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Kmoueavle croga:

SIEPHBII MarHUTHBIN Pe30HaHC
(AIMP), k03¢ UIIEeHT MOPUCTOCTH,
CTPYKTypa IyCTOTHOTO
MPOCTPaHCTBa, KO3 UIMEHT
OCTATOYHO BOAOHACHIIIEHHOCTH,
J1abopaTOpHbIe UCCIIeA0BAHUA
KepHa, TepPUreHHbII KOJIIEKTOP,
paauyc MOpOBHIX KaHAJIOB,
pestakcalMOHHAsA aKTUBHOCTb,
paauyc nop, yAeabHas
MOBEPXHOCTb, CMAaUBAEMOCTb,
TJIEHKA BOJIBI, KaNUJUIAPHO-
yAepxuBaeMas BOJa, BpeMs
MONepevHOl peslaKcaluy,
ypaBHeHue Kosenu-Kapmana.

The petrophysical characteristics of the productive deposits in one Timan-Pechora oil and gas province fields were determined
by interpreting the data of the nuclear magnetic resonance (NMR) method in the complex of laboratory core studies.

NMR studies were carried out on 38 core samples of a standard size (30 X 30 mm) with full and partial (residual) saturation of
the reservoir water model. For a comprehensive interpretation of the data obtained, the results of standard (determination of
porosity, absolute gas permeability, etc.), special (capillarimetric studies, determination of wettability) and lithological-
petrographic (macro-description of the core, description of thin sections) core studies were involved. All studies were carried out
on modern verified equipment in accordance with approved state, industry and production measurement methods in an
accredited testing center. When interpreting NMR data, both well-established and generally accepted methods were used, and
new possible approaches were proposed to obtain additional information about the petrophysical characteristics of rocks.

Using the indicated methods, the following results were obtained: the coefficients of porosity and residual water saturation were
determined, the values of the boundary cutoffs of the transverse relaxation times T, .4 Separating free water from bound water
were studied, the distribution of residual water in the void space of the samples was studied, pore size distributions were
constructed, the size of the pore channels connecting them, the influence of the wettability of the pore surface on the results of
NMR studies (in the "gas - water" system) was studied.

The conducted studies showed the effectiveness of using the NMR method in the complex of laboratory studies of the core of
hydrocarbon fields. The proposed approaches to the interpretation of experimental data make it possible to obtain additional
information about the features of the structure of the void space of rocks and, undoubtedly, require further testing and
development. The information obtained could be used for petrophysical support of geological and hydrodynamic modeling of a
hydrocarbon deposit.

OcyniecTBJIEHO OIpejieleHe INeTPOGU3NIeCKUX XapaKTEPUCTUK INPOAYKTUBHBIX OTJIOKEHUH OMHOTO U3 MECTOPOXIEHHI
TPIMaHO—He‘{OpCKOﬁ He(I)TeFaBOHOCHOf[ TNPOBUHIUU ITIyTEM HHTEpHNpeTalnnuy NaHHBIX METOoJa AAEPHOI0 MarHUTHOI'O pe3OoHaHCa
(IMP) B KOMILJIEKCe JJabOPaTOPHBIX UCCIIe/JOBAHUI KepHa.

