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Keywords: The Bazhenov formation in the West Siberian oil and gas province is of interest to researchers not only as a potential industrial
geochemical parameters. Bazhenov development object. but also in connection with forecasting oil content and assessing the risks of exploratory drilling. The results
formation. database. geochemical of a study aimed at developing machine learning models to assess the relationships between the geochemical parameters of the
studies. regression models. machine Bazhenov formation and data obtained from well logging are presented.

learning. pyrolysis. Rock-Eval. Modern machine learning methods provide powerful tools for data analysis and forecasting. Geological data is often
Boosted Trees. characterized by a large number of parameters and complex relationships that can be difficult for humans to understand. In this

context. the application of machine learning methods provides researchers with new tools.

This work focuses on the Boosted Trees model. which demonstrated better results compared to other regression methods. having
the lowest error (MAE and MSE) and the highest coefficient of determination (R?). Boosted Trees models provided accurate and
stable prediction results. which were confirmed by visual analysis.

As a result of the work. using machine learning methods. geochemical parameters were calculated. including S,. S, and T,,,.
which was previously difficult. This increased the accuracy of the geochemical parameters assessment in wells. which
contributed to the improvement of models for the rock properties distribution along the well section. and in the future will lead
to an increase in the detail of the parameters distribution over the area.

It also emphasizes the importance of careful data preprocessing and selecting the best models and learning methods. Despite its
technical challenges. machine learning provides researchers with a powerful tool to more accurately analyze and interpret
geodata and make operational decisions based on this data.

Kimoueasvie ctosa: BaxxeHOBckasg cBUTA B 3amafHO-CHOMPCKOI HedTerazoHOCHOH NPOBUHIMK TPEACTaBJIAET MHTEpeC AJIA HCCiefoBaTesieil He
reoXuMuyecKye mapaMeTpsl. TOJIbKO KaK MOTEeHIMaIbHO IIPOMBIIIIEHHBII 06beKT pa3paboTKU. HO U B CBSI3HM C NPOTHO3MPOBaHUeM He)TeHOCHOCTH U OLEHKOH
BaxeHoBckas cBUTa. 6a3a JaHHBIX. PUCKOB NOUCKOBOro GypeHusd. IIpesicTaBieHBl pe3yJIbTaThl MCC/IE[IOBAHUA. HAIleJIeHHOTO Ha pa3paboTKy Mojesiell MallMHHOIO
TeoXrMHYeCKHre NccieJOBaHuA. 06yqel—mn AJIA OL€HKH 3aBUCUMOCTEN MeXAy reoxuMHU4eCKrMH napamerpaMmu BaxeHOBCKOI1 CBUTHI U JAaHHBIMU. IIOJIY4Y€HHBIMU B
PperpeccruoHHbIE MOAEJIN. pesyJipTaTte I‘eOlI)I/IBI/[‘IECKI/IX I/ICCJIE]J[OBaHI/Iﬁ CKBaXXHH.

MallllHHOe o0y4YeHue. MUPOJIU3. CoBpeMeHHble MeTOAbl MAaIIMHHOTO OOy4YeHHs IPefdOCTaB/IAIOT COOOI MOIIHBle KHCTPYMEHTBl [JIfi aHajiu3a [JaHHBIX U
Rock-Eval. Boosted Trees. NPOrHO3UPOBaHMsA. T'eosioruyecKre JaHHble YacToO XapaKTepU3yloTcsi GOJIBIIMM YMCJIOM NapaMeTpoB U CJIOKHBIMU B3aMMOCBSI3AMU.

KOTOpbIE MOTYyT OBITh TPYAHOIIOHUMAEMBIMU [JIsI 4Y€JIOBEKa. B 3TOM KOHTEKCTE IIpYMEHEeHEe METOAO0B MallVHHOI'o OﬁyquI/[i{
obecrieynBaeT MccyeoBaTesIAM HOBbIe NHCTPYMEHTHI.

