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The relevance of research was due to the predominance of deposits with a complex geological structure in the total volume of
hydrocarbon assets put into commercial development. The use of standard approaches in such conditions often does not allow to
reliably describe the fluid inflow to wells and, as a result, to choose effective tools to control their productivity. The complexity
of the implementation of technological processes for the development of reserves determined the expediency of using
probabilistic-statistical methods for their modeling. It should be noted that the construction of multidimensional statistical
models was supplemented by studies on the dimensionless assessment of the impact of each of the indicators on the well flow
rate and subsequent comparison of these effects. Mathematically substantiated the differences in the patterns of fluid inflow to
wells with different wellbore designs (conditionally vertical and horizontal), identified factors that affect the formation of flow
rates. It was established that one of the key factors determining the value of the flow rate of both horizontal and vertical wells
was the radius of the drainage zone. To determine it, it was advisable to use the van Pullen formula, as the permeability in
determining the radius of the drainage zone, it was necessary to use the value obtained by processing the pressure recovery
curve using the tangent method. Individual (linear) probabilistic models were obtained for each of the indicators used,
characterizing the probability of classifying a well as a high- or low-rate well. A series of multivariate statistical models were
built that allow determining the flow rates of horizontal and vertical wells in difficult geological and technological conditions
with a high degree of reliability.

AKTyasIbHOCTh HCCJIe[IOBaHUI 00yCJIOBJIeHa NpeobyIafjaHieM 3ajiexell cO CJIOXKHBIM IeOJIOTMIeCKUM CTPOeHHeM B obmeM oObeMe
BBOAMMBIX B IPOMBIIUIEHHYI0 pa3pabOTKy aKTHUBOB YIJIEBOAOPOAHOTO ChIpbs. MCIOJB30BaHME CTAHAAPTHHIX IOJXOJOB B TaKUX
YCJIOBUAX 3a4YacTyl0 He MO3BOJIAET JOCTOBEPHO OMKCATh NPUTOK (hJIoMIa K CKBaXHHAM U, KaK CJIEICTBHE, BEIONPATh abdeKTrBHbIE
WHCTPYMEHTHI 110 YIPABJEHHI0 MX IPOM3BOAUTENHHOCTHI0. CJIOXKHOCTh peav3alil TEXHOJOTMYECKHX IPOLIECCOB BBIPAGOTKU
3amacoB 00yCJIOBIMBAET LIEIECO00Pa3HOCTh IPHMEHEHNA BEPOATHOCTHO-CTATUCTUYECKHUX METOMOB I MX MOJeInpoBaHus. CTOUTh
OTMETHTh, YTO IIOCTPOEHHE MHOTOMEDHBIX CTaTHUCTHYECKHX MOJENIeHl MOMOJIHEHO HCCIIENOBAaHUAMU 10 Ge3pa3MepHOH OlleHKe
BJIMSAHUSA KaXKIOr0 U3 MoKa3aTesiell Ha AeOUT CKBaXHHBI U IOCJIEAYIOIMM CPaBHEHHEM 3THX BJIMAHUI. MaTeMaTHyecku 060CHOBaHbI
pasiuuus B 3aKOHOMEPHOCTSX NPUTOKA (IIOMAOB K CKBaXWHAM C Pa3/IMYHON KOHCTPYKIMEll cTBoJa (YCJIOBHO BEPTHKAJIBHBIM U
TOPHM30HTAJIBHBIM), BBIIEJIEHB! (DAKTOPEI, BIMA0NINE Ha GOPMUPOBaHUE JeOHUTOB. YCTAaHOBJIEHO, YTO OAHUM K3 KITIOYEBIX (PaKTOpOB,
OIpefesIAMINX 3HaYeHNe Je0UTa KaK FOPHU30HTAIBHBIX, TAK 1 BEPTHKAJIbHBIX CKBRXHH, SBJIAETCA PAANYC 30HBI APEHUpOBaHusA. [yt
€ro ompefieIeHys Lesiecoo6pasHo KCHOJIb30BaTh GopMysty BaH IlysiieHa, B KauyecTBe MPOHMLIAEMOCTH IIPY ONpefeSIeHNH paanyca
30HBI APEHNPOBaHUA HEOOXOAMMO MPUMEHATH 3HAYEeHUE, MOJIyIeHHOe NPH 06paboTKe KPMUBOI BOCCTAHOBJIEHHS AaBJIEHNs METOAOM
KacartesbHOI. [loJTydeHsl MHAVBUAyasIbHbIE (JIMHEHHbIE) BEPOATHOCTHBIE MOJENM MO KaXAOMy K3 HCIOJIb3yeMbIX MOKasaTeslell,
XapaKTepU3yIOIye BEPOATHOCTh OTHECEHNS CKBAXHHBI K KATETOPUH BBICOKO- WJIM HU3KOJeOUTHBIX. [IocTpoeHa ceprisi MHOTOMEPHBIX
CTATUCTUYECKUX MOJeJiel, MO3BOJIAIOMNX C BBICOKOM CTENEHbI0 JAOCTOBEPHOCTH ONpPEAENATh AeOUTHl TOPH30HTAIBHBIX U
BEPTUKAJIBHBIX CKBAXUH B CJIOXKHBIX T€0JIOr0-TEXHOJIOTNYECKUX YCIIOBHIAX.
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Introduction