SMP-uccieoBaHus npoBefieHsl Ha 38 ofpasnax KepHa CTaHgapTHOro pasmepa (30x 30 MM) Ipu HOJHOM M YacCTHYHOM
(OCTaTO‘lHOM) HacChIEeHU MOEJIbI0 TUTaCTOBOM BOJBbI. ,I[J'Ii[ KOMILJIEKCHOM UHTEepnpeTanuy MOJIyY€HHBIX NaHHBIX IIPUBJIEYE€HBI
pe3yJIbTaThl CTaHIAPTHLIX (ONpeiesieHre MOPHCTOCTH, abCOJTIOTHOM ra3oNpOHUIAEMOCTH U T.J.), CHelUAIbHBIX (KamUIAPHMMeTpUYecKre
HccJIeJOBaHKsA, ONpejiesieHle CMauMBaeMOCTH) M JINTOJIoro-nerporpaduyeckux (MakpoomucaHUe KepHa, omucaHue HuIidoB)
uccieoBaHUN KepHa. Bce wucciieoBaHMA NpPOBeeHHl Ha COBPEMEHHOM I[OBEPEHHOM OGOpYJOBaHMU B COOTBETCTBUU C
YTBEPXKAEHHBIMU TOCYJapCTBEHHBIMM, OTPAC/IEBHIMU M NPOW3BOJACTBEHHBIMU MeTOAMKAMU WM3MepeHHil B aKKpeAUTOBAaHHOM
UCHBITaTeIbHOM ILeHTpe. Ilpu uHTepnperanuu JaHHbIX SIMP mnpuMeHeHB KakK XOpOLIO 3apeKOMeH[oBaBlve cebs u
O6ILIeNpUHATEIE METOABI, TaK M IpeJJIoKeHbl HOBBIE BO3MOXHBIE MOAXOAbI K IOJIyYeHHIO AOMOJHUTEPHON HHGOpMALUK O
neTpopU3NYECKUX XapaKTePHUCTHUKAaX F'OPHBIX MOPO.

C noMolipi0 0603HaUYEHHBIX METOZOB NOJTy4YeHBl CJIeAYIOIe Pe3ysIbTaThl: OonpejiesieHbl K03(OUILMEeHTh TOPUCTOCTH U OCTATOYHOM
BOZIOHACHIIIEHHOCTY, 3HAYEeHHMs TPAHMYHBIX OTCeYeK BPEMeH MONepevHoil pesakcauu T, ,, OTAessomue CBOGOAHYIO BOAY OT
CBA3aHHOM, M3y4eH XapaKTep paclpejie/IeHNs OCTaTOYHOM BOJbI B ITyCTOTHOM MPOCTPAHCTBE 06PasLiOB, MOCTPOEHBI pacipeaesieH:s
Mop MO pa3MepaM, YCTaHOBJIEHA CBA3b pa3Mepa I[Op € Pa3MepoM COeJUHAIIIMX WX IOPOBBIX KAHAJIOB, HM3y4eHO BJIMAHHE
CMa4MBaeMOCTH MOPOBO} NIOBEPXHOCTH Ha pe3ysbTathl AMP-ucciiejoBaHuii (B CHCTEMe «ra3 — BOAA»).

IIpoBeneHHBIE HCCIEAOBAHUA TIOKA3BIBAOT 3(Q@GEKTUBHOCTh npuMeHeHusA Meroaa SAMP B kommuekce JsabopaTOPHBIX
HCCIIeJOBaHUI KepHa YIJIEBOAOPOAHBIX MeCTOPOXJeHHuil. IIpeniokeHHble MOAXOJbl K MHTEpIpeTaluy SKCIepUMeHTaJIbHBIX
JIaHHBIX TTO3BOJIAIOT IOJIYYUTh JONOJIHUTE IbHbIE CBeAeHUA 06 0COGEHHOCTAX CTPOEHHS MyCTOTHOTO IPOCTPAHCTBA TOPHBIX MTOPOA
U, HECOMHEHHO, TpeOyIoT AajibHeHIuX anpobaunuu U pasButus. [losryueHHas MHGOpPMALUA MOXeT ObITh HCIOJIb30BAaHA AJIA
neTpodu3NYecKoro obecrneyeHus reoJJOrMYeckoro U ruipoANHaAMUYECKOr0 MOETMPOBAHNUA YTIeBOJJOPOJHON 3aJIeXU.
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Introduction

After its discovery in 1946 the phenomenon of nuclear
magnetic resonance (NMR) has found wide application in
various fields of science and practice including oil and gas
geology in the study of the petrophysical productive sediments
characteristics. The physical foundations of the method are
described detailed in this paper [1].

NMR is a non-destructive method for studying rocks which
makes it possible to determine various petrophysical
characteristics of productive deposits: porosity, residual water
saturation, void space structure, wettability and others [1-12].
Its use in a complex of laboratory core studies makes it possible
to obtain additional, and sometimes unique, information about
the rocks properties.

