Perm Journal of Petroleum and Mining Engineering. 2024. Vol.24, no.1. P.10-17. DOI: 10.15593/2712-8008/2024.1.2

UDC 622+550.4:551.2 Article / Статья © PNRPU / ПНИПУ, 2024

On the Issue of Dispersed Organic Matter Differentiation in the Upper Devonian-Tournaisian Strata at the Perm Krai

Vadim L. Voevodkin

PJSC LUKOIL (11, Sretensky Boulevard, Moscow, 101000, Russian Federation)

К вопросу о дифференциации рассеянного органического вещества Верхнедевонско-Турнейской толщи территории Пермского края

В.Л. Воеводкин

ПАО «ЛУКОЙЛ» (Российская Федерация, 101000 г. Москва, Сретенский бульвар, д. 11)

Received / Получена: 04.09.2023. Accepted / Принята: 29.02.2024. Published / Опубликована: 31.03.2024

Keywords: chemical and bituminological characteristics, statistical data analysis, Upper Devonian-Tournaisian strata, DOM dispersed organic matter transformation, oilgenerating potential, dispersed organic matter differentiation, Domanik horizon, epigenetic biumoids. One of the aspects of the formation of the hydrocarbon potential of the main oil and gas source rock (OGSR) of Upper Devonian-Tournaisian age in the context of the sedimentary cover of the Perm Krai was considered. The subject of study was the basic chemical and bituminological characteristics of dispersed organic matter (DOM) of source rocks. The sample of parameters collected to study the thickness contained more than 4300 definitions. The main goal of the study was to differentiate the dispersed rocks organic matter depending on the distribution of bitumen coefficient values and the enrichment degree of strata with organic carbon. According to the conditions of formation, the Upper Devonian-Tournaisian rock was characterized by the maximum development in this territory of favorable geochemical facies, under the conditions of which the DOM transformation into petroleum hydrocarbons occurs. Statistical analysis of the average values of chemical and bituminological parameters confirmed the syngenetic nature of the DOM to the containing rock with a high degree of transformation of the oil and gas content. Further, based on fundamental research, in particular the Uspensky-Vassoevich relationship, the differentiation of DOM of the Devonian-Tournaisian formation into syngenetic, mixed and epigenetic was for the first time quantitatively substantiated. By studying the sample using regression and discriminant analysis methods, it was shown that the identified types of DOM were statistically different in the ratio of the parameters C_{org} and β , which proved their relationship to bitumen of different types. For each identified type of DOM within the stratigraphic units of the main OGSR, different types of relationships between the studied parameters C_{org} and β , which characterized the individual intensity and direction of converting bitumen into micro-oil. It was established that in this sequence the Domanik horizon itself was characterized by the widest development of epigenetic bitumen.

Ключевые слова: химико-битуминологические характеристики, статистический анализ данных, Верхнедевонско-Турнейская толща, преобразование ров, нефтегенерирующий потен-циал, дифференциация ров, доманиковый горизонт, эпигенетичные биумоиды. Рассматривается один из аспектов формирования углеводородного потенциала основной нефтегазоматеринской толщи (HTMT) верхнедевонско-турнейского возраста в разрезе осадочного чехла территории Пермского края. Предметом изучения являются основные кимико-битуумнологические характеристики рассеянного органического вещества (POB) пород данной толщи. Выборка параметров, собранная для изучения толщи, содержит более чем 4300 определений. Основной целью исследования являются дифференциация рассеянного органического вещества пород в зависимости от распределения величин битумондонго коэффициента и степени обогащенности полщ органических улсеродом. По условиям формирования верхнедевонско-турнейская толща пород характеризуется максимальным развитием на данной территории благоприятных геохимических фаций, в условиях которых происходит преобразование POB в углеводороды нефтяного ряда. Статистический анализ средних значений химико-битуминологических параметров подтвердил сингенетичность POB вмещающей породе с высокой степенью преобразованности и обогащенности миграционно-способными битумоидами, что позволяет считать данную толщу нефтегазогенерировавшей и обеспечившей формирование нефтегазоносности разреза. Далее, опираясь на фундаментальные исследования, в частности зависимость Успенского Вассоевича, была впервые количественно обоснована дифференциация РOB девонско-турнейской толщи на синтенетичное, смешанное и эпигенетичное. Исследуя выборку методами регресионного и дискриминантного анализов, было показано, что выделенные типы POB, статистически различны по соотношению параметров *С*_{орг} и β, что доказывает их основной НГМТ были также статистически установлены различные типы POB вобъеме статитредических подразделений основной НГМТ были также статистически установлены различные типы сотношений исследуемых параметров *С*_{орг} и β. В езультате проведения авикрором установлены учеленокой толщи и статистических подразделений основной НГМТ были также статистически установлены различные по соотношению с и направленость продессов пр

© Vadim L. Voevodkin (Author ID in Scopus: 26654577800) – PhD in Geology and Mineralogy, Head of the Department of Industrial Safety, Ecology and Scientific and Technical Works (tel.: +007 (495) 627 44 44, e-mail: vgalkin@pstu.ru).

© Воеводкин Вадим Леонидович – кандидат геолого-минералогических наук, начальник Департамента промышленной безопасности, экологии и научнотехнических работ (тел.: + 007 (495) 627 44 44, e-mail: vgalkin@pstu.ru).

Please cite this article in English as:

Voevodkin V.L. On the issue of dispersed organic matter differentiation in the Upper Devonian-Tournaisian strata at the Perm Krai. *Perm Journal of Petroleum and Mining Engineering*, 2024, vol.24, no.1, pp.10-17. DOI: 10.15593/2712-8008/2024.1.2

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом: Воеводкин, В.Л. К вопросу о дифференциации рассеянного органического вещества Верхнедевонско-Турнейской толщи территории Пермского края / В.Л. Воеводкин // Недропользование. – 2024. – Т.24, №1. – С.10–17. DOI: 10.15593/2712-8008/2024.1.2

Introduction

Differentiation and typification of rock dispersed organic matter (DOM) in the Upper Devonian-Tournaisian sourse rock of the sedimentary cover in the Perm region was carried out according to the predominance degree of epigenetic bitumen (micro-oil) in it as the most mobile, migratory part of the syngenetic DOM. This geochemical criterion may be an additional search factor for areas with a low degree of exploration or deep-lying promising complexes [1-4]. The objects of this study are chemical and bituminological indicators (more than 4300 definitions) assessed in samples taken from wells penetrated Upper Devonian-Tournaisian deposits (D3f2-*C1t*) in the Perm Kama region. According to the author's opinion, these characteristics reflect the processes of DOM transformation and hydrocarbon (HC) generation in this deposit [5, 6]. To solve the differentiation problem chemical and bituminological indicators were studied using statistical analysis methods. Among the indicators involved in the analysis there is the percentage content of insoluble residue (I.O.), organic carbon (C_{org}), organic matter (OM), petroleum (B_{Pe}), chloroform (B_{Chl}), alcoholbenzene (B_{ab}) bitumoids and humic acids (HumA); and coefficients: neutrality (Kn) and bitumen (β). The use of geochemical DOM characteristics to solve problems of assuming oil and gas content in various formation intervals and territories has been repeatedly studied by scientists and presented in works [7–11].

