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The development and modeling of carbonate reservoirs with complex structure is an actual task. In conditions of high
heterogeneity of reservoir properties due to the peculiarities of formation, frequent change of sedimentation cycles and the
presence of diagenetic transformations, there is a high degree of uncertainty in the modeling process and, as a consequence, in
the forecast of development indicators. Underestimation of the influence of diagenetic processes on changes in filtration-
capacitance properties can have a critical impact on the organization and management of the waterflood system. When studying
the geological structure of the Alpha field, intervals of highly permeable reservoirs (up to 18 Darcies) were identified. This study
proposes an approach to identify such intervals in order to refine the dynamic model of the field based on machine learning
methods. The paper compares the following algorithms: gradient bousting, random forest and support vector method. Based on
the results of the study, the optimal algorithms were identified that allow predicting high permeability intervals with a high
degree of accuracy. To improve model adaptation to the field development history, it is suggested to use a model trained on core
and geophysical well survey data. To take into account the risks associated with highly permeable intervals, when drilling new
wells, it is recommended to use a model trained only on geophysical well tests. In this paper, sensitivity analysis was performed
when specifying properties for highly permeable intervals - absolute permeability and relative phase permeabilities. The
permeability cube of the dynamic model was updated, the model was adapted and calculations on waterflood system
optimization were performed. Based on the predictive analysis on the model with highly permeable intervals, a number of
measures were proposed to optimize the development system to reduce the risk of water breakthrough in highly permeable
intervals. According to the results of the forecast calculations, these measures will provide additional 750 thousand m® of oil.

PazpaboTka 1 MOAeJMpOBaHHE KapOOHATHBIX pe3epBYapoB CJIOXKHOIO CTPOEHHsA SABJIAETCA aKTyasbHOH 3ajaveil. B ycsioBHAX
BBICOKOIl HEOJJHOPOJHOCTU CBOMCTB KOJUIEKTOpPA, OOYCJIOBJIEHHOM OCOOEHHOCTAMH (OPMUPOBAHUSA, YacTOM CMEHOH LUKJIOB
0OCaKOHAKOIUIEHUA ¥ HAJIMYMEM JHareHETHYeCKHX npeoﬁpam}aaﬂnﬁ, BO3HUKAET BbICOKasA CTEIIEHb HEONPENEJIEHHOCTU B IIpoLecce
MOJEJIPOBAaHUs M, KaK CJIEACTBHE, NPOTHO3a IOKasaTeseil pa3paboTky. Henoyyer BIMSHUA AUAreHETUYECKHX MPOLIECCOB Ha
r3MeHeHne GUIbTPALFIOHHO-eMKOCTHBIX CBOFICTB MOXET OKasaTh KPUTHYECKOE BJIMsHME Ha OPraHM3alMIo M yIpaBJIeHNe CHCTEMORT
3aBOJHEHUA. HPI/I U3YYEHUU TeO0JIOTUYECKOr0 CTPOEHUA MECTOPOXIECHUA Aanya BbIABJIEHBI MHTEPBAaJIbl BBICOKOIIPOHUIIAEMbIX
KosuteKTopoB (o 18 Jlapcu). B paMkax JaHHOTO HCCJIEOBAHUA NPEJIOKEH IOJXOA BBIAEJIEHNsA NOJOOHBIX MHTEPBAJIOB C IEJIBI0