A constant reserves deterioration of the developed sites
influences the technological processes in hydrocarbon
production. Thus, the deposits with complex reservoirs full of
multiphase hydrocarbon systems are brought into commercial
development. The Tournaisian-Famennian reservoir of the
Zhilinskoye field could be considered as an example. The field
is a complex reservoir with hard-to-recover reserves due to
several factors. Firstly, the deposit is represented by spherical
grumous limestones, which groundmass consists of irregularly
recrystallised multigrain calcite with micrograin clots and
lumps of algal or shell origin, cattered spheres and rare
ostracod detritus. Rock porosity is due to leaching and
recrystallisation, pores are intraformed (in spheres) and
interformed, intergrain, angular, irregular, cavernous, and
irregularly distributed. There are rare subvertical and inclined
cracks, fading cracks, multiple layering and variously inclined
intersecting cracks in some parts [1, 2]. The site is referred to
the category of oil-gas-condensate in terms of phase state. At
the same time, mark setting of the gas-oil contact (GOC) had
some difficulties: its position was initially accepted due to the
test data of two wells and corresponded to the depth of the
first oil-saturated sublayer. A complex of MDT tests carried
out in several wells to solve other field problems allowed to
clarify and correct the position of the GOC, and the difference
between the marks was 8 metres. Formation gas-oil factor
was 230 m?/t, viscosity in reservoir is 0.72 mPa-s. The initial
period of well operation is characterised by different
dynamics of the gas factor. According to the first instrumental
measurements data its value varies in the range from 14 to
1700 m®/t, averaging at 690 m®/t.

Thus, the geological structure of the studied site is
complicated both by the phase state of the saturating fluid
and the void space structure. Such a complex geological
structure along with the territorial overlap of the Zhilinskoye
deposit with the unique Verkhnekamskoye potassium salt
deposit makes it appropriate to take the most detailed
approach to the study and management of filtration processes
and sustainable reserves recovery [3].

The deposit commissioning using vertical and
horizontal wells is characterised by significant
differentiation of their initial flow rates, despite the
relatively small deposit size (0.7-2.8x5.3 km) and
similarity of geological and physical conditions in the
drainage zones. The values of initial fluid flow rates vary
in the range from 15 to 76 m®/d, averaging 44 m®/d. The
range of effective thicknesses changes is not so significant,

and all wells commissioning within a short time allows to
consider the energy in the zones of sampling as equal. It
should also be noted that irregular well water cut (from 1
to 30 %) was recorded at the initial stages of development.

