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 Oil production forecasting plays an important role in efficient oil field development. This helps to adjust the current field
development system. Detailed and accurate forecasting of oil production levels is necessary to assess the economic and
technological efficiency of oil field development. Forecasting production levels can be performed in various ways, using special
software (tNavigator, etc.). Сommonly, it involves lengthy calculations, for rapid production levels forecast, it is possible to use
other tools, as machine learning. 
Machine learning and artificial intelligence application in the oil and gas industry has become increasingly popular in recent 
years, as by using historical production data, it is possible to forecast oil/liquid production levels. In addition, similar deposits 
with resembling geological characteristics and exploitation history can be used for the same purposes. 
In addition to machine learning and artificial intelligence application as a forecasting tool, it is possible to use decline curve analysis. 
Considering the importance of forecasting in terms of a strategic planning perspective, a wide range of methods have been
proposed to obtain accurate forecasts based on available data and computing power. This article provides a comprehensive 
analysis of the tools used for long-term oil production forecasting, including machine learning algorithms and decline curve
analysis (DCA), in particular. This article presents the results of applying the long and short-term memory model and its 
applicability on a candidate well.
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 Прогнозирование добычи нефти играет важную роль в эффективной разработке месторождения нефти. Это помогает 
скорректировать действующую систему разработки месторождения. Детальное и точное прогнозирование уровня
добычи нефти необходимо для оценки экономической и технологической эффективности разработки месторождения
нефти. Прогнозирование уровня добычи можно осуществить различными способами. Одним из таких может быть
использование специального программного обеспечения (tNavigator и др.). Использование данного программного
обеспечения иногда сопряжено с длительными расчетами, поэтому для оперативного прогнозирования уровня добычи 
возможно использование других инструментов, таких как машинное обучение. 
Использование машинного обучения и искусственного интеллекта в нефтегазовой отрасли приобретает все большую
популярность в последние годы, поскольку, используя исторические данные по добыче, возможно прогнозирование
уровней добычи нефти/жидкости. Кроме того, для аналогичных целей могут быть использованы аналогичные
месторождения со схожими геологическими характеристиками и историей эксплуатации. 
Помимо использования машинного обучения и искусственного интеллекта, в качестве инструмента прогнозирования
возможно применение анализ кривой падения. 
Учитывая важность прогнозирования с точки зрения стратегического планирования, предлагается широкий спектр 
методов для получения точных прогнозов, основанных на характере доступных данных и вычислительной мощности.
В данной статье представлен всесторонний анализ инструментов, используемых для долгосрочного прогнозирования
добычи нефти, включая алгоритмы машинного обучения и анализ кривой падения добычи (DCA). Представлены
результаты применения модели с долговременной и кратковременной памятью и ее практическая применимость на
примере ее использования на скважине кандидате.
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Introduction 
 

Oil production forecasting plays an important role 
in energy planning and decision making in the oil 
industry [1–3]. 

Considering the importance of oil production 
forecasting, various methods have been developed to 
provide forecasts based on available historical data. 

One of the methods is Decline curve analysis (DCA) 
based on the following fact: while developing an oil field, 
the production level decreases that could be described by 
using regularities. 

The analysis of the pressure decline curve allows 
to make a fairly accurate prediction due to the large 
number of analytical curves describing the nature of 
decline in production. One of the advantages of the 
forecasting method is the small amount of input data 
required. 

Advanced data-based approaches such as machine 
learning (ML) and artificial intelligence (AI) have 
become increasingly popular in recent years. These 
approaches allow to make the parameters forecasting on 
the basis of studied regularities and interrelations of 
development parameters. 

A one-dimensional long short-term memory (LSTM) 
model is considered and proposed, the main purpose of 
which is to calculate single-stage and multi-stage 
production forecasts.  

At present, a large number of research in machine 
learning to perform various oil and gas production 
goals have been carried out. For example, the research 
of M. Berihun [4] used feed-forward neural networks 
to model the flow of oil, gas and water. Data collected 
from a field located in the Malay Basin were used 
to evaluate the model performance. Random 
combinations of input parameters (e.g., water injection 
rate, water injection pressure, etc.) were selected to 
establish the relations between production and injection 
well parameters. The results showed that this type of 
feature extraction significantly improves the model 
performance and gives the root-mean-square error 
(RMSE) and the highest coefficient of determination 
when the model is trained using Bayesian 
regularization. 

S.M. Berneti and M. Shahbazyan [5] proposed a 
model based on the Imperialist competitive algorithm 
(ICA) to optimize the initial weight of feed-forward 
neural networks and to predict the oil flow rate from 
the wells in one of the Iranian oil fields in the northern 
Persian Gulf. The authors proposed the ICA-ANN 
(artificial neural network) model as a cheaper and 
faster alternative to multiphase flow meter [6]. The 
ICA-ANN model with two input parameters 
(temperature and pressure) gave the most accurate flow 
predictions with a RMS error of 0.0123 and an R2 
efficiency factor of 0.97. In a similar study А. Payaman, 
S. Salavati [7], the following input parameters for the 
neural network were used: pressure, choke size and the 
ratio of produced gas to oil (GF). Later, the forecasts 
were compared with the known empirical dependencies 
[8-12] used for predicting the flow of two-phase fluid 
through a wellhead choke. 