YTOUYHEHUA }Z[I/[HE[MI/I‘IECK[)ﬁ MoOAeJI MECTOPOXAEHNA Ha OCHOBE METOAOB MAaIlMHHOI'O Dﬁy‘{eHPlH. B pa60Te NpOBEAEHO CpaBHEHHE
CJIeyIOIUX aJrOpPUTMOB: TPaJUeHTHBINl OYyCTHHT, CJIyYaiiHBIN Jlec M MeTOJ OMNOPHBIX BeKTOPOB. Ilo pesysbraTaM Hcc/IeOBAHHA
BbIABJIEHB ONTHMAJIbHbIE AJTOPUTMBI, TMO3BOJIAIONIME C BHICOKOH CTENEHbI0 TOYHOCTM IPOTHO3MPOBATh MHTEPBAsIbl BbICOKOM
NPOHUIIAEMOCTU. [/ yJIydlleHusl ajanTaluyd MOJeIM HO HMCTOpPUM pa3paGOTKM MeCTOPOXIEHUA IIpeJjlaraeTcsl HCIOJb30BaTh
Mozesib, oﬁyquHy}o II0 [AaHHBIM KEepHa Hu I‘eO(i)I/ISI/[‘{eCKI/[X HCCHeﬂOBaHI/Iﬁ CKBaXXHH. I[JU[ yuyera PpHCKOB, CBA3aHHBIX C
BBICOKOIIPOHUI[a€MBIMI NHTEpBasiaMH, IIPpU 6ypEHI/[I/I HOBBIX CKBaXH PEKOMEHYETCA KCII0JIb30BaTh MOAEJIb, oﬁyqe}mym TOJIBKO TI0
reopusYecKUM MCCJIEIOBAHUAM CKBaXHH. B paboTe BBINOJIHEH aHaIM3 YyBCTBUTEJIBHOCTH IIPU 3aJaHUM CBOWCTB JUIA
BBICOKOIIPOHMIIAEMBIX HMHTEpPBaJOB — abCOJIOTHAsA MPOHUIAEMOCTh M OTHOCHTEJNIbHBIE (pa3oBble MPOHMIAEMOCTH. BhINOIHEHO
06GHOBJIEHNEe Ky6a IPOHUIIAEMOCTH JUHAMUYECKON MOJIeJY, alanTalya MOJeJI ¥ PacyeThl 10 ONTUMH3aLUH CUCTEMBI 3aBOIHEHNA.
Ha ocHose IIPOTHO3HOI'O0 aHa/i3a Ha MOZENN C BBICOKONIPOHULIAEMbBIMU HHTEpBaJIaMU IIPEJIOXKEH pAN MEp IO ONTHMH3arn
cucTeMbl pa3pabOTKU AJIA CHIDKEHMA PHUCKOB IMPOphIBAa BOJBI B BHICOKOIPOHHIIAEMBIX MHTepBaiax. ITo pesysibTaTaM HPOTHO3HBIX
PAacyY€eTOB 9TU MEPHI TIO3BOJIAT AOTOJHUTENBHO MOyIUTh 750 Thic. M° HebTH.
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Introduction

Carbonate reef reservoirs are characterized as a
complex geological structure including caverns, fractures,
and widespread secondary alterations. Lithologic and
facies heterogeneity in such reservoirs is caused by the
feautures of their formation, frequent changes in
sediment accumulation cycles and the diagenetic
transformations. The most commonly encountered
secondary transformations include the fractures
formation, leaching, dolomitization, and recrystallization.
These processes are crucial in determining the capacitive
and filtration properties [1, 2].

The processes occur with varying degrees of intensity
and can significantly affect the field development.
Cementation, dolomitization, and leaching directly
influence changes in porosity and permeability [3, 4]. The
formation of secondary caverns and fractures contributes
to a considerable improvement of reservoir properties and
increases well productivity, however, on the other hand,
these processes often cause the premature water
breakthroughs [5-8]. Underestimating these processes,
especially leaching, can be critical in waterflooding
processes and managing water cut [9-11]. The influence of
leaching and fracturing on waterflooding efficiency is
described in paper [12]. Another important task is to take
diagenetic changes into account when creating static and
dynamic models of the field and assessing the reserves
[13]. The work proposes a methodology for constructing a
permeability cube considering cavernosity based on the
calculation of secondary porosity using density and
neutron logging data, as well as geostatistical modeling.
This methodology has successfully reproduced the
development history of the field on the model.
In work [14], the approach based on the integration of
multiscale data (seismic, core, fracture model) is
described. Then, an automatic algorithm is proposed that
enables the creation of complex carbonate reservoir
models. In paper [15], highly permeable intervals is
studied and modeled. They were selected according to core
data (permeability >350 mD) and well logging. The
modeling results allowed us to reproduce the development
history considering the influence of waterflooding. The
authors [16] point out the relevance of identifying and
modeling highly permeable intervals. The connectivity of
highly permeable bodies is one of the most important
parameters, which can be determined by using an
integrated approach considering the core sampling data,
thin rock section, geophysical well logging and production
data. A strong correlation is noted between electrical
logging methods and highly permeable intervals.

In research [17] it is emphasized that permeability
modeling in carbonate reservoirs of complex structure is a
challenging task. A method based on machine learning
techniques (clustering) has been proposed for predicting
highly permeable zones.

