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Oil production forecasting plays an important role in efficient oil field development. This helps to adjust the current field
development system. Detailed and accurate forecasting of oil production levels is necessary to assess the economic and
technological efficiency of oil field development. Forecasting production levels can be performed in various ways, using special
software (tNavigator, etc.). Commonly, it involves lengthy calculations, for rapid production levels forecast, it is possible to use
other tools, as machine learning.

Machine learning and artificial intelligence application in the oil and gas industry has become increasingly popular in recent
years, as by using historical production data, it is possible to forecast oil/liquid production levels. In addition, similar deposits
with resembling geological characteristics and exploitation history can be used for the same purposes.

In addition to machine learning and artificial intelligence application as a forecasting tool, it is possible to use decline curve analysis.
Considering the importance of forecasting in terms of a strategic planning perspective, a wide range of methods have been
proposed to obtain accurate forecasts based on available data and computing power. This article provides a comprehensive
analysis of the tools used for long-term oil production forecasting, including machine learning algorithms and decline curve
analysis (DCA), in particular. This article presents the results of applying the long and short-term memory model and its
applicability on a candidate well.

TporHo3upoBaHue A00bYM HeTU UrpaeT BaXHYI0 pPosib B 3GQeKTUBHOH pa3paboTKe MeCTOpOXAeHUA HedTH. DTO IoMoraer
CKOPPEeKTUPOBATh [JEeHCTBYIONIYI CHCTeMy Ppa3pabOTKM MeCTOpOXAeHHus. JleTajbHOe U TOYHOE IPOTHO3UMPOBAaHME YDPOBHA
106614 HepTU HEo6XOAMMO JIl OLEHKU SKOHOMHYECKOU M TEeXHOJIOrnueckoil 3((deKTUBHOCTU pa3pabOTKU MeCTOPOXAeHUS
Heq.)TI/[. HpOFHOSl/IPOBaHHe YPOBHsA }:[06]:[‘11/1 MOXHO OCYIIECTBUTH pa3JINYHbBIMUA crocob6amu. O}ILHI/IM U3 TaKUX MOXET OBITh
HCIIOJIb30BAHUE CIIelMabHOro IporpaMmHoro obecnedenHus (tNavigator m jp.). Hcrnosb3oBaHHe [JaHHOTO IPOTrPAMMHOIO
obecrieueHUs VHOrJa CONpsKEHO C JJIMTEJIbHBIMU pacueTaMi, II0O3TOMY IJIA ON€PaTUBHOI'O IIPOTHO3MPOBAHUA YPOBHA }106])1‘{1/1
BO3MOXHO HCIIOJIb30BaHVE NPYTUX NHCTPYMEHTOB, TaKHUX KaK MalllMHHOE oﬁyqe}me.

Hcriosib30BaHye MAIIMHHOTO OOy4YeHMA U MCKYyCCTBEHHOrO MHTeJIJIeKTa B HedTerasoBoil OTpaciy NpuobpeTaeT Bce GOJIbIIYIO
IIONMyJIAPHOCTh B MOCJIEAHMNE I'OABI, INOCKOJIBKY, MCIIOJIb3YysA HCTOPUYECKHE NaHHBIE I10 }106})1‘{6, BO3MOXHO IIPOTrHO3VMpOBaHNE
ypoBHell noObuu HedTH/XuUAKocTH. KpoMme TOro, i1 aHAJIOTHMYHBIX IleJledl MOryT OBITh HCIIOJIb30BAHBI aHAJIOTUYHBIE
MECTOPOXAEHUA CO CXOXHUMU I'e0JIOTUYECKUMU XapaKTEepUCTUKaMU 1 I/ICTOPI/IefI OKCIUTyaTalyu.

TToMUMO MCHOJIb30BAaHUA MAaIIMHHOI'O Oﬁy‘IeHI/IH " UCKYCCTBEHHOI'O HMHTEJIJIEKTa, B Ka4yeCTBE€ MHCTPYMEHTa IPOTrHO3VPOBaHUA
BO3MOXHO IPpYMEHEHNE aHaJIu3 KpI/IBOﬁ nageHus.