B pauHOil paGore ypeneHo BHHMMaHue Mopenn Boosted Trees. koTopas NPOAEMOHCTPUpOBAja JIydllle pPe3yJIbTaThl IO
CPaBHEHUIO C APYTMMH METOAaMH perpeccuu. obsafas HauMeHbmeid omnb6koii (MAE u MSE) u HauBbicIIuM K03 GULHEHTOM
nerepmuHanun (R?). Mogenn Boosted Trees 06ecneunBaiOT TOUHblE M CTaOWJIbHbIE Pe3yJIbTAaThl IPOTHO3UPOBAHKA. YTO GBLIO
IIOATBEPXAE€HO BU3yaJIbHBIM aHaJIN30M.

B pesynbraTe NpoBeleHHONH pa6GoTel O6jarojapsi IPUMEHEHHI0 MEeTOJOB MAIIMHHOro oO0yveHus ObUI TIpOBENEH pacueT
reoXUMHUYeCKUX IapameTpoB. BKwuasd S;. S, u T.. YTO paHee OBUIO 3aTPyJHHUTEJHPHO. DTO MOBBLICHMJIO TOYHOCTb OLEHKU
reoXMMHYeCKHX MapaMeTpOB B CKBaXMHAX. YTO CIIOCOOCTBOBAJIO YJIyUIIEHUIO MoJesieli paclpejiejleHUs CBOWCTB IOpOJ IO
paspe3y CKBaXHH. a B JJaJibHeiIIeM NpUBe/IeT K MOBLIIIEHNIO 1eTaJbHOCTH KapTHHBI pacrpe/ie/ieH!s apaMeTpoB O IJIOAH.
Taxxe IOAYEPKUBAETCS BaXHOCTh TIIATEJIBHOH NpeAoOpabOTKU JaHHBIX. BRIOOpA HAWIyYIINX MOJeJIell ¥ MeTOJI0B OOydYeHUs.
HeCMOTpH Ha TEXHUYECKHE CJIIOKHOCTH. MAaIIMHHOE 06y'{eHI/1e TIpeOoCTaBJIACT UCCIeNoBaTesIAM MOLquIﬁ WHCTPYMEHT JIA Gostee
TOYHOI'0 aHaji3a U MHTeplpeTaquy reoOJaHHbIX. a TaKXKe AJIA IPUHATUA IIPOU3BOJCTBEHHBIX peI.LIeHI/Iﬁ Ha OCHOBE€ 3THX JaHHBIX.
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Introduction

This work is part of an integrated study of Jurassic
deposits in the northern part of the Surgut arch aimed
at examining and evaluating the geochemical and
source rock properties of the Bazhenov Formation
regarding its influence on the oil-bearing potential of
the Vasyugan Formation [1-5].

In this study, the aime is to develop models to
assess the dependencies between the geochemical
parameters of the Bazhenov Formation rocks and the
data obtained from logging. For this purpose, various
methods of machine learning (ML) were used in the
research [6-15].

Currently, modern machine learning methods
provide powerful tools for data analysis and forecast,
and their application is also relevant in solving
geological problems. In this field, standard practice
involves working with large data volumes, complex
interrelationships between geological parameters and
the heterogeneity of geological formations. In this
context, the use of machine learning methods is a new
tool that significantly improves the analysis processes
and model development based on geodata. The major
advantage of machine learning application in geological
research is its ability to automate and optimize data
analysis. Geological data is often characterized by a
multitude of parameters, and their interrelationships
can be complex for humans to understand. Machine
learning models, through more advanced algorithms for
identifying correlation relationships and discriminant
features, can increase the reliability of forecasts and
data assessment models. These models can be used to
forecast various parameters, such as the quality and
composition of rocks, the distribution of mineral
resources, hydrogeological characteristics, and for other
purposes.

