,603
Дуговой	272	3,14	2,34	7,9	11,18	0,771	0,703	0,457	5,56	0,053	19,13

Используемые в таблицах условные обозначения:

М_н – Номинальный момент;

М_к – Критический момент;

М_п – Пусковой момент;

I₀ – Ток холостого хода;

I_н – Номинальный ток;

соsф_н – Коэффициент мощности номинальный;

η_н – Коэффициент полезного действия номинальный;

В_δ – Магнитная индукция в воздушном зазоре;

 $\Delta_{\rm c}$ – Плотность тока в обмотке статора;

s_н – Номинальное скольжение;

AS – Номинальная токовая нагрузка.

Анализируя полученные данные расчётов и учитывая конструктивные особенности, можно сделать вывод о том, что маломощный тихоходный дугостаторный асинхронный двигатель предпочтительнее кругового.

В таблице 2 приведены результаты расчётов кругового и дугового вариантов асинхронного двигателя с номинальной мощностью $P_{\rm H}$ =8 кВт и синхронной частотой вращения n_0 =300 об /мин.

Таблица 2

Вариант исполнения	Мн, Н∙м	Мк / Мн	Мп / Мн	I0, A	Ін, А	ηн	соsфн	SH	AS·103, А∕м
Круговой	267	2.4	1.59	6.69	16.28	0.853	0.873	0.057	13.9
Дуговой	267	3.17	1.51	7.75	18.04	0.779	0.864	0.032	15.43

Из этих результатов следует, что с ростом номинальной мощности и синхронной частоты вращения двигателя, круговой вариант исполнения обладает лучшими характеристиками по сравнению с дугостаторным вариантом. Отсюда следует вывод, что область применения дугостаторных асинхронных электродвигателей – это маломощный низкооборотный электропривод.