The generation and emigration capabilities of Domanik type source rock which is the Upper Devonian-Tournaisian one (D3f2-C1t) in this area are beyond doubt and confirmed by many authors [12-15]. Sediments of the Upper Devonian-Tournaisian age which have the maximum oil and gas source potential in the Perm region are developed mainly within the uncompensated paleo-trench of the Kama-Kinel system (KKSP) [16-19]. According to structural and formational analysis performed by researchers of different years (O.M. Mkrtchyan, R.O. Khachatryan, I.K. Korolyuk, V.G. Kuznetsov, A.A. Aksenov, E.S. Larskaya, S.G. Neruchev, G. M. Parparova, S.I. Vaksman, V.N. Sharonov, T.V. Belokon, etc.), these deposits are usually divided into two formations: 1) Domanik type which is close to the stratotype and distinguished in the volume of the Semiluksky (Domanik) horizon of the Upper Devonian, developed within an uncompensated paleo-trench, and 2) Domanikoid type which is associated with the deposits as a whole depression facies in the axial parts of the KKSP from Upper Frasnian to Tournaisian [20-22]. In general, from the history of the deposit formation it can be noted that sediments of the Frasnian stage in the Perm region are widespread with the exception of the extreme northwestern regions. At this time it was that biggest part of the region territory which was characterized by the maximum development of relatively deep-water facies, favorable for the accumulation of Domanik deposits and their nonbituminous analogues. The thickness of the stage deposits is up to 350 m.

Distribution and the thickness of the Famennian stage sediments corresponds to the distribution of geochemical shallow-marine and relatively deep-water facies which existed in the southern and eastern region parts inherited from the Frasnian time. The thickness of Famennian stage sediments in the southern and southeastern regions increases to 500 m, that indicates a deeping of Famennian basin bed. In Tournaisian time, due to significant basin shallowing and reduction of deep-water and shallow-water shelves areas, the geochemical conditions of sediment

Fig. 1. Correlation field between the $C_{\rm org}$ and β parameters with identified D3f2–C1t DOM types

accumulation were much worse than for the underlying sediments and the degree of OM transformation was quite low. In Late Tournaisian time the system of uncompensated depressions is gradually leveled out by overlying sediments and ceases to exist. Thus, the Upper Devonian-Tournaisian source rock existed in favorable geochemical conditions for the source rock formation at the diagnosis stage [23–25].

At the beginning of the research a statistical analysis of the used indicators average values was performed for the entire complex of D3f2-C1t deposits. High average numbers of concentrations in the C_{org} and DOM rocks, reaching 0.98 and 1.12% respectively, characterizes it as an oil and gas source one [26, 27]. The average concentrations ratio of different compositions bitumen: $B_{Chl} - 0.217$ %, $B_{ab} - 0.181$ % and $B_{pe} - 0.023$ %, shows that the Upper Devonian-Tournaisian source rock is distinguished by high concentrations of the most migratory of them: $B_{\mbox{\tiny Chl}}$ and $B_{\mbox{\tiny ab}}.$ Bitumen extracted from DOM with petroleum-ether solvents (B_{ne}) constitute a small proportion in this deposit. The average content of non-bituminous components (HumA) in the deposit is low and amounts to 0.001 %. The content of insoluble OM in the rock is relatively low and averages 18.07 %. The neutrality coefficient (K_n) for the whole rock is 1.25 ea. which allows us to speak about the predominance of mobile, migratory bitumen in the deposit. The DOM transformation characteristic which is indicated by the bitumen coefficient β for a given deposit amounts to 23.50 %. That mostly indicates about the syngenetic nature of DOM containing oil source rock.

Thus, the studied rock belongs to the category of oil and gas generating ones and, in the opinion of many authors, could provide the entire Paleozoic oil and gas content in the sedimentary cover of the Perm region [28, 29].

Objectives for distinguishing types of DOM and conformity study of relationships between the C_{org} and β parameters generally in the rock

The basis for studying the degree of DOM differentiation of the main oil and gas generating source rocks in the Perm Kama region formation was based on the fundamental research by N.B. Vassoevich, V.A. Uspensky, according to which the relationship between the $C_{\rm org}$ content and the value of the bitumen coefficient β is a criterion for dividing DOM into syngenetic and epigenetic [30, 31]. To prepare the data for quantitative assessment all the $C_{\rm org}$ percentage determinations were generated from maximum to

minimum values and then it was used the linear regression method analysis in the Statistica program [31–33]. Consistently, by adding parameter values to the analysis, linear equations were constructed for the dependence of β on C_{org} content (6522 models), the first of which was based on 3 parameters, the next model was obtained with n = 4, and so on up to n = 6524. Constructed models graphical representation is shown in Fig. 1 taking into account the nature of the relationship between the C_{org} and β parameters for the Upper Devonian-Tournaisian source rock.

The established range of C_{org} values has a statistically significant inverse correlation with the coefficient β , and it is the boundary parameter between syngenetic and epigenetic DOM types.

In the correlation field three groups of different relationships between the $C_{\rm org}$ and β parameters are highlighted in color characterizing the DOM differentiation into syngenetic, epigenetic and mixed in the given deposit rocks. The given graph is characterized by significant nonlinearity and certain patterns of changes in the values of β from $C_{\rm org}$ at different ranges of changes in its $C_{\rm org}$ concentrations. This allows us to consider, on the one hand, the process of DOM transformation in a given deposit, passes according to a general scheme; on the other hand, the process intensity will be determined by different $C_{\rm org}$ concentrations [35–38].

Statistical studies of DOM selected groups is performed in order to prove its differentiation at the level of the whole studied deposit. An average values comparison of the C_{org} and β parameters using the Student's t test at a given significance level of $p \le 0.05$ for the three DOM identified types is given in Table 1.

The amount of data used to characterize the given deposit rock DOM is one of the most significant and evenly covering the formation of the Perm region entire territory. In the selected DOM groups there are 56.33 % definitions for syngenetic, 15.25 % for mixed and 28.41 % for epigenetic ones. As the analysis of six compared pairs of average values shows that only the average $C_{\rm org}$ values are not statistically different in two DOM pairs: syngenetic – mixed and mixed – epigenetic. For parameter β all average values are different, and the maximum level of difference is characterized by syngenetic and epigenetic DOM types. Consequently, the division of DOM into three groups is statistically proven and correct.

To assess the obtained relationships between the $C_{\rm org}$ and β parameters a correlation analysis was carried out to assess the ratio of obtained correlations between the parameters [39, 40]. Equations were derived for the entire sample and separately for the selected DOM types. The derived equations (Table 2) show that, in general, for the entire DOM sample a significant inverse correlation was established (p value \leq 0.05), and within the identified DOM types there are differences in the parameters ratios. For syngenetic DOM an inverse not statistically significant correlation was also obtained between the $C_{\rm org}$ and β parameters and for mixed and epigenetic DOM the correlations were positive, although not statistically significant.

Thus the DOM differentiation into syn- and epigenetic was substantiated, in general, for the *D3f2–C1t* deposit using linear regression analysis and differences in the average values of the C_{org} and β parameters were established in the identified DOM types. The results of the correlation analysis showed multidirectional relationships between the studied parameters for different DOM types.