In this study, geochemical properties of rocks were
taken as the major parameters for establishing
dependencies. These data were obtained using the Rock-
Eval pyrolysis method, which determines the content
and composition of organic matter in rocks. The high
cost does not allow core sampling in a large number of
wells, which increases the value of the collected core
material. In contrast, the relatively low cost and high
information content of geophysical surveys have allowed
a large share of the well stock to be characterized by a
relatively unified set of studies, facilitating comparison
of the geophysical rock properties from different wells.
Establishing dependencies between geochemical and
geophysical properties will enable a qualitative and
quantitative assessment of the studied rock properties, as
well as expand the number of wells where geochemical
properties can be assessed.

Object of Study. Research methods

The Bazhenov Formation is widely regarded as the
main hydrocarbon-generating formation of the West
Siberian petroleum province. The deposits were
predominantly formed in deep-water marine
sedimentation conditions and are widespread across the
territory of Western Siberia. In this study, the main
characteristics of the rocks obtained through the Rock-
Eval pyrolysis method were studied. The pyrolysis

method is based on the thermal decomposition of core
samples, and the recorded chromatogram analysis
allows for obtaining data such as the content of free
hydrocarbons (S;), residual generation potential (S,),
total organic carbon (TOC), and the temperature of
maximum hydrocarbon yield during cracking (T,..)-
The obtained characteristics enable conclusions to be
drawn about the oil generation productivity of the rock,
its maturity and the amount of dispersed organic
matter. Also, assessment of rock's hydrocarbon
potential has been realized [16-19].

The issues of interpreting well logging data in
unconventional reservoirs, including the challenges of
assessing geochemical properties based on geophysical
research data, have been covered in a large number of
studies, particularly in works [19-35].

The dependencies were identified with parameters
obtained from geophysical well surveys. The standard
set of well logging measurements used as predictor
variables in most wells included: GK (gamma logging),
NKT (thermal neutron logging), BK (resistivity
logging), IK (induction logging), as well as derived
parameters from these measurements (InBK, InIK,
GK/NKT, In[GK/NKT]).

Obtaining "core-well logging" dependencies will
allow for more accurate averaging of geochemical
data in wells with geochemical studies, assessment of
rock properties in wells lacking core data, and model
construction of property distribution across the area
based on well data.

The analysis was carried out using a database of
1,217 studied samples taken from wells in the
territory of the Surgut and Vartovsk arches, which
were linked to intervals of the Bazhenov Formation or
stratigraphically similar deposits.

The methods used to search for dependencies in the
work included the multiple linear regression method, as
well as three machine learning methods: the support
vector machine (SVM), neural networks, and the
boosted trees method. Detailed characteristics and
distinctive features of different methods are presented
in numerous papers, particularly in works [36-44].

A distinctive feature of ‘"core-well logging"
dependencies is the different vertical resolution of the
methods used. Pyrolytic studies of core samples are
conducted with a diameter of about 1 cm, which
increases the resolution of the method but can also
lead to anomalously low or high values that are not
representative of the entire interval of sediments. In
contrast, well-logging has a greater discretization step,
where there is only one cut per 10 cm measurement.
To level out this difference, the geochemical research
data were smoothed using a sliding window method
within a = 1 m interval. This approach allowed for
identifing a relatively high-frequency trend in the
changes of geochemical properties and reducing the
number of anomalous values.

Next, the geophysical data was standardized, for
which the normalization method described in the
work of D.E. Shira [45] was used.

According to this method, the normalization process
can be performed using the following equation:

Vlo _Wmin
Vnorm =1{min + (Rmax _Rmm). ]/VgT )

ma:
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Table 1
Statistical characteristics of parameters
Variable Arithmetic mean Minimum Maximum gtal?dé.ird Asymmetry Excess
eviation

