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Kruouegvle crosa:

KapOOHATHBIN KOJUIEKTOP,
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WHAUKATOPHbIE HcCJlefJoBaHMs,
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BBICOKOIIPOHHUIIaeMble KaHaJIBL,
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CKBaXHH, JIMHEAHBIN
JUCKPUIMIHAHTHBIN aHAIN3.

The problem of forecasting the hydrodynamic connection between the production and injection wells in the flooding area was considered
according to the geological characteristics of wells according to hydrodynamic wells studies data and development indicators.

To create a model for predicting hydrodynamic communication, an analysis of the results of tracer studies of the Central uplift of
the Tournaisian development object in the Upper Devonian-Tournaisian carbonate deposits was carried out. The tracer studies
involved 5 injection wells and 17 production wells, sampling was carried out for 6 months. These studies served as a training
sample. To assess the connectivity of producing wells and wells with reservoir pressure maintenance, the dFP parameter was
proposed and calculated, which characterizes the degree of influence of an injection well on producing wells in the source.
According to the calculated indicator dFP, the well pairs were divided into two classes: "poor hydrodynamic connectivity" ("PC")
and "good hydrodynamic connectivity" ("GC").

Analysis of the average values of the considered reservoir characteristics and development indicators in classes using Student's t-
test by class showed that out of 37 indicators, 7 differences were statistically significant.

When using the proposed classification in terms of dFP into classes "GC" and "PC'", in 62 pairs of production and injection wells, a
stepwise linear discriminant analysis (SLDA) was carried out in the training sample, which allowed obtaining the discriminant
function Z for subsequent classification. The use of the obtained discriminant function and the calculated boundary value Z, .4
on the training sample ensured the percentage of wells correctly assigned to the "GC" group - 82.1 %, for the "PC" group -
76.5 %. In general, the proportion of the correct distribution in the training sample groups was 79 %.

An analysis of the results obtained on a test sample for the adjacent West uplift in the Tournaisian deposits showed that the use
of the discriminant function Z generally provided 75 % of the correct classification for all sources, which confirmed the
possibility of using this model to predict hydrodynamic communication in the flood source.

PaccmaTtpuBaeTcs 3aiaya IPOrHO3MPOBAHUA 'HAPOJUHAMHUYECKON CBA3M MeXAy NoOBIBaloIiell 1 HarHeTaTeJIbHOI CKBaXXMHHOH B
ouare 3aBOJIHEHUs 110 Te0JIOTMYeCKUM XapaKTepUCTHKaM CKBaXUH 1o gaHHeIM PUT'MC u nokazaresisaiM pa3paboTKH.

JUta co3maHuA MOJeNM TNPOTHO3a THAPOAMHAMHYECKOH CBS3M NPOBEAEH aHaJIN3 pe3yJIbTaTOB TPACCEPHBIX HCCIIeNOBAHUI
LleHTpaslbHOrO MOOHATHUA TypHeHCKOro obbekTa pa3pabOTKU B BePXHEAEBOHCKO-TYPHENCKHX KapOOHATHBIX OTJIOXKEHHAX. B
TpacCepHBIX HCCJIe[JOBAHUAX Y4acTBOBAJM 5 HarHeTaTeJbHBIX CKBaXUH U 17 nobGbiBalomux, oT60p Npo6 MPOM3BOAUIICA B
TeueHue 6 MecsleB. J[aHHbIe KCCJIeJOBAaHUA MOCIYXWIM obyualomeli BIOOPKOH. [IJIA OLleHKH coo6maeMoCTH JOOBIBAIOIIAX
CKBa)XMH U CKBAXWH C MOJAepXXaHHEeM ILJIACTOBOTO JaBJieHHA ObUI IpeJUIoXKeH U paccuuTaH napamerp dFP, XapaKTepU3yHOmUil
CTeNeHb BJIMAHUA HarHeTaTeJbHOM CKBaXWHBI Ha JoGbiBamolue B odare. [Io paccyMTaHHOMY NoKasaTeso dFP mapbl CKBaXKHHBI
6BUTH pa3fiesIeHsl Ha J{Ba KJIacca: «IUIOXOH MMAPOAMHAMUYECKOH cBA3n» («IIC») U «xopomell THAPOANHAMUYIECKOH cBA3M» («XC»).
AHanM3 cpeHUX 3Ha4YeHMIl pacCMaTPUBAaeMBIX XapaKTePHUCTUK IUIACTOB U MOKa3aresiell pa3pabOTKU B KJlaccax IMPH MOMOIIU t-
kputepusa CThIOZEHTA 110 KJIaccaM MoKasaJl, 4To U3 37 IokasaTeJieil B 7 pasjInuuA OKa3aIlCh CTAaTUCTHYECKU 3HAUYMMBIMH.

