ЭЛЕКТРОПРИВОД ПО СХЕМЕ ПОДСИНХРОННОГО ВЕНТИЛЬНОГО КАСКАДА С МИКРОПРОЦЕССОРНЫМ УПРАВЛЕНИЕМ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ ГЛАВНОГО ПРОВЕТРИВАНИЯ

В. В. КУКСИН

ЗАО «НИПО»,

Е. Л. ШЕВЕЛЕВ

Пермский государственный технический университет

Л. Х. ДАЦКОВСКИЙ, О. Ш. ВАЙНТРУБ

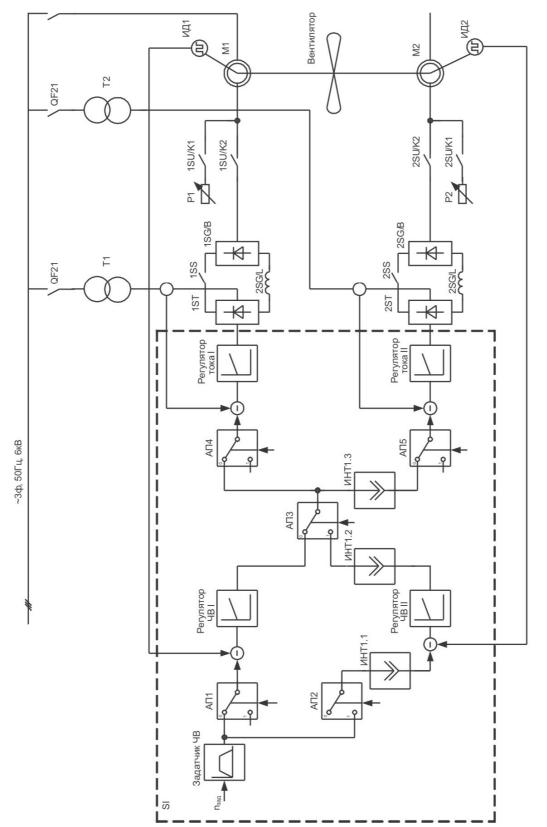
ОАО «Электропривод»

Рассматриваются вопросы модернизации электропривода вентиляторной установки главного проветривания на основе подсинхронного вентильного каскада (ПВК) с микропроцессорной системой управления.

Электропривод вентилятора главного проветривания (ВГП) осуществляется от двух асинхронных электродвигателей с фазным ротором. Существующая система управления пуском этого электропривода и регулирования режима работы вентилятора базируется на переключениях в цепях обмоток статоров с помощью высоковольтных выключателей, что соответственно приводит к снижению надежности и значительным затратам на технической обслуживание ВГП. В связи с этим возникла необходимость модернизации электропривода, задачей которой является повышение надежности работы электропривода путем исключения переключений в цепях статорных обмоток при сохранении принципа плавного регулирования частоты вращения вентилятора в рабочем диапазоне, а также обеспечение его пуска по заданной программе.

Модернизацией электропривода ВГП рудника БКПРУ-4 ОАО «Уралкалий» предусматривается применение современной системы управления на основе схемы подсинхронного вентильного каскада (ПВК) с использованием существующих асинхронных двигателей, жидкостного реостата для реализации плавного пуска до минимальной рабочей скорости. ПВК построен на базе преобразователя (управляемого выпрямителя) типа Simoreg фирмы Siemens (Вена, Австрия) с микропроцессорным управлением, обладающим высокой надежностью и гибкой структурой управления, позволяющей также построить

высококачественную систему автоматического регулирования координат электропривода.


Весь диапазон работы ВГП делится на пусковой и рабочий. В пусковом диапазоне осуществляется разгон асинхронных электродвигателей до минимальной рабочей частоты вращения (356 об/мин) с использованием жидкостных реостатов. После разгона электропривода до указанной частоты вращения осуществляется автоматический переход на управление электроприводом по схеме подсинхронного вентильного каскада (работа с регулированием частоты вращения). При использовании данной системы управления электроприводом частоту вращения вентилятора можно плавно регулировать в пределах от 72 % до 95 %, что определяет рабочий диапазон. Контроль частоты вращения двигателей осуществляется импульсными датчиками, устанавливаемыми на валах двигателей. При нарушениях в работе подсинхронного вентильного каскада автоматически производится обратное переключение обмотки ротора к жидкостному реостату с последующим обеспечением минимальной рабочей частоты вращения.

В этом случае ВГП продолжает работу без системы автоматического регулирования. С целью улучшения энергетических показателей электропривода применяется фильтро-компенсирующее устройство (ФКУ).

Структурная схема системы регулирования двухдвигательного привода вентилятора по схеме подсинхронного вентильного каскада представлена на рис. 1. Данная система регулирования выполнена по стандартному принципу подчиненного регулирования координат электропривода. В ней используются: общий задатчик частоты вращения, один из регуляторов частоты вращения и два регулятора тока. Наличие двух импульсных датчиков позволяет реализовать два канала регулирования частоты вращения и возможность выбора того или иного канала, что расширяет возможности системы управления вентилятором при возникновении неисправности импульсного датчика. Для выбора канала регулирования частоты вращения используются аналоговые переключатели.

В системе регулирования предусмотрено использование одного задатчика частоты вращения, на вход которого поступает задание с задающего потенциометра. Управление данным потенциометром осуществляется как непосредственно с пульта управления, так и с дистанционного пульта управления ГВУ по соответствующим шинам передачи данных.

ПВК служит для регулирования частоты вращения асинхронных двигателей с фазным ротором. Для этой цели ток ротора каждого асинхронного двигателя через соответствующий выпрямительный мост и сглаживающий дроссель, тиристорный инвертор и рекуперирующий трансформатор возвращается в питающую сеть высокого напряжения. Для сглаживания пульсаций выпрямленного тока ротора и повышения стабильности работы привода ПВК с выпрямителем установлен сглаживающий дроссель.

Puc. 1. Структурная схема системы регулирования двухдвигательного привода вентилятора по схеме «подсинхронного вентильного каскада»

Используемый в данном приводе программируемый контроллер выполняет весь комплекс функций управления вентиляторной установкой главного проветривания. Основные функции выполняются несколькими подсистемами:

- 1. Подсистема управления электроприводом. Данная подсистема реализует: систему импульсно-фазового управления инвертором; систему подчиненного регулирования координат электропривода; выравнивание нагрузок между двигателями, работающими на общий вал; включение и отключение ФКУ.
- 2. Информационно-диагностичекая подсистема. Данная подсистема реализует:
 - защиту и контроль состояния и параметров элементов электромеханического оборудования и систем управления ВГП;
 - аварийную и предупредительную сигнализацию о нарушениях в работе электропривода;

расшифровку всех неисправностей;

- местную и дистанционную предупредительную, а также аварийную сигнализацию о нарушениях в работе;
- местную и дистанционную индикацию и регистрацию измеренных параметров;
- прием дискретных и аналоговых сигналов от двигателей, преобразователей, и системы автоматического регулирования скорости;
- в реальном масштабе времени выполняет визуальное отображение характера всех процессов, протекающих в электромеханической системе ВГП и обеспечивает их регистрацию в момент возникновения аварийных ситуаций.

Проектные работы выполнены совместно ОАО «Электропривод» г. Москва и ЗАО «НИПО» г. Пермь. Внедрение привода запланировано на 2006 г.