S,r, mg HC/g. 3.2968 0.0000 12.45 2.6387 0.50229 -0.5573
S,, mg HC/g. 28.5440 0.0100 148.57 26.1681 0.68483 -0.1650
Tpaxo C 436.8596 403.0000 458.00 6.8586 -1.96788 5.1094
TOC, % 5.9896 0.0900 24.23 4.9310 0.67065 -0.2007
BK, Ohm 265.6223 0.7220 10600.70 630.8205 8.44372 104.7258
IK, mSm 76.1296 0.1000 2018.85 126.3915 7.08556 77.8917
GK, mkrRG/h 23.0309 2.2610 111.80 16.6028 1.04645 0.5909
NKT, eV 4.2373 1.1670 16.39 2.2635 1.49880 2.2558
InBK 4.1817 -0.3257 9.27 1.7960 0.08127 -1.0821

InIK 3.5168 -2.3026 7.61 1.3844 -0.38762 0.5261
m(ilr({/cl\%zv 8.0811 0.1836 53.44 8.2495 1.79523 3.8280
InGK/NKT 1.5474 -1.6947 3.98 1.1257 -0.27131 -0.6440

In the equation above, the normalized value of the
curve (V,,.) is calculated from the unnormalized
curve value (V),,), the minimum and maximum values
from the reference curve (R, and R,,,), as well as the
minimum and maximum values from the curve that
needs to be normalized (W,,, and W, ,,). Typically, the
5th and 95th percentiles are used instead of the
minimum and maximum values. This reduces the
influence of data outliers (anomalies) that could lead
to incorrect results. However, careless application of
such methods may exclude some important data from
the analysis that reflects the actual properties of the
rocks.

After performing the procedures of averaging and
normalizing the data, a training sample of 2109 values
was obtained. The statistical characteristics of the
parameters are presented in Table 1.

Choosing the optimal ratio between training and
testing samples in machine learning issues is an
important aspect of model-building methodology that
requires logical justification. This choice lies at the
center of balancing two key aspects: maximizing the
generalization ability of models trained on data and
ensuring a reliable evaluation of their performance on
independent data.

In this research work, a ratio of 70 % training data
to 30 % testing data was decided to be applied in the
context of training machine learning models. Firstly,
having 70 % of the training data provides the models
with a substantial amount of information to learn the
major patterns in the data. At the same time, 30 % of
the data is reserved for testing purposes and
subsequent performance evaluation of the models.

This approach helps to balance the training process
and model assessment, which helps to avoid
overfitting, as models adapt too closely to the training
data and fail to generalize adequately to new data.

Considering the accepted ratio between the
training and testing samples, experimental training of
various machine learning models was conducted,

followed by their performance assessment on the test
data. The results obtained indicate that the chosen
70/30 ratio was optimal for this task and provided the
best practical results.

The optimal ratio between training and testing
samples may vary depending on the data characteristics
and the specific task. Nonetheless, in this work, the
choice of this ratio is justified by achieving high
performance of machine learning models while
ensuring an optimal assessment of their performance.

The comparison and analysis of the developed
models were conducted using standard methods,
including visual analysis of cross-plots and graphs
comparing actual and calculated data, correlation
coefficient assessment, as well as a quantitative
assessment of metrics used for analyzing the reliability
of machine learning regression models. Specifically,
the metrics considered were Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE),
Mean Squared Error (MSE), and R2.

The MAE metric (Mean Absolute Error) is a way
to measure how much a model or forecast deviates
from the actual data. It measures the average
absolute difference between the predictions and the
actual values. In other words, MAE shows on average
how much the model is wrong, simply by summing
all the absolute differences and averaging them, its
formula is:

MAE (ylﬂle,ypred) = Nii‘yl —f (Xl, )‘
i=1

MAPE (Mean Absolute Percentage Error) is a
metric used to assess the accuracy of forecasts or
models. It measures the percentage error of the
predictions compared to the actual values of the data,
its formula is:

Y y-filx
MAPE(yW’de)=NiiZ;‘ |y,-|( _)‘
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Table 2
Best independent variable for continuous dependence
S, S, TOC T,