Machine learning technologies are being actively
implemented in the oil and gas industry to solve many
different problems. The technologies enable the
automation of routine processes, reduce the subjectivity of
the human factor and facilitate the implicit relationships
between parameters. Today, technologies are being
introduced at all stages of a project, from geological
exploration and development to the recovery and
transportation of products [18-21].

Machine learning is widely used to forecast reservoir
properties by integrating geophysical well surveys and
seismic exploration results [22, 23]. Forecasting the
reservoir properties and petrophysical types is one of the
most important tasks [24, 25].

Table 1
Reservoir properties
Layer Parameter Average Median Min. Max.
D,fm, (el1) k, mD 86.05 7.55 0.1 9058.2
s ¢, % 7.5 6.95 0.4 21.2
%, mD 128 2.75 0.1 18143
D,fm (el3) 0% 645 615 0.9 296

In work [26], the potential application of algorithms
for assessing the saturation characteristics of layers is
described. The gradient boosting algorithm has been
successfully used to identify facies based on logging curves
[27]. A number of studies describe the possibility of using
machine learning for lithologic distinction based on
logging results [28, 29] and for correlating borehole
sections [30].

Many studies are focused on developing methodologies
for the classification of carbonate reservoirs using machine
learning methods [31, 32].

A number of works are aimed at forecasting
permeability, including carbonate reservoirs [33]. The
importance of reliable permeability forecast in the context
of high reservoir heterogeneity is emphasized. In the work
[34], the use of a graph-based clustering algorithm with
several variants is proposed for permeability prediction
based on well logging data.

In this paper, a comparative analysis of classification
algorithms for predicting highly permeable intervals will
be performed. Based on the classification results for the
wells, intervals with abnormally high permeability will be
identified. Subsequently, interpolation will be performed
over the cube volume.

Multivariate modeling will be performed for the
obtained intervals to assess the sensitivity of parameters
on the quality of model adaptation. Based on the

modeling results, the forecast of technological
indicators will be performed and solutions for
optimizing injection considering highly permeable

intervals will be proposed.

Geology

The object of the study is the Alpha field located within
the Timan-Pechora province.

The oil-bearing capacity of the Alpha field is
associated with the Lower Famennian reef complexes,
formed sequentially on top of each other during one
Zadonsky Sequence and three Yeletsky Sequences of
reef-building. The oil-bearing reservoirs include both
carbonate sediments of the reef facies and backreef
shelf sediments.

The lithologic description of the productive interval is
based on the core sample obtained from drilling twelve
wells. The reef structure sediments are represented by
limestones and secondary medium-grained dolomites
with relics of detrital-algal limestones, which are
secondarily clotted and lump-like, consisting of biogenic
material. The backreef shelf deposits are composed of
gray, dark gray, and light brown microbial-detrital
limestones that are finely cryptocrystallined and
dolomitized, with inclusions of argillites (up to 15 %).

The reservoir properties are presented in Table 1.

The carbonate reservoir is characterized by a complex
type of void space, which consists of intergranular,
cavernous and fractured voids. The formation of the void
space is highly influenced by various secondary changes in
rocks. The high degree of secondary transformations of
limestones can lead to the formation of highly productive
interlayers with anomalous properties, referred to as
highly permeable intervals — supercollectors.

HEOPONOJIb3OBAHUE
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Fig. 1. Types of cavernous voids in the Alpha deposit:
a — caverns; b — carstified fractures;
¢ — carstified stylolite seams (with yellow)
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Fig. 2. Mechanisms of karst processes formation:
a —during sea level regression; b — during erosion
of overlying sediments
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Fig. 3. Supercollector intervals
for well No. 23. Implementation of P10

The leaching process in carbonate rocks is one of the
dominant factors of void space transformation. During
the study of core samples, it was found that the rifogenic

rocks of the Lower Famennian age in the Alpha field have
a complex void structure both laterally and vertically.
The complexity is caused by the significant distribution
of caverns, karst fractures and stylolite seams within the
rocks (Fig. 1), as well as the replacement of reef-forming
limestones by secondary dolomites.

The processes of dissolution and replacement under
surface or near-surface conditions could have played a key
role in the formation of karst voids and secondary
dolomites.