Thereby surveying the individual conditions of fluid
intrusion to production wells of the complex Tournaisian-
Famennian reservoir on Zhilinskoye field is of scientific
and practical interest.

Currently, there are no analytical solutions (as flow
equations) for fractured-porous-cavernous reservoirs
saturated with oil and gas condensate and irregularly
watered. The known equations [4-7], which take into
account at least some of the mentioned factors, are very
complicated, and their practical application is very
difficult.

This paper presents a method of describing fluid inflow
based on the construction and analysis of multidimensional
statistical models (multiple regression equations). The
advantage of the probabilistic-statistical method is fairly
simple and reliable description of processes occurring in
complex systems, which include hydrocarbon production
fields. In contrast to analytical solutions based on "imposing"
researchers' conceptions to the studied object and its
following "fitting" to the conceptions by means of clarifying
coefficients, which are often insufficiently substantiated.
Probabilistic-statistical methods work on a different principle.
Their task is to describe real processes by accurate
mathematical treatment of the facts [8].

Thus, the solution of the task is the construction and
analysis of multidimensional models for determining well
flow rates, based on the use of field data - actual
geological and technological parameters of well operation
at the considered site. For maximum reliability of the
developed inflow models, the parameters of the first
hydrodynamic studies (HDS) for the wells are taken as
input data. Using the parameters determined by the first
hydrodynamic studies will allow describing filtration
processes in conditions close to the initial natural state of
the site, undisturbed by technogenic effect.

The construction of multidimensional statistical models
of flow rates for solving various problems of oil and gas
engineering has been studied in many papers [8-10].
Classical multidimensional statistical models of flow rate
forecast, constructed in these works, are statistically
significant, but with notable calculation error. At the same
time, the effect of parameters on the process of flow rates
is determined only by the order of inclusion in the
resulting model.

Individual probabilistic models based on geological and technological parameters of well operation
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In this paper, the construction of multidimensional
statistical models is completed with studies on the
dimensionless assessment of each parameter effect on the well
flow rate and the following comparison of these effects. For
this purpose, individual (linear) probabilistic models were
constructed for each parameter, characterising the probability
of relating the well to the category of high or low flow rates
according to this parameter.

The wells with productivity exceeding the average for
the deposit (44 m?/d) are considered as high-yield wells,
while low-yield wells are those with lower than average
flow rate. Accordingly, the whole sample is divided into
two classes by the flow rate: class 1 includes high-yield
wells, class 2 — low-yield wells. It should be noted, that
despite the significant differentiation of flow rates, the
average values of other geological and technological
parameters used for the two selected classes are not
statistically different, which was determined with Student's
tcriterion. Significant differences between the average
values for the two classes are determined only for the
bottomhole pressure parameter. It means that statistical
non-different values of geological and technological
parameters form such different values of flow rates. This
fact testifies using detailed research of liquid inflow
conditions to wells of the considered site. It is introduced
in the present article with application of probabilistic-
technological parameters.

Classification of initial data

For constructing models, liquid flow rate Q (m®/d) is
used as a dependent (forecasted parameter), and viscosity
of reservoir oil p (mPa s), water cut of production
W (%), Formation Volume Factor b, gas factor G, (m>/t),
formation and bottomhole pressures P, P, (MPa), porosity
m (%) and permeability & (mD) of the reservoir, efficient
oil saturated thickness of the reservoir 2 (m), bottomhole
zone condition parameters (S, d) and drainage zone radius
values (R,) are used as independent factors. Reservoir
fracturing, diagnosed by pressure recovery curve (PRC)
data, is taken into account by introducing an appropriate
index F, The value F, = 1 corresponds to the presence of
natural reservoir fracturing in the drainage zone, F, = 0 —
its absence. Similarly, the bottomhole design is taken into
account. The value of I, = 1 indicates the horizontal end
of the wellbore, the zero value of this index is introduced
for vertical wells].