Using the core of terrigenous sediments from one of the
Timan-Pechora oil and gas province fields the work shows the
interpretation of NMR data within the framework of
petrophysical studies: the coefficients of porosity and residual
water saturation are determined, approaches are proposed for
assessing the nature of the distributing residual water in the
void space determining pore sizes, as well as the influence of
wettability on the NMR studies results was studied.

Characteristics of the study object.
Used data

The study object is a core of Eifelian D,ef and Stary Oskol
D,st productive sediments selected from wells from one of the
the Timan-Pechora oil and gas province fields (Komi Republic).
The deposits are represented by quartz fine-, medium-fine-,
coarse-medium- and inequigranular sandstones, predominantly
weakly clayey and quartz inequigranular siltstones.

NMR studies were carried out on 38 standard-sized core
samples. Before the studies the samples were extracted and
dried according to all-Union State Standart (GOST) 26450.0-85
[13]. As a result of the studies distributions of NMR porosity
were obtained by transverse relaxation times T, on samples
completely saturated with the synthetic brine and at residual
water saturation, which was created by displacing water with
gas in a group capillarimeter according to all-Union Standart
(OST) 39-204-86 [14]. In addition, a standard set of core
studies (the coefficients of open porosity and absolute gas
permeability were determined) and capillarimetric studies in
the gas-water system were carried out on the samples as well as
the wettability of the pore surface was determined on some
of the samples in accordance with all-Union Standart (OST)
39-180-85 [15]. Also microdescription data of petrographic thin
sections selected from the sites where samples were cut and
lithological macro-description of the core were selected for
analysis.

The coefficient of open porosity from the studied rocks varies
from 9.16 to 27.92 %, averaging 20.09 %, the coefficient of
absolute gas permeability varied from 0.567 to 7427.000 mD, the
geometric mean is 289.183 mD. In terms of their permeability
and porosity (RQ) the studied sediments belong to pore-type
reservoirs (Fig. 1).

Determination of porosity coefficient using NMR method

Determining the porosity coefficient is one of the main tasks
during NMR studies [16]. It is believed that the NMR method
makes it possible to estimate the total porosity of rocks, which the
results do not depend on the lithological features of the deposits
[17]. However, while conducting NMR studies, it is necessary to
take into account the value of the hydrogen index of the liquid
saturating the rock [18].

In Figure 2 it is shown a comparison of porosity coefficients
determined by NMR and liquid saturation methods (according to
all-Union State Standart (GOST) 26450.1-85 [19]). Good
convergence of the obtained data is observed. The results of
lithological and petrographic studies show that the studied
sediments are mostly characterized by a minimum content of the
clay fraction, and therefore the data for determining porosity by
the two methods are comparable. Experience in studying
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Fig. 2. Comparison of porosity coefficients determined by NMR and
liquid saturation methods

terrigenous rocks shows that increasing porosity values
determined by the NMR method exceed those obtained by the
liquid saturation method was obtained for samples with a high
content of pelitic particles, which is connected with the presence
of clay-bound water not removed during drying [20, 21].

Estimating the size of the pores composing
void space

The NMR method is one for studying the structure of the
void rocks space. While performing NMR studies, normally the
T, transverse relaxation times are measured due to the
reduction in time costs. In the case of complete filling a core
sample with one fluid and the absence of a magnetic field
gradient the transverse relaxation time of an individual pore is
determined by the equation [16]:

1 S 1
—=p,—+

TZ v T2ce

> (€8]

where T, is the observed relaxation time, ms; p, is a relaxation
rock activity for transverse relaxation, um/ms; S/V is ratio of pore
area to its volume (specific surface area), um?/um?; T,,, is time of
transverse relaxation of the fluid saturating the rock in the free
volume, ms. The second term on the right side of the above
equation is usually neglected due to the fact that its contribution
is insignificant [16, 22, 23].