YuuThiBasg BaXHOCTb IIPOrHO3UPOBAHUA C TOYKH 3pE€HUA CTPATErn4yeCcKoro IJIaHWPOBaHWsA, IMpeajiaraercsa IHI/IPOKI/IIjI CIIEKTp
METOAOB [JIA IIOJIYy4Y€HUA TOYHBIX IIPOTHO30B, OCHOBAaHHBIX Ha XapaKTepe AOCTYITHBIX NaHHBIX U BBIYMCIIUTEIIBHOMN MOIITHOCTH.
B naHHOI cTaThe NMpPeACTaBJIEeH BCECTOPOHHUE aHAJIN3 MHCTPYMEHTOB, MCIOJIb3YEMBIX JUIA JOJIOCPOYHOI'O MPOrHO3UPOBAHUA
no6euy HedTH, BKJIIOYAs AJITOPUTMBI MAIIMHHOTO OOyYeHHMs U aHajiu3 KpuBoil majgeHus noObruu (DCA). IlpencraBiieHs!
pesyJsIbTaThl NIPUMEHEHUs MOAEJH C JIOJTrOBPEMEHHON M KPAaTKOBPEMEHHON NMaMAThI0 M ee MpakThyeckas MPUMEHHMMOCTh Ha
MpUMepe ee UCINOJIb30BaHKA Ha CKBaXUHE KaHAWUATE.
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Introduction

Oil production forecasting plays an important role
in energy planning and decision making in the oil
industry [1-3].

Considering the importance of o0il production
forecasting, various methods have been developed to
provide forecasts based on available historical data.

One of the methods is Decline curve analysis (DCA)
based on the following fact: while developing an oil field,
the production level decreases that could be described by
using regularities.

The analysis of the pressure decline curve allows
to make a fairly accurate prediction due to the large
number of analytical curves describing the nature of
decline in production. One of the advantages of the
forecasting method is the small amount of input data
required.

Advanced data-based approaches such as machine
learning (ML) and artificial intelligence (AI) have
become increasingly popular in recent years. These
approaches allow to make the parameters forecasting on
the basis of studied regularities and interrelations of
development parameters.

A one-dimensional long short-term memory (LSTM)
model is considered and proposed, the main purpose of
which is to calculate single-stage and multi-stage
production forecasts.

At present, a large number of research in machine
learning to perform various oil and gas production
goals have been carried out. For example, the research
of M. Berihun [4] used feed-forward neural networks
to model the flow of oil, gas and water. Data collected
from a field located in the Malay Basin were used
to evaluate the model performance. Random
combinations of input parameters (e.g., water injection
rate, water injection pressure, etc.) were selected to
establish the relations between production and injection
well parameters. The results showed that this type of
feature extraction significantly improves the model
performance and gives the root-mean-square error
(RMSE) and the highest coefficient of determination
when the model is trained using Bayesian
regularization.

S.M. Berneti and M. Shahbazyan [5] proposed a
model based on the Imperialist competitive algorithm
(ICA) to optimize the initial weight of feed-forward
neural networks and to predict the oil flow rate from
the wells in one of the Iranian oil fields in the northern
Persian Gulf. The authors proposed the ICA-ANN
(artificial neural network) model as a cheaper and
faster alternative to multiphase flow meter [6]. The
ICA-ANN model with two input parameters
(temperature and pressure) gave the most accurate flow
predictions with a RMS error of 0.0123 and an R?
efficiency factor of 0.97. In a similar study A. Payaman,
S. Salavati [7], the following input parameters for the
neural network were used: pressure, choke size and the
ratio of produced gas to oil (GF). Later, the forecasts
were compared with the known empirical dependencies
[8-12] used for predicting the flow of two-phase fluid
through a wellhead choke.

The authors P. Zhang, M. Zhao [13] in their
research applied a back propagation neural
network (BP) together with logging data and
production history to predict oil and water flow rate.
The input dataset was initially divided into three
parts (static data, dynamic data and spatio-temporal
dependencies) to account for the different effects of
fluid flow in the reservoir rock and tubing string.

The authors developed a Voronoi diagram to analyse
the spatio-temporal dependencies between wells at the
field level. The result showed, that the error in
predicting oil flow rate is less than 7 % and water flow
rate is within 5 %.