The filtration parameters of productive reservoirs for
each well were determined by a specially performed
interpretation of the first Pressure Recovery Curve (PRC)
by wusing different methods. The permeability
characterises the remote zone of the reservoir and is
determined with tangent method and the Kappa
Workstation software package (Saphir module) [11]. The
bottomhole zone condition is taken into account by the
skin factor value found by the tangent method and in
Saphir module, as well as by dimensionless diagnostic d
feature found by the method of deterministic pressure
moments [12-15].

It is worth noting that in the research the effect of such
an important parameter as the size (radius) of the drainage
zone on flow rates was studied [16-20]. In fact, all
analytical inflow equations include this parameter, but
little attention is paid to the study of its actual values. In
this paper, the values of the drainage zone radius are

determined with the Chekalyuk formula (Pdcrh), Van
Pullen formula (Pcll)r) [21, 22], Sobbie formula (ngb) [23,

24] and in Saphir module [25-32]. Radius by Chekalyuk,
van Pullen and Sobbie were calculated twice: using

permeabilities determined by the tangent method (T) and
in Saphir module (S).

Methodology of the probabilistic-statistical studies

The first stage of problem solving was to construct
individual probabilistic models of flow rates dependence
on each of the geological and technological parameters
accepted as initial data [33-35].

The algorithm of model construction can be briefly
described as following. The preliminary stage included
comparison of the distribution densities of each
parameter (noted as x) for the two defined classes, with
the optimal ranges (intervals) calculated using the
Sturge's formula. At the next stage in each interval the
probabilities of compliance of the given parameter value
to the class of high-yield wells P(x) were calculated.
Matching correlation coefficients r were calculated for
the values of P(x) and x and regression equations were
constructed. All linear probability models constructed in
this way are given in the table.

The linear probability models presented in the table
allow to assess individual informativeness of each
parameter in formation of increased fluid flow rate. It
should be noted that all constructed models perform
correctly, as in all cases probability values are in the range
of 0.0-1.0. The minimum value of probabilities is obtained
from P(m), the maximum from — P(Pgr'P). It means that
the factor with the greatest effect is the size of the
drainage zone, determined by van Pullen formula, and
with the least the porosity coefficient is. This conclusion is
quite feasible and corresponds to the concepts of
underground hydromechanics: almost all known analytical
formulas of flow rate include the drainage zone size and
do not use the porosity coefficient [36-40]. Accordingly,
the constructed individual probabilistic models do not
contradict the physics of the described process.

To account for the combined effect of parameters on
the probability of increased flow rate values, it is proposed
to use a complex parameter P, which is calculated by
the formula:

TP X))
Pcomp = m PJ:l ; ! 5 (1)
P, P |X)+Pp, (1= POV, | X))

where P(W1 | X j)— individual probabilities of belonging to
the class of wells with increased flow rates.

The approach based on the calculation of a
dimensionless parameter that integrates effect of several
parameters on the forecasted value is described in the
following papers [8, 10].

For practical determination of the complex parameter,
multidimensional statistical models were constructed,
using geological and technological parameters as initial
data. The models were constructed in combination for all
wells, and differentiated for wells with horizontal wellbore
and vertical wells. To assess statistical significance of the
constructed models such parameters as multiple
correlation coefficient (R), significance level (p) and
standard error (S,) were used.

The general model is as follows:

PN =0,026156P, +0,001649P5 +0,878614b -

comp

— 0,114047m — 0,047996W —0,156458T, — (2
- 0,000115P;" —0,0158318" - 0,8851,

at R = 0.999, p < 0.00404, S, = 0.0028 unit fraction.
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For vertical wells, the model has the following form:

PMB = 9617112h+0, 0711147, - 3,147, 3)

comp

at R = 0.999, p < 0.00036, S, = 0.014 unit fraction.
For horizontal wells, the model has the following form:

MH T
PR =-0,173078m +0,000283k,,, - @

~ 0,0074197, +2,1223.

at R = 0.999, p < 0.00022, S, = 0.00016 unit fraction.