In general, weak negative correlations were established for the whole deposit and for the singenetic DOM type, and weak positive ones were established for the mixed and epigenetic type, which corresponds to existing ideas and the dependence of N.B. Vassoevich.

Rationale for distinguishing DOM types and studying the patterns of relationships between the Corg and β parameters for stratigraphic deposit units

Further, the relationship between the C_{org} and β parameters will be studied according to a similar scheme more detailed for the stratigraphic units of the Upper Devonian-Tournaisian source rock – Sargayev, Domanik, Mendym horizons, Upper Frasnian substage, Famennian and Tournaisian stages.

The relationships between the β and C_{org} parameters for all stratigraphic units of the Upper Devonian-Tournaisian source rock are shown in Fig. 2 in the form of correlation fields.

According to the resulting distribution the deposit in Sargayev age is quite lean in terms of C_{org} concentration in the rock. For all DOM types the main number of determinations does not exceed 1-2 %. The main difference between the constructed relationship for the Domanik horizon is the distribution of the C_{org} parameter. A significant range of changes is observed in this parameter for all DOM types. The bulk of the values in syngenetic DOM vary within 0–10 %; C_{org} varies within the same range in mixed DOM and slightly less - up to 8 % - in epigenetic ones. The distribution of the Corg parameter in the Mendym horizon changes somewhat due to a decrease in concentrations in the determinations bulk to 1.5-2 % in the group of mixed and epigenetic DOM. Syngenetic DOM is also characterized by a decrease in the range of $C_{\rm org}$ values (0–3 %). The resulting distribution of parameters in the Upper Frasnian substage characterizes an even more reduced $C_{\rm org}$ amount to values of 0.5–1 % in the groups of epigenetic and mixed DOM and up to 2 % in the syngenetic group. For overlying deposits of the Famennian Stage the relationship between the parameters β and C_{org} reflects the minimum C_{org} concentrations (up to 1 %) in groups of epigenetic and mixed DOM; in syngenetic DOM this value increases to 8 %. The $C_{\rm org}$ content in the epigenetic and mixed DOM types of the Tournaisian Stage continues to decrease and does not exceed 0.5 %; in the syngenetic type it mainly varies from 0 to 2 %.

To analyze the differences in the average values of the C_{org} and β parameters in the identified DOM types for all stratigraphic units of the Upper Devonian-Tournaisian source rock, we will conduct an analysis using the Student's t test.

In Table 3 it is shown the average values and standard deviations for C_{org} and β parameters.

The average $C_{\rm org}$ concentrations (%) in the syngenetic, mixed and epigenetic DOM types up the section decrease slightly from the Sargayev horizon to the Tournaisian stage.

Only the Domanik horizon which is characterized by the most favorable recovery sedimentation conditions is characterized by a sharp increase in C_{org} concentrations (%) in all DOM types.

The average values of C_{org} content in all DOM types are close to each other and are statistically indistinguishable for the Sargayev, Mendym horizons, Upper Frasnian substage and Famennian stage.

In the Domanik horizon the average C_{org} concentrations values are statistically different while comparing syngenetic and epigenetic groups as well as mixed and epigenetic DOM types.

Comparing average values of $\mathit{\mathcal{C}}_{\! \text{org}}$ and β parameters by DOM types

Parameters,	Average values Types of DOM, <i>n</i> – amount of data			Criteria
				<u>t*</u>
Units.	Singenetic, $n = 1160$	Mixed, $n = 314$	Epigenetic, $n = 585$	р
	$1,031 \pm 2,352$	0,804 ± 1,762		$\frac{1,5892}{0,11222}$
C _{org} , %	$1,031 \pm 2,352$		0,636 ± 1,231	<u>-3,7951</u> 0,00015
		0,804 ± 1,762	0,636 ± 1,231	<u>1,6671</u> 0,09583
	5,374 ± 4,692	22,825 ± 3,744		<u>-60,9496</u> 0,00000
β, %	5,374 ± 4,692		80,900 ± 21,811	<u>-80,9006</u> 0,00000
		22,825 ± 3,744	80,900 ± 21,811	<u>-29,5303</u> 0,00000

N o t e : * - significant criteria characterizing statistical differences in parameters are highlighted in bold.

Table 2

Regression equations between $\textit{C}_{\!\textit{org}}$ and β parameters for DOM types

Group	Values of free terms of regression equations	Coefficient values at Corg	Parameters r	Parameters p^*
All data	24,313	-0,918	-0,069	0,00159
Singenetic	5,424	-0,075	-0,037	0,1992
Mixed	22,732	0,114	0,054	0,3408
Epigenetic	58,683	1,234	0,070	0,092

N o t e : * – significant criteria characterizing statistical differences in parameters are highlighted in bold.

Table 3

Comparing average values of $\mathit{C}_{\scriptscriptstyle \! org}$ and β parameters for sediments of the D3f2–C1t deposit

		Means, standard deviations		
Parameter, unit.		DOM type, <i>n</i> -amount of data		Student's t test*
	Singenetic	Mixed	Epigenetic	
		Sargayev horizon ($n = 72$, n	n = 15, n = 36)	
C %	$1,202 \pm 2,495$	$0,712 \pm 0,849$		0,7479
G _{org} , 70	$1,202 \pm 2,495$		$0,951 \pm 1,514$	0,55537
		$0,712 \pm 0,849$	$0,951 \pm 1,514$	-0,57184
	4,470 ± 4,436	22,399 ± 3,292		-14,7957
β, %	4,470 ± 4,436		57,113 ± 20,942	-20,5163
		22,399 ± 3,292	57,113 ± 20,942	-6,35035
		Domanik horizon ($n = 68, n$	n = 47, n = 76)	
C %	$3,254 \pm 3,563$	$2,840 \pm 3,604$		0,6100
C _{org} , 70	3,254 ± 3,563		1,910 ± 2,097	2,7911
		2,840 ± 3,604	$1,910 \pm 2,097$	1,8087
	8,475 ± 5,233	23,667 ± 3,557		-17,3147
β, %	8,475 ± 5,233		60,547 ± 21,781	-19,2170
		23,667 ± 3,557	60,547 ± 21,781	-11,4962
		Mendym horizon ($n = 72, n$	n = 15, n = 41	
	$1,226 \pm 1,988$	0,830 ± 0,717		0,7598
C _{org} , %	$1,226 \pm 1,988$		$1,091 \pm 1,475$	0,3801
		2,840 ± 3,604	$1,091 \pm 1,475$	0,65569
	6,589 ± 4,859	22,852 ± 3,990		-12,1216
β, %	6,589 ± 4,859	• •	59,395 ± 24,655	-17,6373
	· ·	22,852 ± 3,990	59,395 ± 24,655	-5,68074
		Upper Frasnian substage ($n = 11$	18, n = 31, n = 41	
	0.768 ± 1.443	$0,282 \pm 0,321$, , ,	1,8611
C _{org} , %	0.768 ± 1,443	, ,	0.310 ± 0.840	1,9205
	. ,	$0,282 \pm 0,321$	$0,310 \pm 0,840$	-0,17872
	5.171 ± 4,623	21.813 ±3,391	, ,	-18,7398
β. %	5.171 ± 4.623		60.638 ± 21.401	-26,5690
		21.813 ±3.391	60.638 ± 21.401	-9,98987
		Famennian Stage ($n = 354$, n	n = 96, n = 218)	.,
	0.785 ± 2.955	0.440±0.874		1.1294
C _{org} , %	0.785 + 2.955		0.310 + 0.742	2.3252
		0.440 ± 0.874	0.310 ± 0.742	1.3494
	5.570 ± 4.823	22.932 ±3.318		-32,4700
β. %	5.570 ± 4.823		60.358 ± 21.467	-46,1843
F , F		22.932 +3.318	60.358 + 21.467	-16.9429
		Turnasian Stage ($n = 468$, n	= 108, n = 173	10,9129
	0.892 ± 1.566	0.412±0.668		3.1126
C _{org} , %	0.892 + 1.566		0.390 + 0.623	4.0878
		0.412 ± 0.668	0.390 ± 0.623	0.2784
	4.783 + 4.329	22.628+3.754	0,000 = 0,020	-39.5315
ß. %	4.783 + 4.329	223,000 = 0,701	60.638 + 21.401	-26,5690
P, /0	$-1,00 \pm 1,029$		JUJUU - 21, 101	20,0070

