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Kmrouesrre ci1oBa:

PYAHMK, pyAHUYHAA BEHTUJIALNA,
CKHUIIOBOY CTBOJI, PACXOA BO3AyXa,
HecTalMOHapHoe
BO3JlyXopacIpe/jieJieHue,
TypOyJIeHTHOe TedeHue BO3/yXa,
KoJiebaHus CKHIIOB, KaHaTHaA
apMHpOBKa, obTeKaHue TeJl
MOTOKOM, a3pOJHAMHUYecKas CUJIa,
AVHaMW4eCKHe CETKH, YUCJIEHHOe
MoJeJIMpoBaHue, BEIYUCIUTEIbHAsA
TUApOa’poAUHaMUKa, METO
KOHEYHBIX 00beMOB, TOTPAHUYHBIN
CJI0H.

A study of non-stationary air distribution that occurs in a skip shaft with rope reinforcement when two lifting vessels move along it
was made. The theoretical analysis of air distribution was carried out using numerical simulation of an unsteady turbulent air flow in
the shaft section using the Ansys Fluent software package. To describe the movement of skips, the dynamic grid approach was used,
based on the deformation and rebuilding of internal grid cells during the calculation process. Based on the calculated non-stationary
distribution of aerodynamic parameters near the moving skips, the total aerodynamic forces acting on the skips were calculated.
They were used further to analyze the horizontal vibrations of the skips, taking into account the restrictions imposed by the lifting,
balancing and guide ropes. Within the framework of the accepted model simplifications, it was obtained that the maximum values of
the aerodynamic forces acting on the skips were observed for the time interval corresponding to the passage of two skips next to each
other, in this case the section of the mine shaft overlapped to the maximum. A short-term increase in the aerodynamic force acting
on the skip during this period of time led to the appearance of skip oscillations in the horizontal plane. It was shown that the
maximum peak value of the horizontal aerodynamic force component significantly depended on the allowance for the movement of
skips. This indicated that the analysis of skip oscillations in the wellbore under the assumption of instantaneously resting skips was
incorrect. Further, based on the calculated aerodynamic loads on the skips in the course of a series of numerical experiments, the
maximum horizontal displacements of each of the skips were determined as a function of the air velocity in the shaft. On the basis of
the displacements obtained, approximating dependences for the maximum displacements of the skip were constructed depending on
its mass and the average air velocity in the shaft.