The relaxation rock activity is a parameter that characterizes
the ability of the pore rock surface to influence the relaxation of
the fluid saturating the void space and depends on the
mineralogical rock composition and the type of fluid [24, 25].
The difference in estimating this parameter is quite large:
D. Chang et al. [26] suggest using a value of 0.005 um/ms for
carbonate rocks and 0.015 pum/ms for sandstones;
V.A. Murtsovkin obtained relaxation activity values in the range
of 0.0076-0.083 pum/ms [27] based on a multilattice capillary
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model for sandstones of productive deposits in Western Siberia;
according to M.Y. Shumskaite [23] the values of relaxation
activity vary in the range from 0.004 to 0.059 pm/ms for
terrigenous rocks of Western Siberia; A.S. Denisenko [22] gives
the following ranges of variation of this characteristic: 0.05-0.3
and 0.01-0.05 um/ms, respectively, for terrigenous and
carbonate rocks.

Estimating the magnitude of relaxation activity is associated
with the difficulty of determining the specific surface rock area.
There are several “direct” methods for measuring specific
surface area [28], where the most common is the vapor
adsorption isotherm method (calculation using the Brunauer,
Emmett and Teller (BET) method). It is also possible to estimate
the specific surface area based on capillarimetric studies, image
analysis of petrographic thin sections and granulometric
analysis using simplified models of the void rocks space
structure. B. Basan et al. [29] note that the value of relaxation
activity significantly depends on the method used to determine
the specific surface rock area: thus, differences in the values of
relaxation activity can reach three orders of magnitude while
comparing image analysis and BET methods.

To “set up” the NMR method (determining relaxation
activity), normally the results of capillarimetric studies or image
analysis of thin sections are used [22, 30]. At the same time,
many researchers note that NMR allows one to estimate the size
of pores [22, 31-33] and not the pore channels connecting
them, which size determination is the task of capillarimetric
studies. Accordingly, it is not always correct to adjust NMR data
based on the results of capillarimetric studies.

To estimate the specific surface area you can use the
following equation which is the variant of the Kozeny—Karman

equation [34]:
= L VK" s 2)
2K

S
ya \/7@

where S, — specific surface, m’/m® K, — porosity coefficient,
fractions of units; K, — permeability coefficient, m® It is worth
noting that this equation was derived theoretically for a model of
a porous medium with cylindrical pore channels. It is also
necessary to point out that the value calculated using this
equation is the specific surface area of the filter channels and,
with a significant content of clay particles, does not reflect the full
specific surface area of the rock due to the fact that the huge
surface of small pores located between the pelitic particles does
not participate in the filtration process [35]. Since the core
samples studied in this work are not clay in their lithological
characteristics, the use of this equation for an approximate
estimate of the specific surface area is quite legitimate.

As a result of applying equation (2), the specific surface area
was calculated for all samples: for sandstones, its value varies
from 0.036 to 0.452 pm?/um®, and for siltstones — from 0.419 to
1.408 um?*/pm>.

To estimate the relaxation activity, we will assume that
within the sample for all groups of pores its value remains
constant. For the i-th group of pores (of the same size) equation
(1) takes the following form (without the second term on the
right side):

1

T, Py

2i

3

Rewriting equation (3) with respect to the specific surface
area, we obtain:

S.
LA @
Vi TzipZ

The total specific surface area can be expressed in terms of
NMR porosity as follows:

1 LSK,
va = Ki v > (5)

mi=1 i

where K, is the porosity of the i-th pores group, unit fractions;
K, is the sample porosity, unit fractions.

Substituting equation (4) into equation (5) and solving it
for relaxation activity, we obtain:

_ ]' nKni
2% s T,

Py i=1 42

(6)

In equation (6) the value of the specific surface area is
obtained from the data of determining the coefficients of
porosity and permeability based on equation (2), the
remaining parameters are obtained from the NMR studies
results.

As a result of calculations, relaxation activity values were
determined for all samples which ranged from 0.033 to
0.635 um/ms averaging 0.174 um/ms.