N ot e : * – statistically different average values according to the t test with an acceptable significance level of $p \le 0.5$ are highlighted in bold.

Fig. 2. Correlation fields between the C_{org} and β parameters with selected DOM groups for stratigraphic units *D3f2–C1t* of the deposit

Table 4

Regression equations between the C_{org} and β parameters for the D3f2–C1t deposit sediments

Stratigraphic divisions	Regression equations for DOM types* 1. All data 2. Syngenetic 3. Mixed 4. Epigenetic	Correlation coefficient and significance level
	$\beta 1 = 21,916 + 0,139 C_{org}$	r = 0,011, p = 0,902
Cargovou horizon	$\beta 2 = 4,502 - 0,026 C_{org}$	r = -0,014, p = 0,903
Salgayev nonzon	$\beta 3 = 21,949 + 0,632 C_{org}$	r = 0,162, p = 0,561
-	β4 = 52,388 + 4,966 C _{org}	r = 0,359, p = 0,03
	$\beta 1 = 35,586 - 1,0133 C_{org}$	r = -0,116, p = 0,110
Domanik horizon	$\beta 2 = 7,677 + 0,245 C_{org}$	r = 0,167, p = 0,173
	$\beta 3 = 23,493 + 0,061 C_{org}$	r = 0,062, p = 0,679
-	$\beta 4 = 57,519 + 1,585 C_{org}$	r = 0,152, p = 0,188
	$\beta 1 = 24,881 + 0,464 C_{org}$	r = 0,028, p = 0,103
Mondum horizon	$\beta 2 = 6,532 + 0,046 C_{org}$	r = 0,019, p = 0,874
Mendyin nonzon –	$\beta 3 = 23,593 - 0,892 C_{org}$	r = -0,160, p = 0,568
-	$\beta 4 = 55,111 + 3,924 C_{org}$	r = 0,234, p = 0,568
	β1 = 21,657-3,050 C _{org}	r = -0,151, p = 0,037
Upper Fraggian substage	$\beta 2 = 5,552-0,495 C_{org}$	r = -0,154, p = 0,094
opper Frasiliali substage	$\beta 3 = 21,602 + 0,746 C_{org}$	r = 0,071, p = 0,705
-	$\beta 4 = 60,144 + 1,590 C_{org}$	r = 0,062, p = 0,698
	$\beta 1 = 26,851-1,281 C_{org}$	r = -0,101, p = 0,008
Economica Store	β2 = 5,702-0,167 C _{org}	r = -0,102, p = 0,054
Famelinan Stage	$\beta 3 = 23,083-0,343 C_{org}$	r = -0,076, p = 0,458
-	$\beta 4 = 60,413-0,177 C_{org}$	r = -0,006, p = 0,928
	$\beta 1 = 21,989-3,275 C_{org}$	r = -0,175, p = 0,000
Turnasian Stage	β2 = 5,201-0,468 C _{org}	r = -0,169, p = 0,0002
i urnasian stage	$\beta \bar{3} = 22,616 + 0,029 C_{org}$	r = 0,005, p = 0,957
=	$\beta 4 = 59,567-3,739 C_{org}$	r = -0,106, p = 0,165

N o t e : * - regression equations characterized by a significant relationship between the parameters are highlighted in bold.

Table 5

Percentage content of DOM types in sediments of the D3f2-C1t deposit

Sediments	DOM types,%		
Scuments	Syngenetic	Mixed	Epigenetic
Sargayev horizon	58,53	12,19	29,26
Domanik horizon	35,60	24,60	39,80
Mendym horizon	56,25	11,71	32,04
Upper Frasnian substage	62,10	16,31	21,57
Famennian Stage	52,99	14,37	32,64
Turnasian Stage	62,50	14,41	23,09

PERM JOURNAL OF PETROLEUM AND MINING ENGINEERING

In the Tournaisian Stage a statistical difference of the average C_{org} values was established in the pairs syngenetic – mixed and syngenetic – epigenetic DOM.

The average values of the bitumen coefficient β which characterizes the transformation degree of organic matter for all DOM types are statistically different in all stratigraphic deposit ranges which is confirmed by the above criteria. The maximum difference in average β values was found between syngenetic and epigenetic DOM types. The widespread development of syngenetic DOM is characteristic of the Domanik horizon itself where the bitumens transformation occurred more intensively. Epigenetic bitumens predominate over other types in all stratigraphic deposit ranges.

Thus, it can be argued that each stratigraphic element of the Upper Devonian-Tournaisian source rock has unique characteristics of DOM types and has a number of features that shape their oil-generating and oil storage potential.

The final stage of studying DOM types differentiation in the context of the main OGSR in the Upper Devonian-Tournaisian age was a study of regression relationships between the C_{org} content and the β value [41, 42]. As it was said before, according to research by N.B. Vassoevich and V.A. Uspensky, there are certain relationship types between C_{org} concentrations and the bitumen coefficient β value [43, 44] between different bitumen types. The constructed regression equations between the C_{org} and β parameters for the identified DOM types of individual stratigraphic units are given in Table 4.

Analysing the obtained regression equations makes it possible to evaluate the various relationships of the studied parameters of the studied deposit horizons and tiers in the selected DOM types. Regression equations obtained for all data without dividing into DOM types show that for almost all formation elements inverse correlations have been established between the β and $C_{\rm org}$ parameters. The exception is the Sargayev and Mendym horizons where the established connection between parameters is weak positive. The Upper Devonian-Tournaisian stratum has high average C_{org} concentrations values and up the section a slight content change in the deposit horizons does not have a significant effect on the process of converting bitumen (β). Regression equations obtained for syngenetic DOM show that for the Mendym and Domanik horizons characterized by maximum β values the $C_{\rm org}$ content influences the DOM transformation degree. Further up to an inverse regression relationship between these parameters was established across the formation.

According to the equations describing the connections for epigenetic DOM type, it has been established that a content increase of the most mobile bitumens (average β values) in the deposit in the upper formation level is based on high C_{org} concentrations.

In this particular case the equations describe positive relationships between the parameters.

While reaching high concentrations of epibitumoids in the Famennian and Tournaisian stages, the relationships change to slightly negative, the influence of C_{org} content on the DOM transformation becomes less.