TpoBeJileHO ucCCIe/lOBaHUE HECTAIllMOHAPHOTO BO3JyXOpaclpe/ie/ieHNs, BO3HUKAIOIEro B CKUIIOBOM CTBOJIE C KaHATHOU
apMUPOBKOI1 IIPY ABWKEHNH 110 HEMY [BYX IIOJBEMHBIX COCyZ0B. TeopeTrdeckuil aHaIn3 BO3yXOpacIpeeseHrsi IPOBOIIICS C
TOMOIIBI0 YHCJIEHHOTO MOAEIMPOBaHUA HECTALMOHAPHOTO TYPOYJIEHTHOTO TeYeHHs BO3AYIIHOTO MOTOKA Ha ydYacTKe CTBOJIA B
nporpaMMHOM KoMmiutekce Ansys Fluent. [l omucaHuUs ABMXKEHUS CKUIOB KCIOJIBb30BAJICA MOAXOJ AMHAMHYECKHX CETOK,
OCHOBaHHBII Ha AeOpPMUPOBAaHUU U NIEPeCTPOEHNU BHYTPEHHHX fYeeK CEeTKU B Ipoliecce pacueTa. Mcxo[s M3 pacCUMTaHHOTO
HeCTAllMOHAPHOTO pacnpefiesieHUsl adpOAMHAMUYECKUX IIapaMeTpPOB, OKOJIO ABIDKYIIMXCS CKUIIOB BBIYMCIIAJINICH CyMMapHBIE
adpOMHAMUYECKUE CHJIBL, OEHCTByIOIMe Ha cKumbl. OHM MCHOJIb30BAJIMCh Jajiee I aHalIn3a FOPU30HTAJIbHBIX KOJieGaHMM
CKUIIOB C Y4YeTOM OrpaHHYeHHUH, HaKJIaAblBaeMBIX MOABEMHBIMH, YPABHOBEIIMBAIIMMU U HANPaBJAKRIIUMUA KaHAaTaMH.
B pamKax NPUHATHIX MOJEJIbHBIX YIPOLIEHUI MOJIy4eHOo, YTO MaKCUMaJIbHble 3Ha4eHUA a3pPOANHAMUYECKUX CHJI, IeHCTBYIOMUX
Ha CKWIIBIL, HAOJIIOAIOTCA I IIPOMEXYTKa BpeMeHU, COOTBETCTBYIOIIEro MPOXOXKIEHUIO ABYX CKUIOB APYT OKOJIO JIpyra, — B 3TOM
cJlyyae MAaKCHUMAJIbHO IIepPeKphIBAaeTCA cedyeHHe MIAaXTHOro cTBosia. KpaTkoBpeMeHHOe BO3pacTaHHe a’spOoAMHAMUYECKOH CHJIBL,
JECTBYOLIEN Ha CKUII B 3TOT IPOMEXYTOK BpEMEHHU, IPUBOJUT K ITOSABJIEHUI0 KOJIeGaHMI CKUIA B TOPU30HTAJIBHOM IIJIOCKOCTH.
Toka3aHo, YTO MaKCUMaJjbHas BeJIMYMHA NHMKA TOPU30HTAJIbHOIN KOMIOHEHTHl a9pPOJUHAMUYECKON CHJIbl CYIECTBEHHO 3aBHUCHUT
OT yyeTa ABMXEHUA CKUIOB. DTO yKas3blBaeT, YTO aHAJIMU3 KoJieGaHMI CKUIOB B CTBOJIE B MPEANOJIOXEHUH O MIHOBEHHO
MOKOAIIUXCSA CKUIAX ABJIAETCA HEKOPPEKTHHIM. Jlajiee, NCXO/(s U3 PACCYUTAHHBIX a3pOJUHAMHUYECKHX HArpy30K Ha CKUIIB B XOJIe
CepUU YHMCJIEHHBIX 3KCIEPUMEHTOB, OIpe/ieIeHbl MaKCUMaJIbHble TOPU30HTAJIbHbIE CMEIeHHs KaX0ro U3 CKUNOB KaK GYHKIII
CKOPOCTH BO3[lyxa B CTBOJIe. Ha OCHOBAaHMM IOJIyYEHHBIX CMELIEHHI [OCTPOEHH! aNNPOKCHMHUPYIOINE 3aBUCUMOCTH MAJIA
MaKCHMaJIbHBIX CMEIeHNI CKUIIA B 3aBCUMOCTH OT €r0 MacChl M CpeJJHeil CKOPOCTH BO3ZyXa B CTBOJIE.
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Introduction

The current trend to increase the volume of
underground mining, as well as the increasing branching
of mining systems in underground horizons leads to the
need to supply more air to shafts and mines [1-3]. One of
the options for increasing the amount of air supplied to the
mine is the use of skip shafts, which are most often neutral
in terms of ventilation [4]. As the depth of mining
operations increases, the required skip lifting height also
increases, and the operation of hoisting ropes becomes
more complicated due to torsion, longitudinal and
transverse vibrations [5, 6].

The regulatory documents in force in Russia [7] states
that in shafts intended only for lowering and lifting of
loads, the maximum speed should not exceed 15 m/s.
Physically, this is associated with fact that the following
problems may occur at high airflow rates in shafts with
lifting vessels [8-10]:

1. Vibration of lifting vessels resulting in breakage and
destruction.

2. Vibrations in ropes.

3. Possible collision of lifting vessels with rope guides
in the middle of the shaft.

4. Knocking against the cross timbers in the area where
vehicles pass through.

At the same time, in earlier regulatory documents, the
maximum speed of lifting vessels was determined
differently. For example, [11] presents the following
formula for the maximum speed of lifting vessels when
lifting and lowering loads along vertical shafts:

v =0.8VH, 1)

where H - shaft height, m.