In this context, two theories of karst voids formation
have been proposed. The first theory suggests that
microbial limestones accumulated on the shallow shelf
and were repeatedly exposed at different intervals of the
Famennian time as a result of sea level lowering. Red,
reddish-pink and reddish-brown inclusions were found in
the core of the reefogenic Zadon-Yeletsky sediments,
which may indicate the presence of iron oxides in the
rocks. These oxides are indicators of oxidative conditions
and arid climate. These compounds could have been
transported by freshwater in the form of colloids and
solutions, accumulating on the reef body. Meteoric
waters may have played a crucial role in the formation of
karst voids within the reefogenic rocks of the Alpha
reservoir (Fig. 2).

According to the second theory, karst voids could
have formed as a result of rock dissolution by
atmospheric waters infiltrating through the rocks
during erosional processes that likely occurred at a later
stage. This is supported by the presence of an
unconformity higher up the stratigraphic section
between the Upper Devonian and Lower Carboniferous
deposits, where the rocks of the Tournaisian Stage are
completely eroded, while those of the Famennian Stage
are partially eroded. This phenomenon is associated
with the formation of the modern basin structure under
conditions of tectonic compression within the fold
system (see Fig. 2).

Materials and Methods

The initial data for the study includes well logging
curves for eight wells, core and thin sections, and
results of flowmetric tests. In work [35] analysis and
integration of different-scale studies were performed.
According to the results of the analysis, highly
permeable intervals were identified with probabilities
of P90, P50, and P10. The results of identifying the
intervals were used as data labeling for training the
model in the present work.

The research methods involve statistical data analysis
and the use of machine learning algorithms to identify
highly permeable intervals, as well as the application of
reservoir dynamic modeling approaches.

Highly permeable intervals marked as target
variables for classification were selected. The models
were trained on two different datasets: core study
results combined with logging data; and logging data
alone. The core study results included rock porosity and
permeability. The logging data included curves that
have the highest correlation with the core permeability
values: porosity coefficient curves determined by
acoustic (KPA), density (KPD), and neutron (KPN)
methods, as well as the effective porosity coefficient
defined by nuclear magnetic logging (CMFF);
permeability coefficient curves defined using nuclear
magnetic resonance based on the SDR model (KSDR), as
well as permeability coefficients calculated using the
Timur-Coates model (KTIM); the curve representing the
oil saturation fraction of the total void volume (FOIL);

HEAPOMOJIb3OBAHUE

GEOLOGY, PROSPECTING, EXPLORATION AND EXPLOITATION OF OIL AND GAS FIELDS




PERM JOURNAL OF PETROLEUM AND MINING ENGINEERING

Table 2

Comparison of algorithm metrics (training on core and logging data)

Metric/ Gradient Boosting Random forest Support Vector Machine
algorithm
Accuracy 0.98 0.97 0.96
Precision 0.99 1 0.97
Recall 0.96 0.91 0.91
F1 Score 0.97 0.95 0.94
ROC AUC 1 1 0.98
Table 3
Comparison of algorithm metrics (training on logging data)
Metric/ Gradient Boosting Random forest Support Vector Machine
algorithm
Accuracy 0.97 0.97 0.97
Precision 1 1 0.98
Recall 0.9 0.9 0.91
F1 Score 0.95 0.95 0.95
ROC AUC 0.97 0.97 0.97
ROC Curve for Gradient Boosting Confusion Matrix for Gradient Boosting
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Fig. 4. ROC-curve and confusion matrices for P10 implementation:
a —training on core and logging data; » —training on logging data

and fracture density from FMI data. The dataset
includes core and logging study results for eight wells
in the Alpha field.

Gradient boosting, random forest and support vector
method are chosen as machine learning algorithms. Using
these algorithms is conditioned by their high degree of
successful application in various fields, including the
reservoir properties forecast [36-38].

To assess the models quality, confusion matrices
were constructed, and standard metrics for assessing
classification models were calculated: Accuracy, Recall,
Precision, Fl-score, and ROC-AUC. These classification
quality metrics are used to assess the effectiveness and
performance of classification algorithms. They provide

insights into how effectively the model can distinguish
between objects of different classes [39-43].

The distribution of highly permeable intervals
in the interwell space was based on mathematical
methods of geostatistics, which are embedded in
the stochastic indicator modeling tools in the
RMS 13.1.1 software from AspenTech company. The
module for stochastic distribution of parameters in
the volume is called Petrophysical Modeling and
is based on variogram analysis. For a more accurate
distribution, the total cube of secondary carbonate
changes was wused as a trend, specifically
the sum of fracturing, leaching, dolomitization, and
recrystallization.