Fig. 3. Relationship between DOM types in sediments of the D3f2-C1t deposit

Concluding the analysis of the various DOM types differentiation in the oil and gas source rock in the age D3f2-C1t, we present the percentage distribution of DOM types by stratigraphic units (Table 5).

Analyzing the given distribution by DOM types, it should be noted that the concentration of syngenetic DOM in the Domanik horizon sediments is minimal, that indicates its more intensive implementation compared to other deposit elements. The remaining stratigraphic elements are characterized by a higher percentage of syngenetic DOM confirming their oil and gas source potential.

Based on the epigenetic DOM ratio the Domanik horizon is also distinguished, which made the maximum contribution to the process of converting DOM into hydrocarbons.

In general, all other units of the Upper Devonian-Tournaisian source rock are enriched in the most mobile bitumens (micro-oil). A graphical representation of the DOM relationships within the *D3f2–C1t* deposits is shown in Fig. 3.

Conclusion

Thus, the studies performed for the main Upper Devonian-Tournaisian OGSR in relation to the territory of the Perm region showed the following results:

1. The entire currently available body of factual data on the geochemical and bituminological characteristics of dispersed organic matter along the section of D3f2-C1t deposit sediments has been generalized and statistically processed.

2. For the first time the boundary values of the Corg and β parameters for different types of bitumens were statistically substantiated and the DOM types in this deposit were differentiated.

3. Using regression analysis methods various relationships between the C_{org} and β parameters were established for the DOM types in each stratigraphic deposit unit reflecting its transformation processes into micro-oil.

4. The individual distribution of DOM types in each stratigraphic deposit unit and the features that form their oilgenerating and oil-accumulating potential have been proven.

5. It has been shown that the Domanik horizon of the studied Upper Devonian-Tournaisian source rock is characterized by maximum processes of DOM transformation into micro-oil and the widespread development of epigenetic bitumens.

References

^{1.} Stupakova A.V., Fadeeva N.P., Kalmykov G.A. Poiskovye kriterii nefti i gaza v domanikovykh otlozheniiakh Volgo-Ural'skogo basseina [Criteria for oil and gas search in Stupakova A.V., Fadeeva N.P., Kalmykov G.A. Poiskovye kriterii nefti i gaza v domanikovykh otlozheniiakh Volgo-Ural'skogo basseina [Criteria for oil and gas search in domanic deposits of the Volga-Ural basin]. *Georesursy*, 2015, no. 2 (61), pp. 77-86.
 Burshtein L.M., Zhidkova L.V., Kontorovich A.E., Melenevskii V.N. Model' katageneza organicheskogo veshchestva (na primere bazhenovskoi svity) [Model of catagenesis of organic matter (using the example of the Bazhenov Formation)]. *Geologiia i geofizika*, 1997, pp. 1070-1078.
 Magoon L.B., Dow W.G. The petroleum system - from source to trap. *AAPG memoir*, 2012, no. 60, 312 p. DOI: 10.1306/M60585
 Hantschel Th., Kauerauf A.I. Fundamentals of Basin and Petroleum Systems Modeling. *Springer-Verlag*. Berlin: Heidelberg, 2009, 482 p.
 Sterson M.E., Voevodkin V.L., Galkin V.I. K voprosu postroeniia geologo-matematicheskikh modelei sootnoshenii promyshlennykh zapasov i resursov dlia territorii Permskoi oblasti [On the issue of constructing geological and mathematical models of the relationships between industrial reserves and resources for the territory of the Perm region]. *Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii*, 2005, no. 9-10, pp. 15-18.

Galkin V.I., Kozlova I.A., Melkishev O.A., Shadrina M.A. Geokhimicheskie pokazateli ROV porod kak kriterii otsenki perspektiv neftegazonosnosti [Geochemical indicators of rock DOM as criteria for assessing oil and gas potential prospects]. *Neftepromyslovoe delo*, 2013, no. 9, pp. 28-31.
 Voevodkin V.L., Rastegaev A.V., Galkin V.I. Issledovanie sootnoshenii mezhdu resursami i zapasami nefti v predelakh iugo-vostochnogo bar'ernogo rifa Kamsko-Kinel'skoi sistemy progibov (KKSP) [Study of the relationship between resources and oil reserves within the southeastern barrier reef of the Kama-Kinel trough system].

Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2005, no. 9-10, pp. 9-12.

8. Galkin V.I., Kozlova I.A. Razrabotka veroiatnostno-statisticheskikh regional'no-zonal'nykh modelei prognoza neftegazonosnosti po dannym geokhimicheskikh issledovanii verkhnedevonskikh karbonatnykh otlozhenii [Development of probabilistic-statistical regional-zoning models of oil and gas potential prediction based on the data of geochemical studies of the Upper Devonian carbonate deposits]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2016, no. 6, pp. 40-45.

9. Krivoshchekov S.N., Kozlova I.A., Sannikov I.V. Otsenka perspektiv neftegazonosnosti zapadnoi chasti Solikamskoi depressii na osnove geokhimicheskikh i geodinamicheskikh dannykh [Estimate of the petroleum potential of the western Solikamsk depression based on geochemical and geodynamic data]. Neftianoe khoziaistvo, 2014, no. 6, pp. 12-15.

10. Punanova S.A. Mikroelementy neftei, ikh ispol'zovanie pri geokhimicheskikh issledovaniiakh i izuchenii protsessov migratsii [Trace elements of oils, their use in geochemical research and the study of migration processes]. Moscow: Nedra, 1974, 215 p. 11. Galkin V.I., Kozlova I.A., Melkishev O.A., Shadrina M.A. Geokhimicheskie pokazateli ROV porod kak kriterii otsenki perspektiv neftegazonosnosti [Geochemical

indicators of rock DOM as criteria for assessing oil and gas potential prospects]. *Nettepromyslovoe delo*, 2013, no. 9, pp. 28-31.
 Bickford M.E., Marsaglia K.M., Whitelaw M.J., Soegaard K. Correlation between Precambrian sequences in the Franklin Mountains Van Horn, West Texas: A progress report. *Rocky Mountain Section Meeting. Abstracts with Programs*, 1994, vol. 26, pp. 4-5.

13. Stashkova E.K., Frik M.G. Kompleksnoe izuchenie litologo-fatsial'nykh stratigraficheskikh, geokhimicheskikh svoistv porod i osobennostei uglevodorodnykh fliuidov v

sviazi s perspektivami neftegazonosnosti devonskikh terrigennykh otlozhenii [Å comprehensive study of lithofacies, stratigraphic, geochemical properties of rocks and characteristics of hydrocarbon fluids in connection with the oil and gas potential of Devonian terrigenous deposits]. Perm', 2005.

14. Blount J.G. The geochemistry, petrogenesis, and geochronology of the Precambrian meta-igneous rocks of Sierra Del Cuervo and Cerro El Carrizalillo. Chihuahua, Mexico: Austin, University of Texas, 1993.

15. Formirovanie i neftegazonosnosť domanikoidnykh formatsii [Formation and oil and gas potential of domanikoid formations]. Ed. O.M. Mkrtchian. Moscow: Nauka, 1990, 87 p.