In monograph [12] the main factors influencing the
skip movement are the skip rotation around the vertical
axis and translational movements in the horizontal plane.
It has been made the assumption that the translational
movement of skips in the lateral plane are caused mainly
by the Coriolis force [13] and aerodynamic forces as a
result of interaction of the skip with the air flow.

Works [14, 15] describe the results of a large series of
measurements - in more than ten mines equipped with
cable guides. It was found that the Coriolis force is not the
main source of skip vibrations, and the calculation
methods proposed in [12] are imperfect.

The paper [5] proposes a methodology for
determining the parameters of multi-rope hoisting based
on the study of dynamic phenomena in hoisting ropes.
The conditions of deep mines (up to 2000-2200 m depth)
are considered. The efficiency of multi-rope hoisting
installations with reduced distance between ropes is
investigated.

In works [16, 17] the separate question of of lifting
vessels vibration after passing near each other is
considered. As a result of coupled modelling of air flow in
the shaft and skip motion, it was obtained that with
increasing air flow rate in the shaft, the maximum
horizontal displacement increases according to a nonlinear
law. At the same time, the works do not take into account
the resistance from the guides and Coriolis force.

In [18], a theoretical and experimental analysis of the
lateral vibration acceleration of a steel skip rope at
different air rates was carried out. It was obtained that the
acceleration of transverse displacement and longitudinal
vibration significantly increases with increasing speed, and
due to the presence of transverse vibration there are more
extremes of longitudinal vibration acceleration affecting
the service life of the rope.

7
v

Fig. 1. Geometric model

In [19, 20] the problems of vibrating resonance of
lowering skip and ropes without regard to aerodynamic
effects from the flow side are investigated. It is noted that
in practice a large amplitude of vibrations in the system
"skip — ropes" can often occur, steady vibrations can be
formed, and can lead to emergency scenarios.

In [4] the aerodynamic loads on the skip during the
passage of the channel of the main fan unit and during
the passage of two skips near each other were
determined by numerical modelling. It was concluded
that even at sufficiently high air rate of 18 m/s
(exceeding the permissible values) the aerodynamic
effect of the air flow on the skip and rope is negligible.
However, the dynamic characteristics of skips are not
fully considered in this work.

The purpose of the present work, continuing the
previous studies [4, 21], is to analyse the force effects of
the air flow on the skip with reference to the dynamic
characteristics of the skip itself and the aerodynamic
properties of the air flow.

Methodology

Determination of force effects from the air flow on the
skip in this paper is carried out by numerical modelling in the
ANSYS fluent software package. The geometrical model is a
section of a mine shaft of length Zy (Fig. 1). The shaft has a
diameter D and is a ventilation and skip, and therefore the air
flow moves in the direction from bottom to top. The air flow
is carried out in the mode of developed turbulence with an
average velocity equal to Vv. At this section of the shaft there
are also two skips moving in opposite directions with
the same speed Vsp. The absolute coordinate system OXY is
associated with the barrel, with the X axis pointed
horizontally, and the Y axis is vertical. A flat two-dimensional
problem is considered, and the selected design domain
physically corresponds to the mid-section of the shaft. The
skips have given geometrical dimensions — width (in the X
direction) and height (in the Y direction).

Isothermal unsteady air flow is described by the
continuity and Navier-Stokes equations [22, 23]:

)
V- (pv)=0, )
i(pV)+V-(pVV):—Vp+V-’t:+pg, 3

ot

where V' - vector of air flow rate, m/s; p — pressure, Pa;
g — vector of free-fall acceleration, m/s%* — shear stress
tensor [24], Pa:
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T:(u+ut)[VV+(VV)T}, )

where u — molecular viscosity of air, P-s; y, — turbulent
viscosity, Pa-s.

In the framework of the SST k-omega turbulence model
used here [25, 26], the turbulent viscosity is represented as:

ak

=P max(alm, ZMFZ) ’

where k — specific turbulent kinetic energy, m%/s% o -
the specific energy of turbulent dissipation, 1/s; a, — SST
model parameter; F2 - second smoothing function [27];
S - strain rate tensor, 1/s.