The LSTM model was built and trained to
forecast oil production in a Chinese oil field with
5 production and 4 injection wells [14]. According
to the analysis, the model was mostly influenced
by the amount of remaining recoverable reserves and
wellhead pressure. The root mean square error (RMSE)
and mean absolute percentage error (MAPE) of
the LSTM model were small with values of 0.985 and
0.035, respectively.

Research Methods

The choice of LSTM neural networks for long-term oil
production forecasting in this study is explained by the
fact that the neural network allows capturing temporal
dependencies in sequential data.

A new class of neural networks, Recurrent Neural
Networks (RNN), was introduced in the 1980s and
specifically designed to solve time series problems
[16-18]. The unique architecture belonging to RNNs
allows them to store information over successive time
steps, which makes them suitable for sequential data.
During the training process, RNNs use a back
propagation of error over time algorithm that allows
weight correction by calculating gradients. Despite
the advantages offered by RNN models for solving
problems including sequences, gradient vanishing
makes training increasingly inefficient over long time
intervals of dependencies [19].

To reduce the limitations of RNN models, a more
sophisticated variant, LSTM, was introduced [20].
Unlike RNN analogues, LSTM networks can capture
long-term dependencies in sequential data and
efficiently remember extended temporal relations,
avoiding problems with derivatives. An inner solution
to the problem is to use a Constant error carousel (CEC)
in the model, which ensures the error signals to be
stored in each unit cell, allowing gradients to be saved
in long sequences [21, 22].

Cross-validation time series
and hyperparameter tuning

Machine learning uses a separate dataset to evaluate
model performance [23-25]. To understand if the model
generalizes and calculates the forecasted values
effectively, the model performance is evaluated on a
validation dataset during training.

In machine learning, there are various types of
validation methods [26-29] used to evaluate model
behavior. The selection criteria depend on the specific
type of data being processed and its size. Traditional
validation methods, such as standard k-fold cross-
validation and simple holdout validation methods,
cannot always be used with data that are time-
dependent. In contrast to these methods, time series
cross-validation saves the data temporal order and is
well suited for chronological type data [30].

Figure 1 explains the basic principle of cross-checking.
The points are the oil production in a particular month.
The blue points are used by the model for training.
The red points are the result of oil production forecast.
Initially, the dataset from the first iteration is used
(1st iteration — the model trained until 01.11.2017).
After calculation of all forecast points in the model,
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the number of test points is increased by one (2nd
iteration — the model trained until 01.12.2018), and the
values are calculated again. This sequence of actions
is continued for all points in the forecast horizon,
and at each step the mean arithmetic deviation (MAE)
is used to estimate the difference between the real
and forecasted moment. At the end, all errors are
averaged to assess the model behaviour as new data
becomes available. The procedure simulates a real-
world scenario where new monthly oil production
data are regularly added to historical data, and the
model is to adapt changing regularities as new data
become available.

This methodology allows fine-tuning of critical

hyperparameters including window size, number
of epochs and wunits in the LSTM architecture.
Various algorithms available to select the optimal

combination of hyperparameters significantly improve
the forecasting performance of the model [31-36].

Performance evaluation values

Evaluating the performance of the applied model is
important to understand the quality of the forecasting
model used [37, 38].

Root mean square error (RMSE) is a standard
criterion used to evaluate the quality of performance by
quantifying the average error between observed and
forecasted values [39]:

n

RMSE = |~3°(0, - B)". @

n i=1

The arithmetic mean deviation is another effective
measure for estimating a regression model:

(2)

0,-P|.

1 n
MAE =~
nZ

Another important value for estimating a regression
model is the mean square logarithmic error (MSLE),
particularly effective for datasets following an exponential
trend [40].

1 n
MSLE = ;Z(log(oi +1)-log (B + 1))

i=1

2

3

Results

This study used the data from the production well of
oil field X of Western Siberia. Fig. 2 shows the oil and
water production profile for the period from January, 1
2003 to November, 1 2020.

The red points on the production curve correspond
to periods of workover/ well servicing (ESP isolation
reduction, ESP voltage cut-off, reaching full capacity,
etc.). The downtime periods ranged from 11 to 481 h
and, as can be seen from the graph, they typically
coincide with failures in fluid production.