16. Frik M.G., Titova G.I., Batova I.S. Zakonomernosti rasprostraneniia neftegazomaterinskikh tolshch nizhne-verkhnedevonskikh tolzohenii Permskogo kraia [Patterns of distribution of oil and gas source strata of the Lower-Upper Devonian deposits of the Perm region]. *Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii*, 2007, no. 4, pp. 17-29.

Adams D.C., Keller G.R. Precambrian basement geology of the Permian basin region of West Texas - New Mexico: A geophysical perspective. Am. Assoc. Petrol. Geol. Bull., 1996, vol. 80, pp. 410-431. DOI: 10.1306/64ED87FA-1724-11D7-8645000102C1865D
 Collen J.D., Newman R.H. Porosity development in deep sandstones, Taranak Basin. New Zealand. J. Southeast Asian. Reg. Sci., 1991, no. 5, pp. 449-452.

Titova G.I., Karaseva T.V., Gorbachev V.I. Novye dannye izotopno-geokhimicheskikh issledovanii gazov bol'shikh glubin [New data from isotope-geochemical studies of gases at great depths]. *Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii*, 2005, no. 3, pp. 76-81.
 Armstrong A.K., Wrucke C.T. Depositional environment of the carbonate members of the Middle Proterozoic Mescal Limestone, Apache Group, central and southern

 Provide and the provided and the provided and the provided included induced induc 1. Praditsionnoi konferentsii, posviashchennoi 120-letiiu Leonida Vasil'evicha Pustovalova, Moscow, 20-23 December 2022. Moscow: Rossiiskii gosudarstvennyi universitet nefti i gaza (natsional'nyi issledovatel'skii universitet) imeni I.M. Gubkina, 2022, pp. 107-109.
23. Petrov S.M., Lakhova A.I., Plotnikova I.N., Balitskii V.S. Geokhimicheskie aspekty preobrazovaniia neftianykh uglevodorodov v termodinamicheskikh usloviiakh sub i

sverkhkriticheskikh vodnykh fliuidov [Geochemical aspects of the transformation of petroleum hydrocarbons under the thermodynamic conditions of sub- and supercritical aqueous fluids]. Novye idei v naukakh o Zemle. Materialy XV Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Moscow, 01-02 April 2021. Moscow: Rossiiskii gosudarstvennyi geologorazvedochnyi universitet imeni S. Ordzhonikidze, 2021, vol. 5, pp. 168-172.

24. Plotnikova I.N., Ostroukhov S.B., Pronin N.V. Vysokouglerodistye tolshchi Volgo-Urala i ikh "generationnyi" potentsial (na primere Iuzhno-Tatarskogo svoda i prilegaiushchikh territorii) [High-carbon strata of the Volga-Urals and their "generation" potential (using the example of the South Tatar arch and adjacent territories)]. *O novoi paradigme razvitija neftegazovoi geologii. Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, Kazan', 02-04 September 2020*, Kazan': Ikhlas, 2020, pp. 68-71.

25. Plotnikova I.N., Shakirov A.N., Volodin S.A. Domanik Tatarstana: osobennosti stroeniia i perspektivy neftenosnosti [Domanik of Tatarstan: structural features and oil potential prospects]. Dostizheniia, problemy i perspektivy razvitiia neftegazovoi otrasli. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Al'met'evsk, 25-28 October 2017. Al'met'evsk: Al'met'evski i gosudarstvennyi neftianoi institut, 2018, vol. 2, pp. 16-22.

Mikhalevich I.M., Primina S.P. Primenenie matematicheskikh metodov pri analize geologicheskoi informatsii (s ispol'zovaniem kompiluternykh tekhnologii: Statistika) [Application of mathematical methods in the analysis of geological information (using computer technology: Statistika)]. Irkutsk: Irkutskii gosudarstvennyi universitet, 2006, no. 3, 115 p.
 Galkin V.I., Kozlova I.A., Nosov M.A., Krivoshchekov S.N. Reshenie regional nykh zadach prognozirovaniia neftenosnosti po dannym geologo-geokhimicheskogo

 27. John V.H., Rozova H.H., Rosova H.H., Rosova H.R., Krivosnickevo S.R. Resnickevo S.R. Resnicke perspektivami neftegazonsosnosti devonskikh terrigennykh otlozhenii, 2005, 342 p.

29. Modelirovanie protsessov katageneza organicheskogo veshchestva i neftegazoobrazovanie [Modeling the processes of catagenesis of organic matter and oil and gas formation]. Ed. E.A. Glebovskaia. Luningrad: Nedra, 1984, 139 p.

30. Vassoevich N.B. Teoriia osadochno-migratsionnogo proiskhozhdeniia nefti: (istoricheskii obzor i sovremennoe sostoianie) [Theory of sedimentary-migration origin of oil: (historical review and current state)]. *Izvestiia Akademii nauk SSSR. Seriia geologicheskaia*,1967, no. 11, pp. 135-156. 31. Voevodkin V.L., Antonov D.V., Galkin V.I., Kozlova I.A. Postroenie veroiatnostno-statisticheskikh modelei dlia differentsiatsii rasseiannogo organicheskogo

Netroina v Li, vianov D.v., odami v Li, vianov Li, vozvat in v robience vicinitation of vozvati in vozvati netrovati ne

Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2005, no. 9-10, pp. 44-48. 33. Khalafyan A.A. STATISTICA 6 Statistical analysis of data. 3rd ed. Textbook. Moscow: Binom-Press LLC, 2007, 512 p.

34. Davis J. Statistics and Analysis of Geological Data. Moscow: Mir, 1977, 353 p.

35. Galkin V.I., Koshkin K.A., Melkishev O.A., Kozlova I.A. Geological and statistical simulation for assessment of zonal oil and gas potential formation processes in the Visimskaya monocline. *IOP Conference Series: Earth and Environmental Science* - 2021: 14, Perm, Virtual, November 09-12, 2022, vol. 1021, 012061 p. DOI: 10.1088/1755-1315/1021/1/012061

Kozlova I.A., Krivoshchekov S.N., Zykova L.Iu. O vozmozhnosti neftegazoobrazovaniia v verkhneproterozoiskikh otlozheniiakh na territorii Permskogo kraia [Geological and geochemical assessment of oil and gas in the upper proterozoic possibility sediments of in the Perm Region]. *Neftianoe khoziaistvo*, 2014, no. 5, pp. 55-59.
 Galkin V.I., Koshkin K.A., Melkishev O.A. Obosnovanie zonal'noi neftegazonosnosti territorii Visimskoi monoklinali po geokhimicheskim kriteriiam [The justification

of zonal oil and gas potential of the territory of Visimskaya monocline by geochemical criterial. *Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo,* 2018, vol. 18, no. 1, pp. 4-15. DOI: 10.15593/2224-9923/2018.3.1
38. Galkin V.I., Karaseva T.V., Kozlova I.A. Differentsirovannaia veroiatnostnaia otsenka generatsionnykh protsessov v otlozheniiakh domanikovogo tipa Permskogo kraia [Differentiated probabilistic assessment of the generation processes in Domanic sediments of Perm region]. *Neftianoe khoziaistvo*, 2014, no. 12, pp. 103-105.
39. Houze O., Viturat D., Fjaere O.S. Dinamie data analjsis. Paris: Kappa Engineering, 2005.