The authors P. Zhang, M. Zhao [13] in their 
research applied a back propagation neural 
network (BP) together with logging data and 
production history to predict oil and water flow rate. 
The input dataset was initially divided into three 
parts (static data, dynamic data and spatio-temporal 
dependencies) to account for the different effects of 
fluid flow in the reservoir rock and tubing string. 

The authors developed a Voronoi diagram to analyse 
the spatio-temporal dependencies between wells at the 
field level. The result showed, that the error in 
predicting oil flow rate is less than 7 % and water flow 
rate is within 5 %. 

The LSTM model was built and trained to 
forecast oil production in a Chinese oil field with 
5 production and 4 injection wells [14]. According 
to the analysis, the model was mostly influenced 
by the amount of remaining recoverable reserves and 
wellhead pressure. The root mean square error (RMSE) 
and mean absolute percentage error (MAPE) of 
the LSTM model were small with values of 0.985 and 
0.035, respectively. 
 

Research Methods 
 

The choice of LSTM neural networks for long-term oil 
production forecasting in this study is explained by the 
fact that the neural network allows capturing temporal 
dependencies in sequential data.  

A new class of neural networks, Recurrent Neural 
Networks (RNN), was introduced in the 1980s and 
specifically designed to solve time series problems 
[16–18]. The unique architecture belonging to RNNs 
allows them to store information over successive time 
steps, which makes them suitable for sequential data. 
During the training process, RNNs use a back 
propagation of error over time algorithm that allows 
weight correction by calculating gradients. Despite 
the advantages offered by RNN models for solving 
problems including sequences, gradient vanishing 
makes training increasingly inefficient over long time 
intervals of dependencies [19]. 

To reduce the limitations of RNN models, a more 
sophisticated variant, LSTM, was introduced [20]. 
Unlike RNN analogues, LSTM networks can capture 
long-term dependencies in sequential data and 
efficiently remember extended temporal relations, 
avoiding problems with derivatives. An inner solution 
to the problem is to use a Constant error carousel (CEC) 
in the model, which ensures the error signals to be 
stored in each unit cell, allowing gradients to be saved 
in long sequences [21, 22]. 
 

Cross-validation time series 
and hyperparameter tuning 

 
Machine learning uses a separate dataset to evaluate 

model performance [23–25]. To understand if the model 
generalizes and calculates the forecasted values 
effectively, the model performance is evaluated on a 
validation dataset during training. 

In machine learning, there are various types of 
validation methods [26–29] used to evaluate model 
behavior. The selection criteria depend on the specific 
type of data being processed and its size. Traditional 
validation methods, such as standard k-fold cross-
validation and simple holdout validation methods, 
cannot always be used with data that are time-
dependent. In contrast to these methods, time series 
cross-validation saves the data temporal order and is 
well suited for chronological type data [30].  

Figure 1 explains the basic principle of cross-checking. 
The points are the oil production in a particular month. 
The blue points are used by the model for training. 
The red points are the result of oil production forecast. 
Initially, the dataset from the first iteration is used 
(1st iteration – the model trained until 01.11.2017). 
After calculation of all forecast points in the model, 
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the number of test points is increased by one (2nd 
iteration – the model trained until 01.12.2018), and the 
values are calculated again. This sequence of actions 
is continued for all points in the forecast horizon, 
and at each step the mean arithmetic deviation (MAE) 
is used to estimate the difference between the real 
and forecasted moment. At the end, all errors are 
averaged to assess the model behaviour as new data 
becomes available. The procedure simulates a real-
world scenario where new monthly oil production 
data are regularly added to historical data, and the 
model is to adapt changing regularities as new data 
become available. 

This methodology allows fine-tuning of critical 
hyperparameters including window size, number 
of epochs and units in the LSTM architecture. 
Various algorithms available to select the optimal 
combination of hyperparameters significantly improve 
the forecasting performance of the model [31–36]. 
 

Performance evaluation values 
 

Evaluating the performance of the applied model is 
important to understand the quality of the forecasting 
model used [37, 38].  

Root mean square error (RMSE) is a standard 
criterion used to evaluate the quality of performance by 
quantifying the average error between observed and 
forecasted values [39]: 
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The arithmetic mean deviation is another effective 
measure for estimating a regression model: 
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Another important value for estimating a regression 
model is the mean square logarithmic error (MSLE), 
particularly effective for datasets following an exponential 
trend [40]. 
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Results 

 
This study used the data from the production well of 

oil field X of Western Siberia. Fig. 2 shows the oil and 
water production profile for the period from January, 1 
2003 to November, 1 2020. 

The red points on the production curve correspond 
to periods of workover/ well servicing (ESP isolation 
reduction, ESP voltage cut-off, reaching full capacity, 
etc.). The downtime periods ranged from 11 to 481 h 
and, as can be seen from the graph, they typically 
coincide with failures in fluid production. 