Parameter
F-value p-value F-value p-value F-value p-value F-value p-value
IK 128.565 < 10-6 93.6135 < 10-6 70.0153 < 10-6 87.0745 < 10-6
BK 94.7325 < 10-6 81.4088 < 10-6 64.8119 < 10-6 79.9992 < 10-6
GK 88.6548 < 10-6 150.454 < 10-6 115.153 < 10-6 68.8253 < 10-6
GK/NKT 90.0042 < 10-6 184.877 < 10-6 141.035 < 10-6 58.5804 < 10-6
InGK/NKT 61.9647 < 10-6 124.936 < 10-6 102.278 < 10-6 45.8759 < 10-6
NKT 49.1096 < 10-6 96.9236 < 10-6 88.2218 < 10-6 39.3733 < 10-6
InIK 1.51223 0.15865 1.73305 0.09718 0.75432 0.62586 0.63281 0.72908
InBK 1.76144 0.10343 1.63941 0.13251 1.54953 0.15834 0.18478 0.98111

MSE, or Mean Squared Error, is a metric used to
measure how close predicted values are to actual
values in regression tasks. In other words, it measures
the average of the squared differences between
predicted and actual values, its formula is:

msE (y=,y) = L3y, - (x)f

R? metric (or coefficient of determination) is a
statistical measure that helps assess how well a model
(such as linear regression) fits the data. It measures
the proportion of variance (spread) in the dependent
variable that the model explains. In other words, R?
shows how close the model's predictions are to the
actual data. Its formula, is:

R*=1- Zil(‘yi -f (%, ))2.
> T

Research results

To perform the task of foreastig the values of
dependent variables (S,, S,, TOC, T,,) based on
independent variables (BK, IK, GK, NKT, InBK, InIK,
GK/NKT, In(GK/NKT)), the software product from
StatSoft was chosen."

During the first iteration, after loading the training
sample, feature selection was performed using the
Feature Selection method. In this iteration, the criteria
such as the F-value and p-value were calculated for
each independent variable and each dependent
variable in various learning methods. These criteria
served for identifying the most significant variables,
while variables with low statistical significance were
excluded from further analysis.

Results of the analysis are presented in Table 2,
which lists the F-values and p-values for each variable.
The analysis of the table, made it possible to draw the
following conclusions:

« significant variables: from the p-value analysis, the
variables IK, BK, GK/NKT, GK, GK/NKT and NKT are
identified, which have p-values significantly below 0.05
This indicates a statistically significant relationship
between these variables and the dependent variables;

* insignificant variables: variables InBK and InIK
have higher p-values, indicating a lack of statistically
significant association with the dependent variable,
making their inclusion in the models unjustified;

* F-test values: The F-test values for IK and BK are
higher compared to other variables, indicating a
stronger relationship between them and the dependent
variable.

To achieve optimal performance and results in the
data analysis task, the following initial model settings
were chosen:

Boosted Trees:

— minimum number of elements in a node to stop
splitting: 79;

— minimum size of child node to stop splitting: 1;

— maximum tree depth: 32 levels;

— maximum number of nodes in a tree: 15.

These parameters help control the tree structure
and prevent overfitting.

Neural Network (MLP):

— minimum number of neurons in the hidden layer: 3;

— the maximum number of neurons in the hidden
layer: 64;

— Number of trained neural networks: 500.

These settings help to experiment with different
network architectures and save the best result.

SVM: kernel type: RBF (radial basis function).

Using the RBF kernel allows working with
nonlinear data and improves the ability of SVM to
separate complex data.

These initial parameters are selected considering
the specific characteristics of the task and will allow
our models to analyze the data effectively."

Next, dependency models for the parameters S;, S,,
Thx 1 TOC were built using the selected machine
learning methods, as well as multiple linear regression.
Table 3 presents the correlation coefficient values for
pairs of actual and calculated values.