40. Galkin V.I., Galkin S.V., Voevodkin V.L., Permiakov V.G. Postroenie statisticheskikh modelei otsenki koeffitsienta izvlecheniia nefti dlia ekspluatatsionnykh ob"ektov Permskogo Prikamia [Construction of statistical models for estimating the oil recovery factor for production facilities in the Perm Kama region]. *Neftianoe khoziaistvo*, 2011, no. 2, pp. 86-88. 41. Burnham A.K. Global Chemical Kinetics of Fossil Fuels. *Springer International Publishing AG*, 2017.

42. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Melkishev O.A. K obosnovaniju postroenija modelej zonal'nogo prognoza neftegazonosnosti dlia nizhnesrednevizeiskogo kompleksa Permskogo kraia [On the justification of the construction of models for oil and gas potential area forecast Visean deposits of Perm region]. Victiano e koziaistvo, 2015, no. 8, pp. 32-35.
 43. Uspenskii V.A., Indenbom F.B., Chernysheva A.S., Sennikova V.N. K razrabotke geneticheskoi klassifikatsii rasseiannogo organicheskogo veshchestva [Towards the

development of a genetic classification of dispersed organic matter]. *Voprosy obrazovaniia nefti. (Trudy VNIGRI)*, 1958, iss. 128, pp. 221-314. 44. Burshtein L.M., Zhidkova L.V., Kontorovich A.E., Melenevskii V.N. Model' katageneza organicheskogo veshchestva (na primere bazhenovskoi svity) [Model of catagenesis of organic matter (using the example of the Bazhenov Formation)]. *Geologiia i geofizika*, 1997, pp. 1070-1078.

Библиографический список

1. Ступакова, А.В. Поисковые критерии нефти и газа в доманиковых отложениях Волго-Уральского бассейна / А.В. Ступакова, Н.П. Фадеева, Г.А. Калмыков // Георесурсы. - 2015. - № 2(61). - С. 77-86.

2. Модель катагенеза органического вещества (на примере баженовской свиты) / Л.М. Бурштейн, Л.В. Жидкова, А.Э. Конторович, В.Н. Меленевский // Геология и геофизика. – 1997. – С. 1070–1078.

3. Magoon, L.B. The petroleum system - from source to trap / L.B. Magoon, W.G. Dow // AAPG memoir 60, 2012. - 312 p. DOI: 10.1306/M60585

PERM JOURNAL OF PETROLEUM AND MINING ENGINEERING

 Hantschel, Th. Fundamentals of Basin and Petroleum Systems Modeling / Th. Hantschel, A.I. Kauerauf // Springer-Verlag. – Berlin: Heidelberg, 2009. – 482 p.
 Мерсон, М.Э. К вопросу построения геолого-математических моделей соотношений промышленных запасов и ресурсов для территории Пермской области / М.Э. Мерсон, В.Л. Воеводкин, В.И. Галкин // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2005. – № 9-10. – С. 15–18.

м.ю. мерсон, Б.н. Босвана, Б.н. телкин // теология, теоризма и разработка пертиных и тазывых месторождении. – 2000. – м. /то. – С. 19–10. 6. Геохимические показатели РОВ пород как критерии оценки перспектив нефтегазоносности / В.И. Галкин, И.А. Козлова, О.А. Мелкишев, М.А. Шадрина // Нефтепромысловое дело. – 2013. – № 9. – С. 28–31.

7. Воеводкин, В.Л. Исследование соотношений между ресурсами и запасами нефти в пределах юго-восточного барьерного рифа Камско-Кинельской системы прогибов (ККСП) / В.Л. Воеводкин, А.В. Растегаев, В.И. Галкин // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2005. – № 9-10. – С. 9–12. 8. Галкин, В.И. Разработка вероятностно-статистических регионально-зональных моделей прогноза нефтегазоносности по данным геохимических исследований

верхнедевонских карбонатных отложений / В.И. Галкин, И.А. Козлова // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2016. – № 6. – С. 40–45. 9. Кривощеков, С.Н. Оценка перспектив нефтегазоносности западной части Соликамской депрессии на основе геохимических и геодинамических данных / С.Н. Кривощеков, И.А. Козлова, И.В. Санников // Нефтяное хозяйство. – 2014. – № 6. – С. 12–15.

10. Пунанова, С.А. Микроэлементы нефтей, их использование при геохимических исследованиях и изучении процессов миграции / С.А. Пунанова. – М.: Недра, 1974. – 215 с. 11. Геохимические показатели РОВ пород как критерии оценки перспектив нефтегазоносности / В.И. Галкин, И.А. Козлова, О.А. Мелкишев, М.А. Шадрина // Нефтепромысловое дело. - 2013. - № 9. - С. 28-31.

12. Correlation between Precambrian sequences in the Franklin Mountains Van Horn, West Texas: A progress report / M.E. Bickford, K.M. Marsaglia, M.J. Whitelaw, K. Soegaard; Geological Society of America // Rocky Mountain Section Meeting. Abstracts with Programs. – 1994. – Vol. 26. – P. 4–5.

Сташкова, Э.К. Комплексное изучение литолого-фациальных стратиграфических, геохимических свойств пород и особенностей углеводородных флюидов в связи с перспективами нефтегазоносности девонских терригенных отложений / Э.К. Сташкова, М.Г. Фрик. – Пермь, 2005.

14. Blount, J.G. The geochemistry, petrogenesis, and geochronology of the Precambrian meta-igneous rocks of Sierra Del Cuervo and Cerro El Carrizalillo / J.G. Blount. -Chihuahua, Mexico: Austin, University of Texas, 1993.

15. Формирование и нефтегазоносность доманикоидных формаций / под ред. О.М. Мкртчяна. – М.: Наука, – 1990. – 87 с. 16. Фрик, М.Г. Закономерности распространения нефтегазоматеринских толщ нижне-верхнедевонских отложений Пермского края / М.Г. Фрик, Г.И. Титова,

Adams, D.C. Precambrian basement geology of the Permian basin region of West Texas – New Mexico: A geophysical perspective / D.C. Adams, G.R. Keller // Am. Assoc. Petrol. Geol. Bull. – 1996. – Vol. 80. – P. 410–431. DOI: 10.1306/64ED87FA-1724-11D7-8645000102C1865D

18. Collen, J.D. Porosity development in deep sandstones, Taranak Basin. New Zealand / J.D. Collen, R.H. Newman // J. Southeast Asian. Reg. Sci. – 1991. – No 5. – P. 449–452. 19. Титова, Г.И. Новые данные изотопно-геохимических исследований газов больших глубин / Г.И. Титова, Т.В. Карасева, В.И. Горбачев // Геология, геофизика

и разработка нефтяных и газовых месторождений. – 2005. – № 3. – С. 76-81.

20. Armstrong, A.K. Depositional environment of the carbonate members of the Middle Proterozoic Mescal Limestone, Apache Group, central and southern Arizona / A.K. Armstrong, C.T. Wrucke // New Mexico Geology. – 1990. – Vol. 12, № 3. 21. Bruhn, R.L. Tectonics and sedimentology of Uinta Arch, Western Uinta Mountains, and Unita Basin / R.L. Bruhn, M.D. Picard, J.S. Isby // Paleotectonics and

Sedimentation in the Rocky Mountain Region, United States. – Ed. by J.A. Peterson. – 1986. – Vol. 41. – Р. 333–352. DOI: 10.1306/M41456C16 22. Плотникова, И.Н. Дифференциация микроэлементного состава пород доманиковой формации и палеофациальные условия ее формирования / И.Н. Плотникова, С.Б. Остроухов, Н.В. Пронин // Пустоваловские чтения 2022: материалы традиционной конференции, посвященной 120-летию Леонида Васильевича Пустовалова, Москва, 20-23 декабря 2022 года. – М.: Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина, 2022. – С. 107–109.