HEOPONOJIb3OBAHUE
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At the next stage, a multivariate modeling and statistical
analysis approach was adopted to assess the influence of
supercollector parameters on the hydrodynamic model
adaptation results.

To obtain the permeability distribution in the
supercollector intervals, the hydraulic flow unit (FZI)
calculation technique was applied [44]. Core samples were
classified using the DRT method [45] based on a
designated formula (1) to isolate samples with similar
filtration characteristics after applying the formula (2).

0,0314\/;
- —— 19 ¢h)

¢
1—

¢

where k& - permeability coefficient, mD; ¢ — porosity
coefficient, unit fractions.

DRT = 21n(FZ]) +10,6. 2

Subsequently, three options for categorizing core
samples based on their filtration characteristics were
proposed, and the best option was determined using the
Student's £test, based on the average values comparison of
different samples (3).

t=—F—=1, 3)

where A is the arithmetic mean of the first compared
category; M, is the arithmetic mean of the second
compared category; my is the standard error of the first
arithmetic mean; m, is the standard error of the second
arithmetic mean.

Then, a history matching and forecasting of the
development indicators were carried out. The analysis of
the obtained results was performed and optimization
measures were proposed.

Results

At the first stage, the forecast of highly permeable
intervals was carried out, identified with a probability of
P10 [35]. Such identification allows for maintaining the
best balance in the sample with the ratio of super
collector to regular collector. Fig. 3 below shows an
example of well No. 23 with selected super collector
intervals. For this well, the largest number of super
collector intervals has been identified.

The results of the calculations are presented in Tables 2
and 3, and the metrics were assessed on test samples.

The best metric values are observed for the gradient
boosting algorithm. This algorithm, with a high degree
of accuracy, allows forecasting the presence of super
collector intervals both for the dataset that includes
core and logging data, and for the logging data alone.

Fig. 4 shows the ROC-curve graphs and confusion
matrices for the selected optimal algorithms.

The prediction of intervals with P10 probability was
performed due to the most balanced sample and
demonstrated high accuracy of the obtained model.

At the next stage, a predictive model was built to
identify the super collector with a P50 estimation that best
reflects the filtration processes in the reservoir [35]. Fig. 5
shows an example for well No. 23 with selected super
collector intervals.

The computational results are presented in Tables 4, 5,
with metrics assessed on test samples.

WELL Ne23 - P50

3900
3920
3940
3960
3980
4000
4020

4040
4060

Fig. 5. Super collector intervals
for well No. 23. Implementation of P50

Table 4
Comparison of algorithm metrics
(training on core and logging data)
algorithm Boostng  Random forest SUREEE TROr
Accuracy 0.99 0.98 0.98
Precision 0.92 0.71 0.5
Recall 0.69 0.31 0.25
F1 Score 0.79 0.43 0.33
ROC AUC 0.98 0.95 0.96
Table 5
Comparison of algorithm metrics
(training on logging data)
algorithm Boostng  Rendom forest SUFFRC FRcter
Accuracy 0.99 0.99 0.98
Precision 1 1 0.67
Recall 0.44 0.56 0.38
F1 Score 0.61 0.72 0.48
ROC AUC 0.84 0.85 0.94

The best metric values are observed for the gradient
boosting algorithm when using a set of core and logging
data. This algorithm, with a high degree of accuracy,
allows for the prediction of super collector intervals.
However, when the model is trained only on logging
data, the Recall and F1 Score metrics significantly
decrease. For this case, the random forest algorithm
proves to be more effective.

Fig. 6 shows the ROC-curve graphs and confusion
matrices for the selected optimal algorithms.

Fig. 6 indicates that the predictive model for
the training variant on core and logging data is
applicable for classification, while the variant
trained only on logging data shows insufficient
effectiveness in predicting the super collector.
Additionally, there is a notable sample imbalance,
which leads to a training and prediction imbalance in
favor of the standard collector.

HEAPOMOJIb3OBAHUE

GEOLOGY, PROSPECTING, EXPLORATION AND EXPLOITATION OF OIL AND GAS FIELDS




PERM JOURNAL OF PETROLEUM AND MINING ENGINEERING

ROC Curve for Gradient Boosting
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Fig. 6. ROC-curve and confusion matrices for P50 implementation: a - training on core and logging data; b —training on logging data

Using the model trained on core and logging data
(option P50) is proposed for predicting the super
collector as part of the model adaptation task. The
model trained on logging data (option R10) will be used
to assess the risks associated with the super collector
when drilling new wells. According to the results of
logging studies conducted prior to perforation, the
model will allow predicting all possible intervals of the
super collector, and in the case of injection wells,
consider the option of refraining from perforating
highly permeable intervals.