HEAPOMNOJIb3OBAHUE
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Table 3
Correlation coefficients of ML models
Method S, s, S+, T, . TOC

Boosted trees 0.819315 0.815852 0.823565 0.802799 0.825891 =
Neural Network 0.735394 0.774090 0.785101 0.542445 0.752758 9
SVM 0.681148 0.699781 0.719783 0.528209 0,666530 g
Multiple regression 0.730231 0.769166 0.781709 0.490886 0.742394 E
n
Table 4 E
Comparison of predictive models' correlation, using linear regression and Boosted Trees methods Eé)
Linear Regression / 8
Machine learning ML_S, MLS, MLS, +S, ML_T,,, ML_TOC >
RegrssS,; 0.926029 0.919872 0.928922 0.562976 0.863218 §
RegrssS, 0.902885 0.955211 0.957815 0.524011 0.905242 %
RegrssS; +S, 0.905664 0.955484 0.958337 0.528347 0.905805 H
RegrssT, .. 0.826240 0.776076 0.788178 0.634128 0.733300 (%
RegrssTOC 0.881811 0.950323 0.950109 0.516769 0.914215 $

The analysis of all three models for predicting the
variables allows us to draw the following general
conclusions:

1. Boosted Trees Model:

» for predicting target variables, this model
demonstrated excellent results with low mean square
error and high correlation on the training sample;

» the importance of independent variables is
diferrent for S, and T, but in both cases the model
showed their statistical significance;

* The Boosted Trees model is the best of those
considered for both target variables.

2. Neural network (MLP):

 The neural network demonstrated good correlation
with the target variables, although the mean square
error and correlation were lower, compared to the
Boosted Trees model,

« after additional hyperparameter tuning an increase
in the model performance was achieved.

3. SVM (Support Vector Machine) model:

» The SVM model showed low correlation with target
variables, mean square error was also higher than the
Boosted Trees model and neural network;

» This model has the lowest correlation coefficient
and the highest standard error among all the models
considered.

For all target variables, the Boosted Trees model is
the best because it has the optimal combination of low
error and high correlation. The neural network can be
used if an alternative model is required, but it will
require additional tuning. The SVM model may be less
preferable due to higher mean square error and low
correlation. To make a final choice of model, it is also
necessary to evaluate their performance on a test
sample.

The results' analysis showed that among the
regression models obtained by machine learning
methods, the Boosted Trees model stands out with the
highest correlation coefficient values. The lowest
correlation coefficient was achieved by the Support

Vector Machine (SVM), which is a natural result, since
this method operates best in classification tasks, not
regression. The multiple linear regression and neural
network methods showed approximately the same
average result, which is also a natural result, given the
general similarity in the methodology for developing
dependency models.

Regarding the multiple linear regression method,
the results of the Boosted Trees model show an
increased correlation coefficient. Consequently, further
comparative analysis was carried out between the
results of these models.

Correlation analysis of the models developed using
the Boosted Trees and multiple linear regression
methods, showed a fairly high linear relationship
between the parameters. The correlation matrix is given
in Table 4, cross-plots of dependencies for the
calculated values of the S;, S,, T,.., and TOC parameters
are shown in Fig. 1.

The analysis of the correlation matrix and
dependence graphs of forecast results obtained
through linear regression and the Boosted Trees
method showed that the relationship between the
parameters is linear with a high correlation
coefficient. The most significant difference in results
was observed when predicting the parameter T,
where the Boosted Trees method demonstrated greater
forecast accuracy compared to linear regression.
Additionally, the graph showing the relationship
between parameters calculated by different methods
does not exhibit a clear linear connection.

Next, a visual comparison of the forecast results for
geochemical parameters obtained by different methods
with experimental data was conducted (Fig. 2). The
Boosted Trees method was chosen as the method with
the highest correlation and the linear regression
method as the most common for solving similar
problems.