Since while calculating the specific surface, the void space
was taken in the form of a capillary tubes bundle (equation
(2)), the specific surface can be expressed in terms of the
capillary radius, and for the transition from relaxation times
to the pore radius, equation (3) can be written in the
following form:

R, =20T,, )

where R, is the radius of pores of the i-th group, pm.

As a result of calculations, pore size distributions were
constructed for all samples. The order of pore size is
comparable to the data from the petrographic description of
thin sections, and their size is larger than the size of the pore
channels determined as a result of capillarimetric studies. As
an example in Figure 3 it is shown a comparing the
distributions of pore channels and pores for one of the
samples under study: it is clear that the distributions have a
similar form but the radius of the pores is much larger than
the radius of the channels connecting them.

Also, as a result of the research, it was established a fairly
close relationship between the weighted average radius of
pore channels, determined according to capillarimetric
studies, and the logarithmic average value of the pore radii
(Fig. 4), which is calculated from equation (7) where
T,logmean (logarithmic average value of transverse relaxation
times), determined by the formula [36] is substituted for T,:

TK 18Ty )

LKy
T,(logmean =10 **» , (8)

where T,logmean is the logarithmic mean value of transverse
relaxation times, ms; Kmi is i-th porosity, unit fractions,
corresponding to the i-th value of T,, ms. The presence of this
connection justifies the possibility of using the so-called
“dumbbell” model [37] while describing the void space of the
studied deposits.
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Determining size and character
of distributing residual water saturation

To determine the values of the residual water saturation
coefficient from NMR data, the boundary cutoff method was
used, the which essence is to find the boundary value of the
transverse relaxation time T2rp separating free water from
bound one [16]. To find the boundary cutoff time two
measurements of transverse relaxation times are carried out:
at full water saturation and at residual water saturation which
in this work was achieved by the semipermeable membrane
method [14].

The resulting cutoff values range from 19.076 to 631.227
ms, averaging 119.936 ms. The value of the coefficient of

residual water saturation for the studied rocks according to
NMR data varies from 2.16 to 77.23 %, the average value is
20.67 %.

A joint analysis of porosity distributions over transverse
relaxation times T, with complete and partial (residual) water
saturation of the sample allows us to obtain additional
information about the distribution of residual water saturation
in the void space of rocks. In capillarimetric studies not
displaced by gas water is retained by surface tension forces in
thin capillaries, completely filling them, and also in the form of
film on the walls and corners of large pores [35]. An increase in
NMR porosity values in the region of small relaxation times at
residual water saturation compared to values at full saturation
indicates the formation of a thin film of residual water on the
walls and corners of the pores [38]. As an example in Figure 5
it is shown the distributions of NMR porosity over transverse
relaxation times T, at complete and residual water saturation in
one of the core samples under study: in the range of relaxation
times from 5 to 30 ms, a significant excess of NMR porosity at
residual water saturation is observed over the values at full
water saturation which caused by the formation of water film
when it is displaced by air from large pores.

For all samples the volume of water present in the form
of film on the walls and in the corners of the pores was
calculated. The content of this water type from the total
volume of residual water for sandstones varies from 22.23 to
75.27 %, averaging 41.98 %, and for siltstones varies from
1.72 to 8.19 %, the average value is 5.43 %. It can be seen
that for siltstones the predominant type of residual water is
capillary-retained. The proportion of residual water in the
form of a film on the walls and in the corners of the pores in
the total volume of the void space was also calculated. It is
expected that its content is closely related to the specific
pore surface area (Fig. 6), while the data for sandstones and
siltstones are approximated by different equations.

Influence of wettability on results Of NMR studies

The influence of pore surface wettability on the results of
rocks NMR studies was firstly shown in 1956 in the publication
of R.J.S. Brown and I. Fatt [39]. Since then, various researchers
have developed a large number of methods and indices for
assessing the wettability of productive sediments based on NMR
data [40-56].

Let us consider the influence of wettability on the results
of determining transverse relaxation times when water is
displaced from a sample by air in the process of modeling
residual water saturation. In respond to complete saturation of
the core sample with water, the transverse relaxation time of

a single pore is determined by the following equation:
1
———=p, ", ©)
T, (K, =1) Pay.

where Sm is pore area, pum? Vi is pore volume, um?>.