Further, using stochastic methods of geologic
parameters distribution in three-dimensional space,
interpolation of super collector intervals was performed
in the interwell space. To ensure the most accurate
distribution and alignment with the reservoir geology,
the total cube of secondary transformation development
was used as a trend (Fig. 7).

As a result, a three-dimensional dataset of
super collector development within the reservoir
volume was obtained and used for further research
(Fig. 8).

At the next stage, the approaches for transition from
a discrete cube of super collector development intervals
to a distribution of absolute permeability were
developed, which will subsequently be wused for
calculations in the hydrodynamic model. It was decided
to distribute permeability in the standard collector
intervals by the standard way according to the
petrophysical relationship between permeability and
porosity identified in all standard-sized core samples
(Fig. 9). In the highly permeable intervals (super
collectors) various methods were used to set the
permeability. After, each option was calculated in the
hydrodynamic model, and the convergence of actual
development indicators during the reproduction of its
history was compared to assess the extent of influence
on calculation results when using different approaches
for setting permeability.

Number of secondary
transformations, units

Fig. 7. The total cube section of secondary development
transformations in the reservoir volume

] Super collector intervals
[ The rest of the reservoir

Fig. 8. Cross-section of the final development cube of the
supercollector within the reservoir volume, based on the P50 model
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Fig. 9. Standard petrophysical "permeability-porosity"
dependence for all standard-sized core samples
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Fig. 11. Variants of new petrophysical dependences:
a — 1st option; b —2nd option; ¢ —3rd option

Table 6

Comparison of Student's #test for permeability
in different classification options of core samples

The following methods are chosen to determine the
permeability in the super collector intervals:

— by one number corresponding to the maximum
value determined from standard core samples;

— by one number corresponding to the maximum
value determined from full-sized core samples;

— through refined petrophysical "permeability -
porosity" dependences obtained by petrophysical
analysis;

— through the standard petrophysical "permeability —
porosity" dependence determined from all standard-sized
core samples (see Fig. 7).

The DRT petrotyping approach was used to clarify
the petrophysical dependence. For this purpose, the
value of FZI (1) was calculated for each core sample.
After that, the core samples were -classified into
different petrotypes according to the DRT classification
using formula (2) (see Fig. 10).

Next, based on the DRT classes, the core samples
were grouped in various ways into three scale classes
in order to obtain petrophysical dependences that
describe a sufficient range of core studies for the
hydrodynamic model.

While exploring variations of DRT classes
with different qualities of filtration and reservoir
properties, a decision was made to focus on three
categories that are characterized by the highest
coefficients:

— 1st option: 1st category — 6th-13th DRT classes;
2nd category — 14th-17th DRT classes; 3rd category —
18-24th DRT classes (Fig. 11, a);

— 2nd option: 1st category — 6th-12th DRT classes;
2nd category — 13th-16th DRT classes; 3rd category —
17-24th DRT classes (Fig. 11, b);

— 3rd option: 1st category — 6th-12th DRT classes;
2nd category — 13th-15th DRT classes; 3rd category —
16-24th DRT classes (Fig. 11, ¢).

To determine the final distribution of core samples
across categories, Student's #test was calculated to identify
the best classification in terms of porosity and
permeability differentiation (Tables 6, 7).

As a result of comparing Student's ftest values a
decision was made to use the 3rd option for distributing
core samples into categories with the corresponding
petrophysical dependences of "permeability — porosity" in
further research.

In the next step, the final permeability cubes were
calculated for each method of permeability setting in the
super collector intervals. The average values for the super
collector are presented in Table 8.

Subsequently, the obtained permeability distributions
were loaded into the hydrodynamic model and
the field development history was reproduced to
compare the convergence between -calculated and
actual operation indicators. For more correct
determination of reservoir potential at different
permeability variants, calculations were carried out
with limitation of wells by actual bottomhole
pressure. The calculation results are presented after one

GEOLOGY, PROSPECTING, EXPLORATION AND EXPLOITATION OF OIL AND GAS FIELDS

Category Averagel Average2  fcriterion p-value iteration (Figs. 12, 13, Table 9).