To start prediction with the LSTM model, it was 
necessary to determine the right number of 
hyperparameters such as number of segments, number of 
epochs and window size. 

To select the optimal number of epochs, window size 
and number of segments, the arithmetic mean deviation 
for various combinations of these parameters was 
calculated. 

Figure 3 shows the values of the arithmetic 
mean deviation for each of hyperparameters as 
vertical bars, and the value of the arithmetic 
mean deviation is indicated on the horizontal axis. 
It is worth noting that the deviation decreases as 
the complexity of the LSTM model increases. 
Considering the graph, we can conclude that as 
the number of hyperparameters increases, the accuracy 
of model prediction increases, also with increasing 
window size there is a decrease in the arithmetic 
mean deviation for several combinations of the units 
and epochs number. 

The graph analysis showed that to obtain the 
most accurate forecast, a model with the number of 
epochs equal to 100 and the number of segments equal 
to 128 should be used. After determining the 
combination of these hyperparameters, it was necessary 
to determine the optimal window size. For this purpose, 
the absolute error was calculated for each window size 
at each time interval (Fig. 4). 

Having determined the necessary hyperparameters, 
the given LSTM model was used to forecast oil 
production levels 36 months ahead. Three different 
approaches were used for production rate modeling. 
The first method (one-dimensional one-step model) 
meant that having forecasted the production one month 
ahead, the next forecasting step did not use the value 
calculated by the LSTM model, but the real-world value. 
Summing up, the following conclusion can be made that 
real data is necessary when forecasting production 
levels of this type (Fig. 5). 

The difference between the second approach 
(recursive forecasting) and the first one was the 
following: when forecasting at the second time 
step the model was trained on the value forecasted 
at the first time step. Thus, after several time steps, 
the model was trained on its previously forecasted 
values (Fig. 6). 

For production level forecast using the third method 
(one-dimensional multi-step model), the production 
profile was calculated for 36 months (Fig. 7). 

Each forecasted production profile was compared 
to the actual data, and the errors of each method were 
calculated: 1st method: RMSE = 22.48, MAE = 18.43, 
and MSLE = 0.52; 2nd method: RMSE = 30.46, 
MAE = 24.00, and MSLE = 0.71; 3rd method: 
RMSE = 31.72, MAE = 25.21, and MSLE = 1.03. Each 
model was also evaluated for possibility to overestimate 
or underestimate the values. 

Figure 8 shows the scatter diagram of monthly 
forecasts and actual data for the stated period with 
Pearson correlation coefficient equal to 0.66. A large 
cluster of points above the line passing through the 
origin with a slope of 1 is a clear sign of oil production 
overestimation. In addition, in the same figure we can 
see a comparison of historical and forecasted 
cumulative oil production for the period. At the end of 
the period, the model overestimates the cumulative 
actual data by 480 t. 

In contrast to the previous case, the recursive 
forecasting clearly underestimates the cumulative oil 
production. When analyzing fig. 9, 758 t of 
underestimated cumulative production can be noted. In 
addition, the diagram shows scattered data points with a 
correlation coefficient of Pearson 0.4. 

The one-dimensional multistep model overestimates 
cumulative oil production by 530 t. In this case, a more 
scattered plot can be observed with a Pearson 
correlation coefficient of – 0.22 (Fig. 10), indicating a 
negative correlation between the variables. 
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Fig. 1. Cross-validation of time series with increasing window size Номер итерации - Number of iteration 
 

 
 

Fig. 2. Oil/water production profile of the well 
 

 
 

Fig. 3. Arithmetic mean deviation for each combination of hyperparameters 
 

 
 

Fig. 4. Window size selection 
 

 
 

Fig. 5. Forecasting with a one-dimensional one-step model 
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Fig. 6. Recursive forecasting 
 

 
 

Fig. 7. Forecasting with a one-dimensional multi-step model 
 

 
 

Fig. 8. Scatter diagram in one-dimensional one-step model 
 

 
 

Fig. 9. Scatter diagram for recursive forecasting 
 

 
 

Fig. 10. Scatter diagram in a one-dimensional multistep model 
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Conclusion  
 

1. The aim of the study was to use machine learning 
algorithms, specifically LSTM, to conduct long-term 
oil production forecasts. The methodology included the 
use of cross-validation of time series with varying 
window size to determine the optimal combination of 
hyperparameters for the LSTM model. 

2. The results of the study showed that the one-
dimensional one-step bidirectional LSTM model demonstrated 
significantly lower error rates compared to the recursive one-
step forecast model and the multistep forecast model. 
However, it is important to realize that the one-dimensional 

one-step bidirectional LSTM model has practical limitations. 
During forecast, input and output pairs are generated using 
actual data. This aspect should be taken into account when 
evaluating its applicability in real scenarios. 

3. On the other hand, the recursive model showed a 
tendency to underestimate values over the three-year 
period. This characteristic implies a risk proneness, being 
potentially reliable in future decision-making of an oil and 
gas company. 

4. Future trends could include the study of 
multidimensional forecasting models as dynamic data. This 
extension could improve forecast accuracy by additional 
relevant factors. 
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