Turbulent airflow characteristics 4 and o are

determined by solving the two transfer equations:

&)

d .
E(pk) +V-(p&V) =V (T, Vk)+1 --VV -Bpok, (6)
9
a(pw)+V-(pmV) = V-(Fka)+ )
+ 208§ —Bpor —2(1—171)%%%-%,

where T, u T, - effective diffusion coefficients for
turbulent characteristics of the medium 4 and w; F, — the
first smoothing function; a, B, B° and o, - model
parameters [25, 27].

At the entrance to the computational area (lower
boundary), a uniform field of air flow rates, a given
turbulence intensity, and the ratio of effective viscosity to
molecular viscosity are set. At the outlet of the
computational area, the static pressure is set. On solid
walls, the condition of flow adhesion is set. The
distribution of temperatures is uniform everywhere.

The numerical solution of equations (2)-(7) with
appropriate initial and boundary conditions is carried out
by the finite volume method using the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) algorithm
[28, 29]. The second order of spatial discretisation and the
first order of temporal discretisation are used for all the
sought variables. To accelerate the numerical calculation,
parallelisation is performed on four CPU cores.

Modelling of skip motion is carried out within the
framework of dynamic meshes approach [30, 31].
To smooth the deforming mesh, the Spring-based
smoothing method [32] is used, which is based on the
representation of mesh faces between any two nodes as
interconnected springs of a given reinforcement. The
Laplace smoothing method is also used, which adjusts the
location of each mesh vertex at the geometric centre of
neighbouring vertices [33].

At each time step of the numerical calculation
algorithm, local rearrangement of the mesh near the
moving skips is performed by the Local cell method
[34, 35]. In this case, the programme agglomerates cells
based on asymmetry, size and height criteria (adjacent
zones of moving faces) before moving the boundary. The
size criteria are specified using a given minimum length
scale A, and maximum length scale A,,. A maximum
mesh asymmetry value is also set, indicating the desired
mesh asymmetry.

The cells corresponding to the boundary layers of
each of the skips and the shaft walls are not deformed or
rearranged during the numerical calculation. In this case,
the set of boundary layer cells of each skip moves
together with the corresponding skip as a single non-
deformable solid body.

The flow calculation is performed in a two-dimensional
formulation for the above described two-dimensional
geometrical domain. Methodologically, this idealisation is
related to the desire to conduct and debug a complex and
resource-intensive numerical algorithm with dynamic
meshes on a relatively simple two-dimensional model. In
further research, the authors also plan to consider the
three-dimensional case.

As a result of interaction of the moving skips with
the air flow, non-uniform load is formed on the non-
deformable walls of the skips, which changes with time.
To analyse skip movements under the action of
aerodynamic load from the air stream, the total vector
forces F, and F, acting on the skips are calculated.
When calculating these forces, the third spatial
dimension of the skips, previously not explicitly taken
into account at modelling two-dimensional air flow in
the shaft, is considered. They are used to determine
lateral movements of the skips, satisfying the following
equation [16]:

°X,
m, S =k X, EO S E, ®
%Y,
i ale =-kY + Fim’ C)

where m;, — mass of 7skip, kg; X; and ¥, - displacements of
the 7-,skip in the direction of X and Y axes, respectively,
m; F'“” — Coriolis force, N; k — transverse equivalent
"spring" stiffness resulting from interaction of the skip with
hoisting and balancing ropes, guide ropes.

The equivalent spring reinforcement of the ropes in
relation to the horizontal displacements of the skip can be
found by the formula [17, 36]:

T L T T,
f—+n, L +n L,
Ll L2

k=n,—*t— (10)
! LILZ
where 1, — number of guiding ropes per skip; 7, — tension
of guide ropes at the skip height in the shaft, N; Z - total
length of guide ropes, m; Z, — distance between the shaft
mouth and the hoisting rope suspension gear, L, - distance
between the balance rope suspension gear and the sump,
m; 11, — number of hoisting ropes per skip, 7;; — tension of
the hoisting rope during transportation, N; 1, — number of
balancing ropes for one skip; 7; — tension of the balancing
rope during transportation, Pa.