Tpy MCHOJIB30BAaHUM IpeJIOKEHHON KiaccuduKanuy mo nokasareo dFP Ha kiaccsl «XC» u «[IC» B 62 mapax JOOBIBAIOINX U
HardeTaTesbHBIX CKBAXUH 10 oOyvaromeli BEIOOpKe OBUT IIPOBeeH IOLIATOBBII JINHEHHBIN AUCKPUMIHAHTHBIH aHanu3 ([IJIIA),
HO3BOJIAIOMINI MOJIYYUTh AUCKPHMHHAHTHYI OGYHKIMIO Z AJA HocieAyiomeil kiaccupukanuy. Vcnosb3oBaHUe MOJIYyYeHHOH
JIMCKPUMUHAHTHOM GYHKUMM M PaCCYMTAHHOTO TPAHMYHOTO 3HAuYeHUs Z.,, Ha obyuaiomeil BhIGOPKe 0GecrneYnBaeT MPOLEHT
MPaBIJIPHOTO OTHECEHHsA CKBaXWH K rpymme «XC» — 82,1 %, mna rpymmsl «[IC» — 76,5 %. B obmem [oJyiA HIpaBUIIBHOTO
pacrpefieJieHUs B IpyIIax 1o obydaromeil BeIOOpKe cocTtaBuia 79 %.

AHaJi3 MoJTyYeHHBIX Pe3yJIbTaTOB Ha IPOBEPOYHOI BRIGOPKe 110 coceqHeMy 3amaJHOMY IOAHATHIO B TYPHEFICKIX OTJIOKEHHUAX II0Ka3aJl,
9TO NpUMeHeHVe AVCKPYMHIHAHTHOM (GyHKIuH Z B neyioM obecrieunBaeT 75 % INpaBWIBHOH KIAcCU(UKAIMN JUIA BCEX 0YaroB, 4TO
HOATBEPXKAAeT BOMOXHOCTY IPHMEHEeHHA STOI MOZe/ N AJIA MPOrHO3a r’HAPOANHAMUYECKON CBA3M B OYare 3aBOAHEHHA.
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Introduction

Understanding the filtration flow distribution within the
productive formation is one of the key factors for the rational
oil reserves exploitation. The filtration flow distribution
between injection and production wells allows for the
assessment of the most rapid water breakthrough directions to
the bottomholes of the production wells.

Complex carbonate reservoirs have the greatest sensitivity
to rapid well flooding. This type of reservoir has the greatest
variability of filtration and capacity properties compared to a
terrigenous reservoir due to the complex structure of the pore
space (pores, caverns, and cracks). Often, water breakthroughs
to production wells are observed at the early stages of
development, when reservoir pressure maintenance (RPM)
systems are activated [1-7]. Therefore, it is important to
determine which parameters influence the distribution of
injected water flows within the reservoir.

The filtration flow distribution within the reservoir can be
assessed using various methods: interference well testing,
tracer studies, and streamline modeling in a hydrodynamic
model [8-13]. However, only tracer studies are associated
with mass transfer.

Tracer (indicator) studies are a method for studying the
reservoir structure by adding a labeled substance (tracer) to the
injected water in injection wells and fixing the tracer in the
production well. This is a direct method of studying the interwell
space associated with the direct mass transfer of fluids within the
reservoir, allowing identifying its heterogeneity and determining
the filtration relationship [14-19].