1st option In Figs. 12, 13 it can be observed that during the
1st-2nd 3.75 78.06 -8.78 0.000000 reproduction of the development history, the method of
2nd-3rd 78.06 102.16 _ -0.63 0.526388 permeability setting in the super collector based on the
Tsiond 084 429n g; prion 773 0.000000 petrophysical dependence for the ' third category
ond—3rd 29.66 196.86 3.05 0.002346 demonstrates the best convergence with the historical

3rd option trend. Therefore, the implementation of absolute
1st-2nd 0.84 44.98 -7.48 0.000000 permeability distribution will be wused for further
2nd-3rd 44.98 108.49 -3.12 0.001874 calculation&
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Table 7
Comparison of Student's #test for porosity under different options for classifying core samples
Category Average 1 Average 2 t-criterion p-value
1st option
1st-2nd 4.90 5.24 -1.83 0.067618
2nd-3rd 5.24 1.60 7.17 0.000000
2nd option
1st-2nd 4.67 5.51 -4.65 0.000003
2nd-3rd 5.51 2.06 8.57 0.000000
3rd option
1st-2nd 4.67 5.78 -5.95 0.000000
2nd-3rd 5.78 2.70 9.58 0.000000
Table 8

Average values for the super collector

Permeability setting method

Average value for super collector, mD

Average value for the whole model, mD

Maximum value for standard core samples 5.574 296.2
Maximum value for full-sized core samples 11.544 598.2
Petrophysical dependence for the 1st category 1.4 14.2
Petrophysical dependence for the 2nd category 40.1 15.1
Petrophysical dependence for the 3rd category 970.9 37.6
Standard petrophysical dependence 35.6 14.8

The high impact of different permeability setting
methods on the dynamics of oil and fluid production
in the super collector is noted. Thus, the difference
between maximum and minimum accumulated
liquid production was 19,690.7 thousand m?, which is
equal to 91.5 % of the actual production. The difference
between maximum and minimum oil production
amounted to 15,060.5 thousand meters®, which is equal
to 76.2 % of actual production. The water cut at the
end of 2023 ranges from 10 to 46 % with the actual
water cut of 11 %.

In previous calculations, average trends of relative
phase permeabilities (RPP) were used for the whole core
cloud (Fig. 14). At the next stage, the impact of the RPP
curve shape on the hydrodynamic model calculations is
assessed, using maximum and minimum trends for
comparison.

The results of comparing the influence of the RPP
curves shape in the hydrodynamic model when
reproducing the development history are shown in Figs.
15-17 and Table 10.

Figs. 15-17 show that the RPP curves shape has a
lesser influence on the calculation results compared to
absolute permeability. Specifically, the range of
variation in cumulative liquid production was 4.3 %
relative to the average trend, the range of variation in
cumulative oil production was 2.9 %, and water cut
varied between 15 % and 19%. It is worth noting that
by using the RPP with the maximum trend in the super
collector intervals, it was possible to reduce the
deviation in cumulative liquid production from 2.5 to
0.5 % and in cumulative oil production from 0.8 to 0.5
%. Therefore, this form of the RPP curve will be used
for predicting calculations. Additionally, the use of the
RPP curve with the maximum trend allows for a more
conservative risk assessments of premature water
breakthrough.

Due to the presence of highly permeable intervals and
the strong mutual influence between production and
injection wells, the results of the forecast calculations
show breakthrough nature of the water cut, which
emphasizes the need for planning additional geological
and technical measures (GTM) to regulate the watering in
wells of the field. The model created with standard
methods does not capture these effects.
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Year X

= = Standard petrophysics
= = Maximum standard core

= = Dependence for 2nd category

2019 2020 2021 2022 2023

Actual

= = Maximum full-size core
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Water cut, %

2012 2013 2014 2015 2016 2017 2018 2019

2020 2021 2022 2023

—— Actual — . Standard petrophysics
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Fig. 12. Comparison of liquid () and oil (5) production dynamics
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Fig. 13. Comparison of water cut change dynamics
under different permeability distribution options
in the super collector when reproducing the
development history in the hydrodynamic model
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Table 9
Comparison of accumulated indicators at different options of permeability distribution
in a super collector when reproducing the development history in a hydrodynamic model

Deviation of cumulative oil
production from actual, %

Cumulative oil
production, th. m?

Cumulative liquid
production, th. m?