When water is displaced by air and residual water
saturation is achieved, the relaxation time will be determined
by the equation

1 S..
I S pz T <, 0
T2 (KOB ) KOBVI’I
where Sos is the pore area occupied by residual water, um? Kos

is a coefficient of residual water saturation, unit fractions.
Dividing equations (9) and (10) by one another, we obtain:

(10)

TZ(KOB) _KOBSH
T,(k,=1) S, °

2

(11)

0B

In the case of a hydrophilic surface a film of residual
water completely covers the surface of the pore, then SoB =
Sm, and equation (11) can be written:

T, (K,,)
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Fig. 7. Dependence of the normalized transverse relaxation time on the
coefficient of residual water saturation

The integral characteristic which comprehensively evaluates
the distribution of transverse relaxation times, is the average
logarithmic value determined by equation (8). Taking into
account equation (8), equation (12) takes the form:

Tzlogmean(K OB) K 13)
Tzlogmean(KB = 1) o

Equation (13) was derived theoretically; in practice,
experimental data are approximated by the following function
(we replace the relation on the left side to T,,) [57]:

T2n = aK:B’ (14)
where T, is the normalized transverse relaxation time
(dimensionless parameter); a and b are empirical coefficients.

Equation (14) in its form is an analogue of the Dakhnov -
Archie equation [35] which relates the electrical resistivity of
partially water-saturated rocks to the water saturation
coefficient (T,, is an analogue of the saturation parameter P,,
b is an analogue of the saturation index n). However, strict
parallels between these equations cannot be drawn, since the
physical processes underlying them are different.

It is obvious that with the condition of all other things
being equal the formation of thin films in a hydrophilic rock
will lead to a shift of the average logarithmic value of the
transverse relaxation times at residual saturation to lower
values (hence, a decrease in the parameter T, ) compared to a
hydrophobic rock where the displacement of water is not
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accompanied by the formation of a residual film on pore
surfaces. In this case, the value of the exponent b for
hydrophilic rocks will be characterized by higher values than
for hydrophobic rocks. Of course, the form of function (14)
will also be influenced by the structure of the void space,
since the transverse relaxation times are proportional to the
pore sizes.

In Figure 7 it is shown the dependence of the normalized
transverse relaxation time on the coefficient of residual water
saturation for the studied terrigenous sediments and carbonate
rocks of another field in the Timan-Pechora oil and gas
province: fairly close relationships were obtained. The
wettability index of he studied terrigenous sediments samples
determined according to all-Union Standart (OST) 39-180-85
[15], varies from 0.37 to 0.99, averaging 0.82, which
characterizes them for the most part as hydrophilic rocks.
While comparing samples with similar values of residual
water saturation, samples characterized by higher values of
the wettability index are normally located lower (so the T,,
value is smaller). For samples of carbonate sediments shown
in the graph in Fig. 7, the wettability index varies from 0.03
to 0.92, averaging 0.42, which corresponds to rocks with
intermediate wettability. It can be seen that for the most part
the experimental data points of carbonate rocks are located
above the studied terrigenous sediments; the exponent,
although slightly, is lower (1.103 versus 1.128).

Conclusion

As a result of the studies, the coefficients of porosity and
residual water saturation were determined for the studied
sediments, pore size distributions were constructed, and the
nature of the residual water distribution was assessed, and
the influence of wettability on the results of NMR studies
was shown.

Determining porosity coefficients and residual water
saturation (by cutoff method) according to NMR data, in the
practice of petrophysical studies of productive sediments, is a
long-established and well-developed technology. The approaches
proposed by the author in this work to assess the nature of the
distribution of residual water, pore size and wettability require
testing at other sites and further development.

Carrying out NMR studies and their interpretation in a
complex of laboratory work on studying cores shows effectiveness
in determining the petrophysical characteristics of productive
sediments and provides additional necessary for petrophysical
support of geological and hydrodynamic modeling hydrocarbon
deposits.information.
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