The main objective of tracer studies is to determine the
hydrodynamic connection between production and injection
wells, as well as the degree of their interaction by calculating
various parameters: the arrival rate of the tracer, the number
of filtration channels and their permeability, and the
proportion of water entering through the filtration channels
from the total volume of produced water and the volume of
injected water.

For this study, injection wells areas are selected, where the
tracer will be injected, and production wells for determining the
labeled substance. Various tracers that are well soluble in water,
insoluble in oil, and stable under specific reservoir conditions
are used for injection wells [20-23].

The use of interference well testing methods and tracer
studies requires certain constraints during the current
reservoir operation throughout the research period, such as
the absence of geological and technological activities or
sudden changes in the operation mode of production and
injection wells. This is rarely feasible in practice and can lead
to significant economic losses.

Calculations of the streamlines on hydrodynamic models
allow determining the relationship between production and
injection wells, but they are highly dependent on the results of
hydrodynamic model calibration and the correlation quality of
reservoir layers in the initial geological model. Based on the
modeling practice, the use of streamlines in hydrodynamic
models does not accurately reproduce the actual rate of tracer
distribution observed during field studies of wells.

Therefore, the methods development for assessing the
wells relationship based on the analysis of production data
from the current wells operation is a crucial task.

Characteristics of the research object

The studied oil field is located in the southeastern part of
Perm Krai. The work focuses on the Upper Devonian-
Tournaisian carbonate deposits (productive formation T) of
the Central and Western uplifts, which are the main sources of
geological reserves. The researched layer has a complex
structure, with three productive layers identified (T1-2, T1-1,
T0). The reservoir is composed of limestones that are
irregularly dolomitized. The reservoir has distinct fracturing,
which is confirmed by indicator diagrams that are convex to
the flow rate axis, as well as by the permeability values
obtained from well flow testing which exceed those from core
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Fig. 1. Scheme of the Central uplift with tracer injection zones
(training sample)

and log data [24-27]. According to the studies of the
composition and physical properties of the in-place oil, it has
been identified that the oil from the Tournaisian object is
bituminous and highly viscous.

Since the beginning of the field development, high rates of
well flooding have been observed. After the injection in 1983, a
breakthrough of water in the extracted product was observed
along with a decrease in oil production. Eight years later, the
average annual water cut exceeded 45 %. Well flooding at this
field is irregular in terms of the reservoir capacity and extension.
The process is typical for high oil-to-water viscosity ratio, as well
as for water breakthrough in highly permeable channels within
the formation. The presence and potential formation of the
channels may be indicated by the geological reservoir and
development parameters [28-34].

Analysis of the tracer studies
on the training sample of the Central Uplift

At the Central Uplift, the research was conducted in
2016 to study the existing system of filtration flows and
identify the sources of production well flooding in the
deposit center. The tracer studies involved five sites of
injection wells (No. 410, No. 416, No. 420, No. 426, and
No. 494). Monitoring of labeled substances was carried out
based on data from seventeen production wells over a period
of six months.

Based on the Central uplift data, a training sample was
created, including the distribution parameter of filtration flows
(FF) according to tracer studies, geological characteristics of
wells according to well log interpretation results, and basic
development parameters for both production and injection
wells.

For production and injection wells, the following geological
characteristics were considered: porosity coefficients (K,
permeability coefficients (K,,), oil saturation coefficients
(K,), sandiness coefficients (K, and reservoir
compartmentalization coefficients, (K.,), as well as the
effective oil-saturated formation thickness (H,.,, )-

Development parameters include data on: flow rates (Q) and
cumulative production of liquid (Q,.,,, and oil (Q,,, water cut
of well production (W), formation (P;,,,) and bottomhole pressure
(P,,) during the period of tracer studies, as well as fracturing
parameters calculated on well testing data, including the
proportion of fracturing (o), fracture opening (b;) and fracture
permeability (K-) [35-391.

To account for the variability of fracture parameters along
the reservoir strike, the differences in parameters between the
injection and production wells in the source were calculated:

- D o, = oginj.well - o, prod.well;

- Db, = b, inj.well - b, prod.well;

-DK,tr = Kperesr» inj.well = K. prod.well.