To start prediction with the LSTM model, it was
necessary to determine the right number of
hyperparameters such as number of segments, number of
epochs and window size.

To select the optimal number of epochs, window size
and number of segments, the arithmetic mean deviation
for various combinations of these parameters was
calculated.

Figure 3 shows the values of the arithmetic
mean deviation for each of hyperparameters as
vertical bars, and the value of the arithmetic
mean deviation is indicated on the horizontal axis.
It is worth noting that the deviation decreases as
the complexity of the LSTM model increases.
Considering the graph, we can conclude that as
the number of hyperparameters increases, the accuracy
of model prediction increases, also with increasing
window size there is a decrease in the arithmetic
mean deviation for several combinations of the units
and epochs number.

The graph analysis showed that to obtain the
most accurate forecast, a model with the number of
epochs equal to 100 and the number of segments equal
to 128 should be wused. After determining the
combination of these hyperparameters, it was necessary
to determine the optimal window size. For this purpose,
the absolute error was calculated for each window size
at each time interval (Fig. 4).

Having determined the necessary hyperparameters,
the given LSTM model was used to forecast oil
production levels 36 months ahead. Three different
approaches were used for production rate modeling.
The first method (one-dimensional one-step model)
meant that having forecasted the production one month
ahead, the next forecasting step did not use the value
calculated by the LSTM model, but the real-world value.
Summing up, the following conclusion can be made that
real data is necessary when forecasting production
levels of this type (Fig. 5).

The difference between the second approach
(recursive forecasting) and the first one was the
following: when forecasting at the second time
step the model was trained on the value forecasted
at the first time step. Thus, after several time steps,
the model was trained on its previously forecasted
values (Fig. 6).

For production level forecast using the third method
(one-dimensional multi-step model), the production
profile was calculated for 36 months (Fig. 7).

Each forecasted production profile was compared
to the actual data, and the errors of each method were
calculated: 1st method: RMSE = 22.48, MAE = 18.43,
and MSLE = 0.52; 2nd method: RMSE = 30.46,
MAE = 24.00, and MSLE = 0.71; 3rd method:
RMSE = 31.72, MAE = 25.21, and MSLE = 1.03. Each
model was also evaluated for possibility to overestimate
or underestimate the values.

Figure 8 shows the scatter diagram of monthly
forecasts and actual data for the stated period with
Pearson correlation coefficient equal to 0.66. A large
cluster of points above the line passing through the
origin with a slope of 1 is a clear sign of oil production
overestimation. In addition, in the same figure we can
see a comparison of historical and forecasted
cumulative oil production for the period. At the end of
the period, the model overestimates the cumulative
actual data by 480 t.

In contrast to the previous case, the recursive
forecasting clearly underestimates the cumulative oil
production. When analyzing fig. 9, 758 t of
underestimated cumulative production can be noted. In
addition, the diagram shows scattered data points with a
correlation coefficient of Pearson 0.4.

The one-dimensional multistep model overestimates
cumulative oil production by 530 t. In this case, a more
scattered plot can be observed with a Pearson
correlation coefficient of — 0.22 (Fig. 10), indicating a
negative correlation between the variables.
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Fig. 10. Scatter diagram in a one-dimensional multistep model
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Conclusion

1. The aim of the study was to use machine learning
algorithms, specifically LSTM, to conduct long-term
oil production forecasts. The methodology included the
use of cross-validation of time series with varying
window size to determine the optimal combination of
hyperparameters for the LSTM model.

2. The results of the study showed that the one-
dimensional one-step bidirectional LSTM model demonstrated
significantly lower error rates compared to the recursive one-
step forecast model and the multistep forecast model.
However, it is important to realize that the one-dimensional

one-step bidirectional LSTM model has practical limitations.
During forecast, input and output pairs are generated using
actual data. This aspect should be taken into account when
evaluating its applicability in real scenarios.

3. On the other hand, the recursive model showed a
tendency to underestimate values over the three-year
period. This characteristic implies a risk proneness, being
potentially reliable in future decision-making of an oil and
gas company.

4. Future trends could include the study of
multidimensional forecasting models as dynamic data. This
extension could improve forecast accuracy by additional
relevant factors.
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