In the most pessimistic scenario, it is assumed that
the tension of the guide and balance ropes is only due
to their own weight. In this situation, the main
contribution to the expression (10) will be made by the
summand No. 2 on the right. And when substituting it
into equation (8), the latter in mathematical form and
physical meaning will be very close to the equation of a
mathematical pendulum of variable length [37, 38].
In this case, it is important to additionally take into
account in equation (8) the summand characterising the
Coriolis force. In equation (8) it is written with variable
sign, as far as, depending on the direction of skip
movement along the shaft it can have both positive
effect (damping horizontal oscillations) and negative
one. The hoist rope tension is determined only by the
weight of the skip, and the effects of skip
acceleration/deceleration  are not taken into
consideration (for the centre part of the shaft this
assumption is quite reasonable).

The approach used here does not bear in view
vibrations in the ropes themselves, which may arise as a
result of interaction with the vibrating skip and with the
air flow.

HEAPOMOJIb3OBAHUE
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Numerical calculation of time dependencies Xi(d) and
Yi(t) is carried out using the finite difference method, an
explicit scheme of the second order of accuracy with
respect to the time step [39, 40]. According to these
dependences it is possible to determine the maximum
values of horizontal displacements of skips during their
movement along the skip. It is assumed that the most
unfavourable moment leading to destabilization of the
skips position in space is when skips pass each other.

In addition, this approach assumes that the skip does
not rotate around its centre of mass and has only two
degrees of freedom, Xi and Y7 Consideration of the
rotational degree of freedom is supposed to be realised in
further studies of the authors.

Results and discussion

The parameters of the problem used for numerical
calculations are summarised in Table 1.

A series of numerical experiments were carried out at
different mesh parameters, aerodynamic parameters of the
problem. The duration of one calculation was from 5 to 12 h.
(depending on the selected parameters). The calculations
were performed on a personal computer equipped with a 6-
core Intel Core i7-8700K CPU (3.70GHz) and 16 GB of RAM.
The results of numerical simulation were visualised in the
ANSYS CFD-Post software module and in Wolfram
Mathematica.

Figure 2 shows the calculated distribution of air rate
magnitudes at different time moments with an average air
rate in the shaft equal to 2.5 m/s.

In this situation, skips move faster than the air flow. As
can be seen from Fig. 2, behind skip No 1, going down the
shaft, an unstable non-stationary structure of air flows is
formed caused by the periodic breakdowns of the air flow
from the sharp edges of this skip. At the same time, a similar
effect is not observed for the upward skip No 2. This
conclusion is valid in a wide range of studied mesh
parameters and time steps (see Table 1). This can be verified
by plotting the time dependences of the horizontal (X)
component of the aerodynamic force acting on the skips at
different time steps (Fig. 3) and different space steps
(Fig. 4). The aerodynamic force components were plotted by
Ansys CFD-Post basic commands [41, 42] — they take into
account both the total airflow pressure acting along the
normal to the skip wall and the shear friction resistance due
to air viscosity and acting tangential to the wall.

Figs. 3, 4 also show the characteristic peak of
aerodynamic load at the moment of time about 12 s. This
peak is caused by the passage of two skips relative to each
other. The time dependences of aerodynamic forces for
both skips in the vicinity of the peak are described
approximately the same for the considered set of spatial
and temporal steps. At the same time, this peak is the main
source of horizontal vibrations of the skips [16] as they
move along the shaft, while relatively small deviation of
aerodynamic forces over the remaining time interval have
little effect on these vibrations. A similar vibratory
character of the time dependences for the aerodynamic
forces was also obtained in [16, 17].

The peak magnitude depends significantly on the
average air flow rate in the shaft (Fig. 5).

The increase in peak amplitude with increasing air
flow rate is evident for both skips. The amplitude of flow
disruption vibrations also increases, which is especially
noticeable for the descending skip (see Fig. 5, b). At high
air rates (12.5 m/s) flow stalls also start to occur for the
upward skip, whose movement is co-directed with the air
flow. This indicates that the phenomenon of flow
breakdown is determined first of all by the speed of the
skip relative to the air flow.