To account for the heterogeneity of geological parameters
between the injection and production well, gradients of all
considered geological parameters were calculated:

GradD K, = (K, inj.well - K, prod.well) / L;

GradD K., = (Ko, inj.well - K., prod.well) / L;

perm

GradD K, = (K, inj.well - K, prod.well) / L;
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GradD K,y = (K,,,q inj.well - K, , prod.well) / L;

GradD K, = (K, inj.well - K, prod.well) / L;

GradD H,, = (H.., inj.well -T H, prod.well) / L;

where L is the distance between wells.

To assess the production and pressure maintenance wells
connectivity, the dFF parameter was calculated, which
characterizes the effect degree of the injection well on the
production wells in the source, as the difference between the
distribution parameter of filtration flows in the well
(measured in %) and the average value of this parameter for
the source:

dFF = FF, - FF,

where FF, is the distribution parameter of filtration flows in
the i well, FF - the arithmetic mean value of the filtration
flows distribution in the source.

If dFF < 0, then the well has a poor relationship with the
injection well in the source. Conversely, when dFF > 0, a high
influence of the injection well on the production well is
observed.

The study objective is to compare the results of tracer
studies (dFF parameter) with geological and operational
characteristics.

Based on the calculated dFF parameter, the well pairs
were divided into two classes: if dFF < 0, the production
well has poor connectivity with the injection well in the
source, and the pair of "production - injection wells"
belongs to the "poor hydrodynamic connectivity" (PC)
class; if dFP > 0, the injection well has a high influence on
the production well, and this pair of wells belongs to the
"good hydrodynamic connectivity" (GC) class. However, in
the case of a high percentage of the filtration flow
distribution parameter for one well in the source, the
classes were adjusted accordingly.

Using Student's t-criterion [40, 41], a comparison of the
mean values for production wells and for pairs of
production-injection wells was conducted for the considered
parameters.

A total of thirty seven parameters were considered, of
which seven were found to be statistically significant
(Table 1).

The analysis of the considered parameters shows that out
of seven statistically significant differences, four parameters
relate to reservoir development parameters (or 57 %) while
three parameters to geological properties of the reservoir (or

43 %). All values of the Student's t-criterion are high and
have a significance level of p < 0.05. The group of
development parameters is characterized by an excess of the
considered parameters for the "GC" class over "PC". For
reservoir parameters (reservoir characteristics), only for
GradD K, there is an excess of the average value in the
"GC" class. It should be noted that out of three considered
reservoir parameters, the parameter D o, — is a dynamic
value, since the degree of fracturing (fracture capacity)
depends on the reservoir pressure.

Development of a forecast model for
hydrodynamic connectivity of

production and injection well pairs

on the training sample of the Central uplift

Using the proposed classification based on the dFF
parameter a stepwise linear discriminant analysis (SLDA)
was carried out in sixty two pairs of production and
injection wells, within the training sample. This analysis
allows for obtaining a discriminant function and determining
the most significant well characteristics for effective
classification [42-45].

The results of the discriminant analysis are presented in
Table 2.

As a result of the SLDA, the following discriminant
function Z was obtained:

Z = -0.58870 + 0.03517 W —0.38588 P, +
+ 0.00007052 Q,on— 1.38733 D 0, + 96.27906 Grad K,,,

Wilks' lambda = 0.647. x* = 25.035.
p = 0.000137. R = 0.60

The histogram of canonical values distribution of the
discriminant function Z is shown in Fig. 2.

The graph shows that the wells of the “GC” category are
predominantly located in the zone of positive values of
the Z parameter, in the range from 0.44 to 2.5. The range
of Z values for the “PC” category varies from -2.7 to 1.6,
however, more than 70 % of observations are in the negative
value zone. The histogram shows a significant overlap
between the "GC" and "PC" classes with Z values from 0.44
to 1.6, where there is a slight excess of "GC" determinations
over "PC".