23. Геохимические аспекты преобразования нефтяных углеводородов в термодинамических условиях суб и сверхкритических водных флюидов / С.М. Петров, А.И. Лахова, И.Н. Плотникова, В.С. Балицкий // Новые идеи в науках о Земле: материалы XV Международной научно-практической конференции: в 7 т. Москва, 01-02 апреля 2021 года. - М.: Российский государственный геологоразведочный университет им. С. Орджоникидзе. - 2021. - Т. 5. - С. 168-172.

24. Плотникова, И.Н. Высокоуглеродистые толщи Волго-Урала и их «генерационный» потенциал (на примере Южно-Татарского свода и прилегающих территорий) / И.Н. Плотникова, С.Б. Остроухов, Н.В. Пронин // О новой парадигме развития нефтегазовой геологии: материалы международной научно-практической конференции, Казань, 02–04 сентября 2020 года. – Казань: Ихлас, 2020. – С. 68–71.

25. Плотникова, И.Н. Доманик Татарстана: особенности строения и перспективы нефтеносности / И.Н. Плотникова, А.Н. Шакиров, С.А. Володин // Достижения, проблемы и перспективы развития нефтегазовой отрасли: материалы Международной научно-практической конференции, Альметьевск, 25–28 октября 2017 года / Альметьевский государственный нефтяной институт. – Альметьевск: Альметьевский государственный нефтяной институт, 2018. – Т. 2. – С. 16–22.

Иихалевич, И.М. Применение математических методов при анализе геологической информации (с использованием компьютерных технологий: Statistika) / И.М. Михалевич, С.П. Примина. – Иркутск: Иркутский государственный университет, 2006. – Ч. 3. – 115 с.
 Решение региональных задач прогнозирования нефтеносности по данным геолого-геохимического анализа рассеянного органического вещества пород

доманикового типа / В.И. Галкин, И.А. Козлова, М.А. Носов, С.Н. Кривощеков // Нефтяное хозяйство. – 2015. – № 1. – С. 21–23.

28. Сташкова, Э.К. Научное обоснование нефтегазоносности девонских отложений на основе комплекса геологических, литолого-фациальных и геохимических исследований / Э.К. Сташкова, М.Г. Фрик // Комплексное изучение литолого-фациальных, стратиграфических, геохимических свойств пород и особенностей

углеодородных флюидов в связи с перспективами нефтегазонсосности девонских терригенных отложений. – 2005. – С. 342. 29. Моделирование процессов катагенеза органического вещества и нефтегазообразование / Всесоюз. нефт. н.-и. геол.-развед. ин-т; под ред. Е.А. Глебовской. – Л.: Недра, 1984. – 139 с.

30. Вассоевич, Н.Б. Теория осадочно-миграционного происхождения нефти: (исторический обзор и современное состояние) / Н.Б. Вассоевич // Изв. АН СССР. Сер. геол. –1967. – № 11. – С. 135–156.

31. Построение вероятностно-статистических моделей для дифференциации рассеянного органического вещества пород территории Пермского края / В.Л. Воеводкин, Д.В. Антонов, В.И. Галкин, И.А. Козлова // Нефтяное хозяйство. – 2023. – № 12. – С. 100–104. DOI: 10.24887/0028-2448-2023-12-100-104 32. Дзюбенко, А.И. Оценка достоверности геолого-промысловой информации / А.И. Дзюбенко, В.А. Мордвинов, В.Л. Воеводкин // Геология, геофизика и

разработка нефтяных и газовых месторождений. - 2005. - № 9-10. - С. 44-48.

 Khalafyan, A.A. STATISTICA 6 Statistical analysis of data / A.A. Khalafyan. – 3rd ed. Textbook. – M.: Binom-Press LLC, 2007. – 512 p.
 Davis, J. Statistics and Analysis of Geological Data / J. Davis. – M.: Mir, 1977. – 353 p.
 Geological and statistical simulation for assessment of zonal oil and gas potential formation processes in the Visimskaya monocline / V.I. Galkin, K.A. Koshkin, O.A. Melkishev, I.A. Kozlova // IOP Conference Series: Earth and Environmental Science – 2021: 14, Perm, Virtual, November 09–12. – 2022. – Vol. 1021. – P. 012061. DOI: 10.1088/1755-1315/1021/1/012061

36. Козлова, И.А. О возможности нефтегазообразования в верхнепротерозойских отложениях на территории Пермского края / И.А. Козлова, С.Н. Кривощеков, Л.Ю. Зыкова // Нефтяное хозяйство. – 2014. – № 5. – С. 55-59.
 Галкин, В.И. Обоснование зональной нефтегазоносности территории Висимской моноклинали по геохимическим критериям / В.И. Галкин, К.А. Кошкин,

О.А. Мелкишев // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2018. Т. 18, № 1. – С. 4–15. DOI: 10.15593/2224-9923/2018.3.1

38. Галкин, В.И. Дифференцированная вероятностная оценка генерационных процессов в отложениях доманикового типа Пермского края / В.И. Галкин, Т.В. Карасева, И.А. Козлова // Нефтяное хозяйство. – 2014. – № 12. – С. 103–105.
 39. Houze, O. Dinamie data analjsis / O. Houze, D. Viturat, O.S. Fjaere. – Paris: Kappa Engineering, 2005.

Послед, с. Блаше ана шады» / С. Поде, Б. Чана, О.С. Грассе, Ганая, нари виднесник, 2000.
 Послед, С. Блаше ана шады» / С. Поде, Б. Чана, О.С. Грассе, Ганая, нари виднесник, 2000.
 Послед, С. Блаше ана шады» / С. Поде, Б. Чана, О.С. Грассе, Ганая, нари виднесник, 2000.
 Послед, С. Банане, С. В. Салкин, В.Г. Пермяков // Нефтяное хозяйство. – 2011. – № 2. – С. 86–88.
 Вигланат, А.К. Global Chemical Kinetics of Fossil Fuels / А.К. Burnham // Springer International Publishing AG. – 2017.

42. К обоснованию построения моделей зонального прогноза нефтегазоносности для нижне-средневизейского комплекса Пермского края / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, О.А. Мелкишев // Нефтяное хозяйство. – 2015. – № 8. – С. 32–35.

43. К разработке генетической классификации рассеянного органического вещества / В.А. Успенский, Ф.Б. Инденбом, А.С. Чернышева, В.Н. Сенникова // Вопросы образования нефти. (Тр. ВНИГРИ). – 1958. – Вып. 128. – С. 221–314.

44. Модель катагенеза органического вещества (на примере баженовской свиты) / Л.М. Бурштейн, Л.В. Жидкова, А.Э. Конторович, В.Н. Меленевский // Геология и геофизика. – 1997. – С. 1070–1078.

Funding. The study has no sponsorship.

Conflict of interest. The author declares no conflict of interest. The author's contribution is 100 %.