The visual analysis of the comparison between
synthetic parameter curves and laboratory research
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Fig. 1. Comparison Graphs of estimated values using linear regression methods
and Boosted Trees for parameters: a— S;; b-S,; ¢ — T,,; d — TOC

° * ° Valuﬁen * o
a
Fig. 2. Comparison of experimental data from geochemical studies
with a synthetic curve of parameters: a - S; and S,; b - TOC
Table 5
Quantitative metrics for assessing model reliability
Parameter Metric/Method MAE (less — better) MAPE (less — more) MSE (less — better) R,(bigger — better)
s [ seww [ ase T ode
s, Neural network 1.342 51.98% 1.801 0.541
Boosted trees
Linear regression
s
s, Neural network 130.480
Boosted trees
Linear regression 11.383 61.30% 129.571 0.591
T Neural network 3.967 0.91% 15.735 0.294
e Boosted trees
Linear regression
v
ToC Neural network

Boosted trees

Linear regression 2.206 50.76% 4.868 0.551

Note:* — cells that characterize the model as more accurate are marked in green, and cells that characterize the model as less accurate are
marked in red.
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Fig. 3. Comparison of crossplots of estimated pairs and experimental values
for linear regression models and Boosted Trees parameters: a—S;; b—S,; ¢ — T,..; d - TOC

results showed that both models adequately capture the
trend in the changes of geochemical properties.
However, the visual differences between the predicting
models are insufficient to draw conclusions about the
superiority of one over the other. Due to the lack of
visual differentiation between the models, standard
metrics were calculated and compared. The results of
the metric comparison are presented in Table 5.

Considering the presented metrics (MAE, MAPE,
MSE, and R?) for all four parameters (S, S,, T, and
TOC), a general conclusion can be drawn that Boosted
Trees is the best machine learning model among all
the methods considered.

The Boosted Trees model is defined in the following
ways:

1. Prediction Accuracy: Boosted Trees have the
lowest MAE and MSE values, which means they
predict values closer to the actual data and have
smaller errors in absolute and squared values.

2. Percentage Errors: Boosted Trees method also
shows the lowest MAPE values, which indicates the
lowest percentage errors in predictions. This means
that the predictions generated by Boosted Trees are
the least distorted in relative terms.

3. Ability to explain variability: Boosted Trees
show the highest R? values for all parameters, which
indicates their superior ability to explain variability in
the data.

Consequently, Boosted Trees method is the best
choice for this task, providing the most accurate and
reliable predictions with the lowest errors in both
absolute values and percentage terms, as well as having
the highest ability to explain variability in the data.

A comparative visual analysis of the correlation
fields, presented in Fig. 3, also showed an increase in
the prediction accuracy of the model developed using
the Boosted Trees method, which also confirms the
conclusions obtained from the comparison of
numerical metrics for assessing the prediction models.

Conclusion

The study conducted an analysis of various
regression methods, among which the Boosted Trees
model stands out as the leader. This model
demonstrates the best results among all the tested
methods, with the lowest errors (MAE and MSE) and
the highest coefficient of determination (R?. Boosted
Trees provide accurate and stable forecasting results,
supported by visual analysis. The research shows that
the Boosted Trees model is more effective and
accurate than the linear regression method for
establishing the "core — well-logging" relationship for
geochemical data.

By using alternative regression methods based on
machine learning algorithms, geochemical parameters
were calculated, including S;, S, and T,,, which
could not be performed earlier. The use of machine
learning methods has improved the accuracy of
assesing the geochemical parameters across well
section, which will lead to increased accuracy of
models for the distribution of rock properties over
an area.

Machine learning methods in geology have great
potential for applications in regression tasks,
discrimination, and making various predictions based
on the identified patterns. However, this requires
careful data preprocessing, selection of the best
models and training methods, and -careful
verification of the results. Despite these technical
challenges, the use of machine learning in geology
opens up new prospects for scientists and
researchers, allowing for more accurate data analysis
and interpretation, as well as for production
decisions based on this data.

The geochemical properties assessment of rocks in
this formation significantly contributes to forecasting
hydrocarbon potential, as well as assessing the
prospects of underexplored areas and deep horizons.
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The results of the studies will be used for further for calculating oil reserves in the deposits of the
reservoir identification and their classification into Bazhenov horizon in the Western Siberian oil and gas
two types according to methodological recommendations province.
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