Table 1
Comparison of mean values by Student's t-criterion in classes "GC" and "PC"
Parameter Parameter group Average — "GC" Average — "PC" t-value p
W, % 76.46 65.32 2.368 0.021
Q, m*/day 21.71 15.21 3.511 0.0009
Development parameters
Qocums T 39607.50 34534.40 2.189 0.032
Quam, ™° 92941.14 70851.99 3.125 0.003
K_om, unit fraction 8.96 10.29 -2.082 0.042
D o, unit fraction Reservoir parameters -0.13 0.18 -2.265 0.027
GradD K, prolayer /m -0.000496 -0.002834 2.014 0.049
Table 2
Results of the discriminant function analysis
Parameter Wilks' - Lambda  Partial — Lambda  F-except. (1.56) p-level Tolerance 1-Tolerance (R)
W, % 0.703241 0.920054 4,86602 0.031511 0.538430 0.461570
R,.00; MPa 0.807916 0.800851 13,92566 0,000446 0.445047 0.554953
Qocums t 0.727507 0.889366 6,96623 0.010739 0.764354 0.235646
D ®y,, unit fraction 0.747610 0.865451 8,70614 0.004623 0.698895 0.301105
GradDK,,,, unit fraction/m 0.693455 0.933038 4,01898 0.049835 0.741816 0.258184
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Fig. 2. Root histogram of discriminant
functions by classes based on training sample
of the central part of the studied field
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Fig. 3. Dependency of P(Z) on Z for the training sample
in the central part of the studied field

Table 3
Classification results for training
samples of the Central Uplift

proportion of correct
Class GC PC

well classification, %
GC 82.1 23 5
PC 76.5 8 26
Total 79.0 31 31

Note: horizontally observed classes are shown, vertically —
forecast classes.
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Fig. 4. Scheme of the Western uplift with
tracer injections sites (test sample)

Analysis of the Z values shows that the greatest influence
on the distribution of injected water within the reservoir is
exerted by the water cut W parameters, bottomhole pressure

of the production well (P,,,), and cumulative oil production
(Q,.cum), the difference in the fracturing ratio parameter
between the injection and production wells (Do), as well as
the gradient of the porosity coefficient (GradD K,,,).

Analysis of the Z function shows that Z > 0 for a pair
with good hydrodynamic connectivity, which have high
water cut W values in production wells (positive value of
the coefficient at W). This is due to the presence of washed
highly permeable water-saturated channels and steady
filtration flows. The negative coefficient at P, is explained by
the fact that a decrease in bottomhole pressure promotes
fluid inflow into the well due to an increased depression.
A positive coefficient for the cumulative oil production
parameter Q, ., indicates the need for long-term operation
and the formation of washed zones. Do, parameter has a
negative slope coefficient, which is explained by the
positive effect of low fracturing in the reservoir pressure
maintenance well and high fracturing in the production
well, since low fracturing in the injection well promotes
even spread of the displacement front in all directions, and
high fracturing in the production well facilitates to obtain
the part of the filtration flows from zones more remote
from the well. The positive coefficient value for GradD K,
is explained by the high porosity in the injection well,
which promotes greater reservoir pore capacity and
accumulation of elastic energy in the well area and a small
distance between the production and injection wells. High
values of GradD K, are typical for wells that are close to
each other.

To determine the boundary value Z, 4, which allows us
to separate the class “PC” from “GC” class according to the
discriminant function, we will use the dependency of the
posterior probability of belonging to the group “GC” — P(Z)
on the Z values (Fig. 3).

The graph shows that the boundary value 2, for
classifying a well into the category with good connectivity is
equal to 0.2. Wells with a Z value less than 0.2 will be
classified in the “PC” category.

The percentage of correct production well classification
based on the training sample of the central uplift is
presented in Table 3.

Using the the obtained discriminant function ensures the
classification rate of wells into the "GC" group of 82.1 %, and
for the "PC" group of 76.5 %. In general, the share of correct
distribution in the groups was 79 %. Using the obtained
discriminant function ensures a correct classification rate of
wells into the "GC" group of 82.1 %, and for the "PC" group of
76.5 %. Overall, the share of correct classification within the
groups is 79 %.