It should be noted that all the models are statistically
significant. Applicability ranges of all constructed models
fully correspond to actual conditions of fluid filtration on
the considered field.

It is worth emphasising that the models constructed
individually for wells of different designs show higher
statistical estimates. Consequently, the different form of
the constructed models confirms the fact of different flow
conditions to horizontal and vertical wells. At the same
time, the analysis of the constructed multidimensional
equations allows to define the factors determining the
flow to horizontal and vertical wells of the considered
field. Thus, the probability of increased flow rates for
vertical wells is determined by fluid properties and
reservoir fracturing, for horizontal wells — only by its
structure and properties.

The research allowed explaining a significant
differentiation of well flow rates operating, at first sight,
in similar geological and physical conditions.

The confirmed fact of different flow rates conditions
requires separation of further research for vertical and
horizontal wells, which is taken into account when solving
the main task of the research — the construction of
multidimensional statistical models for determining well
flow rates.

The first model, constructed for all wells without
considering their design, has the following form:

Ol =1,2271P,, +0,0803P5 " +4,5206/1 -
~ 2,928 + 2,25928" +19,3356d — (5)
- 1,34m +0,3796P, — 48,2901,

at R = 0.999, p < 0.0522, S, = 1.32 m®/day.
For vertical wells, the model has the following form:

MV S T-P
Ol =2,31168845, +0,012918P,F +6,992,  (6)

atR = 0.999, p < 0.00115, S, = 0.04 m?/day.
For horizontal wells, the model has the following form:

O™ =-0,01837G, +0,00327 P, -

liq 7)
- 2,45679d + 64,699,

at R = 0.999, p < 0.00118, S, = 0.02 m*/day.

References

Equation (5) is not statistically significant, despite
the high value of the R coefficient, which confirms the
unviability of using the same principles in describing
the flow to vertical and horizontal wells on the
considered field.

Models (6) and (7) are statistically significant and can
be used to determine the well flow rates of different
designs.

It should be noted that the radius of the drainage zone
determined by van Pullen's formula takes the second place
in both models. All known analytical inflow equations
consider the size of the influence zone, but the
corresponding parameter always takes the logarithm,
which level up the effect of its variation on the well flow
rate. The multidimensional statistical models presented in
this paper demonstrate a significantly larger effect of the
drainage area size on the amount of produced fluid.

The largest effect on the formation of the horizontal well
flow rate is by the gas factor, it is the first to be included in
the model with a negative sign. This conclusion indirectly
indicates the differences in liberation of gas in the recovery
zone of vertical and horizontal wells.

Model (7) at the last step includes the parameter d. It is
a dimensionless diagnostic indicator that characterises the
bottomhole zone properties, also defined by the method of
deterministic pressure moments when processed with the
pressure recovery curve. At the same time, the model did
not include the values of skin factor determined by the
tangent method and in the Saphir module. This conclusion
indicates that the skin factor is a very complex parameter
in the horizontal wells flow [41-45], and its feasibility in
assessment of the bottomhole formation zone condition
should be studied additionally.

Conclusion

The research is devoted to probabilistic-statistical
assessment of fluid flow patterns in special geological and
physical conditions of the developed site as a carbonate
reservoir with a complex void volume and high formation of
gas-oil factor.

The main tool is multidimensional statistical modelling,
supplemented by a dimensionless (probabilistic) assessment
of the specific effect of a wide range of geological and
technological parameters on hydrocarbon flow patterns.

The original approach, as the construction of individual
probabilistic linear equations, allowed to explain significant
difference of well flow rates in similar, at first glance,
geological and technological conditions.

The differences in the patterns of fluid flow to wells
with various wellbore designs (vertical and horizontal)
were statistically proven; the factors that can effect the
flow rates were defined.

A series of multidimensional statistical models were
constructed, which allowed to determine the flow rates of
horizontal and vertical wells in complex geological and
technological conditions with a high degree of reliability.
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