8,8
7.5
6,3
5,0
3,8
2,5
1,3
0,0
[ms*-1]
8s 12s 16s 20s
Fig. 2. Magnitude distribution of the rate
of air flow around moving skips
Table 1
Numerical parameters of the problem
Parameter Value
Shaft diameter, m 8
Length of the shaft section under consideration, m 150
Shaft length, m 1000
Skip width (along X), m 2.5
Skip width (along 2), m 2.3
Skip height (), m 10
Weight of unloaded skip, tonnes 19
Weight of loaded skip, tonnes 49
Number of hoisting ropes per skip
Number of balancing ropes for one skip
Number of guiding ropes per skip
Horizontal equivalent spring stiffness of ropes of 2.01
unloaded skip, kN/m :
Horizontal equivalent spring stiffness of the loaded
X 5.16
skip ropes, kN/m
Speed of skip movement, m/s 5
Air rate at the inlet, m/s 2.5-15
Turbulence intensity at the inlet 5%
Ratio of effective viscosity to inlet molecular viscosity 10
Modelling time, s 24
Time step, s 0.0025-0.02
Maximum number of sub-steps in time 70
Minimum permissible relative error of connection 10*
Mesh cell size, m 0.12-0.3
Minimum length scales /;,, m 0.15
Maximum length scales 4,,,,, m 0.3
Target mesh asymmetry 0.6
Number of boundary layers 5
Y+ (defined after preliminary modelling) 42-210
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Fig. 3. Time dependences of the horizontal component
of the aerodynamic force acting on the rising (a)
and lowering () skips at different time steps
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Fig. 4. Time dependences of the horizontal component
of the aerodynamic force acting on the rising (a) and lowering (5)
skips at different number of cells of calculation meshes

The maximum value of the peak of the horizontal
component of the aerodynamic force depends
significantly on the skip motion. If the problem is
solved with the assumption of instantaneous rest of
each skip at each moment of time, the resulting
aerodynamic loads will be different (Table 2, fixed
mesh). In this case, the discrepancies between the
different solutions (with and without consideration of
the skip dynamics) are very large (sometimes the
solutions differ by a factor of 10). This is associated
with the fact that at the instantaneous rest of each of
the skips at each moment of time, the piston effect

200
ol {I P IV
v
-200
l — 2,5m/s
?{ —400 {f 5 m/s
R | 7.5m/s
| — 10 m/s
—800 — 125m/s
~1000 i
0 5 10 15 20
fs
a
600
400
200
= 0

—200

400

600

Fig. 5. Time dependences of the horizontal component
of the aerodynamic force acting on the rising (a)
and lowering (5) skips at different rate of air flow

created by the skips during movement is not taken into
account and significantly determines the rate of the air
flow between the skips at the moment when they are at
the same altitude mark.

Fig. 6 shows the total pressure distributions near
two skips at the moment they pass near each other. The
total pressure in this situation is a relative value (since
zero static pressure is recorded at the outlet of the
design area), and therefore negative values of total
pressure are observed in local zones. The fields
correspond to the average rate of the air flow in the
shaft equal to 15 m/s. 6, a, corresponds to the
consideration of the real speed of the skip and dynamic
reconstruction of the mesh. The case in Fig. 6, b,
corresponds to the assumption of the instantaneous rest
of each of the skips. Pressure distributions near the
sidewalls of skips vary significantly in these two
situations. In the case of a fixed mesh (see Fig. 6, b)
in the upper part of the skips there are low pressure
zones (blue), which are asymmetrically distributed on
the sides of the skip and make a significant contribution
to the calculation of the total force acting on the skip
on the airflow side.

If we analyse the variation of the vertical component
of the aerodynamic force acting on the skip during its
movement, for both skips it varies in the range from 0
to 350 N (in the range of air flow rate from 2.5 to
15 m/s). This is a quite small value compared to the
unloaded weight of the skip (19 tonnes). This indicates
that much more significant vertical (longitudinal)
vibrations will be formed during acceleration and
braking of the skip, while the aerodynamic factor in this
case is negligible. For this reason, equation (9) will not
be analysed here.