Verification of the obtained model for predicting the
hydrodynamic connectivity of production
and injection wells pairs on the Western uplift

To verify the obtained model, based on the discriminant
function Z for the training sample, tracer studies data from
the Western Uplift of the studied field were used.

Tracer studies of the productive formation were
conducted in October 2016 and included the sources of two
injection wells (No. 1016 and No. 1023) and twelve
production wells within them, which became a training
sample (Fig. 4). These data were not used for conducting the
SLDA at the previous stage to obtain the Z function.

For the wells of the training sample, the necessary
characteristics for applying the forecast model of the
interconnection class "GC" and "PC" were used and
calculated: W, P, 4, Q,cum> D @, GradD K,

The application of the obtained Z forecast model for the
adjacent western uplift is acceptable, since both research
productive formations are a single deposit, bounded by a
single oil-bearing contour, with similar geological parameters,
fluid properties and a single approach for development.
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Z=-0,58870 +0,03517W - 0,38588F, ;+ 0,000070520, - 1,38733 Do, + Qﬁ_lmﬁﬁGmdDKm
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Fig. 5. Correlation fields between Z and DF according to the Central
and the Western uplifts of the studied field

Table 4
Classification results for the training samples
of the Western uplift
Training Proportion of correct well
none "Ge pC
samples classification, %
GC 62.5 5 3
PC 81.3 3 13
Total 75.0 8 16

Note: horizontally observed classes are shown; vertically —
forecast classes.

Based on the previously obtained discriminant function
Z, constructed on the training sample from the central part,
the Z* parameter was calculated for the training sample, and
using the boundary value Z = 0.2, the class for the wells
pair in the source was determined.

Using the results of tracer studies from the Western uplift,
the criterion dFF was calculated, according to which the
actual classification of wells was made. Then, a comparison of
the predicted and actual assessments of hydrodynamic
connectivity was made.

Figure 5 presents the correlation field between Z
and dFF.

It can be seen that, despite the generally low r value,
there is a positive relationship between the actual
characteristic of the production and injection wells
connectivity (dFF) and the calculated characteristic Z, based
on the characteristics and parameters of the wells operation.

References

The correlation fields of the training sample (Central uplift)
and the test sample (Western uplift) coincide quite well.
There is a single outlier in the training sample with a value
of dFF = 49.16. This high value of dFF is associated with an
abnormally high percentage of the filtration flow distributed
to well No. 1018.

Overall, a small variance in values is noted for Z < 0,
indicating better convergence of values for the well category
with poor hydrodynamic connectivity.

The percentage of correctly recognized categories "GC"
and "PC" for the training sample from the Western uplift is
presented in Table 4.

For the waterflooding source of well No. 1023 in the
Western Uplift, the proportion of correct classification into
the "GC" group was 66.7 % (two out of three wells), and into
the "PC" group — 88.9 % (eight out of nine wells). For the
waterflooding source of well No. 1016, classes were
correctly identified in three out of five wells in the "GC"
group, which amounted to 60 %, and five out of seven in the
"PC" group (71.4 %).

Overall, the correct classification for all source was
75 %.

Conclusion

To assess the degree of injection well influence on the
production well in the waterflooding center, the dFF
parameter was proposed and calculated, which characterizes
the hydrodynamic connectivity based on the tracer study
results.

It was determined that for the training sample of the
Central Uplift, the following parameters have the greatest
influence on the distribution of filtration flows: water cut,
bottomhole pressures in production wells, cumulative oil
production, porosity gradient and the proportion of fracturing
in the well area.

Using SLDA, a model for predicting the “GC” and “PC”
classes was obtained, based on the discriminant function Z, and
the critical value of Z was determined, which makes it possible
to determine the class of connectivity between wells.

Verification of the model on the training sample from the
Western Uplift showed a good forecast ability of the obtained
model for well connectivity. Thus, the applied approach can
be used to predict the filtration flows distribution in the
reservoir.

The obtained results do not provide an accurate
numerical assessment of the filtration flow distribution
within the formation but rather allows for a qualitative
characterization of hydrodynamic connectivity between wells in
the center and enables its use as a trend in hydrodynamic
modeling.
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