The situation is different for the horizontal vibrations
of skips, where the aerodynamic effect of the air flow can
be significant. To analyse the horizontal vibrations of each
of the skips, a numerical solution of the differential
equation (8) was obtained providing for the time
dependencies calculated above in Fig. 5. 5. The time step
was taken equal to 0.1 s.
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Fig. 6. Distribution of total pressure near skips
for dynamic meshes (a) and fixed meshes (5)
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Fig. 7. Dependences of the maximum amplitudes of horizontal
vibrations of skips on the air flow rate

Table 2

Comparative Analysis of Horizontal Components
of Aerodynamic Force at Different Problem Formulations

Peculiarities Air rate, m/s
off the prol?lem Skip 5 10 15
ormulation
Dynamic meshes No 1 204.6 411.3 936.9
No 2 92.8 153.3 211.0
Fixed mesh No 1 174.0 696.48 1535.4
No 2 323.8 1300.5 2968.2

Fig. 7 shows the calculated dependences of the
maximum amplitudes of horizontal skip vibrations on the
air flow rate. The dots indicate the results of individual
numerical experiments, and the dashed lines indicate
piecewise linear interpolation of the solution between the
points. As can be seen from the figure, the growth of the
vibration magnitude follows a nonlinear law with
acceleration. This agrees well with the works [1, 17].

In the considered case, the amplitudes of vibrations in
absolute magnitude reach 40 cm for an unloaded skip going
downwards and 13 cm for a loaded skip going upwards.
These are rather high values, but it should be taken into
account that the obtained vibration amplitudes strongly
depend on the equivalent reinforcement of the ropes in
relation to the horizontal movements of the skip, while the
latter were chosen based on the most pessimistic estimation.
When the equivalent rope reinforcement is increased by

2 times (e.g. by tensioning the guide ropes) the amplitude of
vibrations for the unloaded skip decreases to 21 cm
(by 47 %), and for the loaded skip - to 10 cm (by 10 %).

Further, using the least squares method [43, 44]
approximating nonlinear degree dependences for the
calculated points from Fig. 7 were obtained:

0.0181*
X, =—2, an
ml
0.02212
=, (12)
m2
where X, - maximum horizontal displacement of
unloaded skip No.l, m; X, - maximum horizontal

displacement of unloaded skip No.2, m; m, — the mass of
unloaded skip No. 1, tonnes; m, — the mass of loaded
skip No. 2, tonnes V, — average cross-sectional rate of air
flow, m/s.

Dependences (11)-(12) were obtained for the case of
skip speed of 5 m/s. It is assumed that this parameter
should also strongly influence the value of horizontal
displacements of skips, however, this issue is not
investigated in the present work, but is the subject of
further research. In future it is planned to investigate
the influence of skip speed and geometrical
characteristics of the skip on the peculiarities of its
horizontal vibrations, as well as to evaluate the
influence of interfaces with horizons and main fan
channel on horizontal vibrations. The issues of stability
of air distribution in shafts with moving skips are also
of practical interest [45, 46], as well as the regularities
of transfer of harmful impurities (dust) emitted from
the skip surfaces [47-49].

Conclusion

Within the framework of the research described in the
article the algorithm for calculation of aerodynamic loads
on skips moving along the ventilation-skip shaft is
proposed. The algorithm is based on the numerical
solution of the continuity, Navier-Stokes and transfer
equations of turbulent characteristics of the air flow in
ANSYS Fluent software, and also implements dynamic
rebuilding of the calculation mesh in the process of
modelling the movement of skips and air flow.

Data on aerodynamic loads are used to calculate the
total aerodynamic forces acting on skips during their
movement. It was obtained that the maximum value of
the peak of the horizontal component of the aerodynamic
force depends significantly on the skip movement. This
indicates that the analysis of skip vibrations in the
shaft under the assumption of instantaneously resting skips
is incorrect.

It was determined that the maximum values of the
aerodynamic force occur when two skips pass each other —
in this case, the cross-section of the mine shaft is
overlapped as much as possible Short-term increase of
the aerodynamic force acting on the skip leads to
vibration of the skip in the horizontal plane. The
maximum amplitude of vibration increases with the
increase of air rate in the shaft. For an unloaded skip the
maximum amplitude of vibration is higher than for an
unloaded skip. The effective reinforcement of the ropes
in relation to the horizontal vibrations of the system has
a significant effect on the maximum amplitude of skip
vibrations, and therefore special attention should be paid
to setting this parameter in practical calculations of skip
movement in the air space of the shaft.
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