Deviation of cumulative liquid

Method of permeability setting production from actual, %

Maximum value for standard core

31,586.6 26,401.9 -46.8 -33.5
samples
Maximum value for full-sized core 27,612.5 23,533.0 28.3 119.0
samples
Petrophysical dependence 11,895.8 11,341.5 44.7 42.6
for the 1st category
Petrophysical dependence 15,318.8 14,633.0 28.8 26.0
for the 2nd category
Petrophysical dependence 20,974.3 19,622.4 2.5 0.8
for the 3rd category
Standard petrophysical dependence 13,184.7 12,491.6 38.7 36.8
Actual 21,516.3 19,773.1

Table 10

Comparison of cumulative performance at different RPP in a super collector
when reproducing the development history in a hydrodynamic model

Deviation of cumulative oil
production from actual, %

Cumulative oil
production, th. m*

Cumulative liquid
production, th. m?

Deviation of cumulative liquid

Method of permeability setting production from actual, %

Petrophysical dependence

for the 3rd category (average trend) 20,974.3 19,622.4 25 08
Maximum RPP trend 21,398.8 19,874.1 0.5 -0.5
Minimum RPP trend 20,505.8 19,313.2 4.7 2.3
Actual 21,516.3 19,773.1
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Fig. 16. Comparison of RPP curves shape influence
in the hydrodynamic model on oil production dynamics

Analyzing the reservoir development system of the
field, a set of measures was proposed to reduce the risks of
premature water breakthroughs in production wells. It
included performing repair and isolation works on wells
with high water cut dynamics, carrying out re-perforation
operations on a number of production wells in intervals
not characterized by water breakthrough in the zones of
secondary changes, etc.

The results of forecast calculations are shown in
Fig. 18 and Table 11.
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Fig. 15. Comparison of RPP curves shape influence
in the hydrodynamic model on the liquid production dynamics
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Fig. 17. Comparison of RPP curves shape influence
in the hydrodynamic model on water cut dynamics

In Fig. 18 and Table 11, it can be observed that as a
result of the methodology for identifying and distributing
super collectors in the geological-hydrodynamic model, as
well as proposing various geological and technological
measures aimed at correcting the current development
system in the context of super collector intervals, it was
possible to achieve a 10 % reduction in product water cut
by 2034 and to increase oil production by 750,000 m?,
which, in turn, leads to an increase in the operation
profitability.

HEAPOMOJIb3OBAHUE

GEOLOGY, PROSPECTING, EXPLORATION AND EXPLOITATION OF OIL AND GAS FIELDS




PERM JOURNAL OF PETROLEUM AND MINING ENGINEERING

Table 11

Comparison of accumulated indicators over a 10-year forecast period under the basic development system
and with additional measures aimed at interaction with the super collector

Method of permeability setting Cumulative liquid production, th. m Cumulative oil production, th. m Water cut, %

Basic calculation 14,820.6 10,018.7 43.2
Calculation with proposed measures 14,762.6 10,768.8 37.2
Additional fluid production / change in _58 +750.1 10

water cut

S}
wn
=3
S

proposed for predicting highly permeable intervals. To
account for risks, associated with highly permeable
intervals when drilling new wells, it is recommended to
use a model trained only on logging data (P10
implementation). Based on the analysis of logging data
prior to perforation, the model can predict all possible
super collector intervals. In the case of an injection well,
it may serve as a basis for avoiding the perforation of

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 highly permeable intervals.
Year Modeling of highly permeable intervals was carried out
Caleulation with proposed measures within the reservoir volume, with multiple variant
a forecasting conducted to refine the properties of model
sections corresponding to highly permeable zones. The
approach involved analysis of DRT core samples
classification in combination with Student's tcriterion to
determine the petrophysical dependence that best
o describes the correlation between porosity and
400 permeability of super collector zones. After adjusting the
200 model by development history data, the differences in
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 CumUIative hqlnd prOduCtion were 25 0/0’ Whlle
Year differences in cumulative oil production were 0.8 %. It was
found that the absolute permeability of the super collector
b is the most significant parameter in model adaptation,
50 whereas the relative permeability curves contribute
minimally to the adaptation results. The application of
relative permeability curves with maximum trend in the
super collector intervals reduced the deviation of
cumulative liquid production from 2.5 to 0.5 %, and
cumulative oil production — from 0.8 to 0.5 %. Thus, the
most conservative relative permeability curve was used for
0 forecasting. Its influence was minimal due to the low
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 current water cut of the field (less than 11 %), but at later
Xear stages of development the influence of the curve may

become more significant.

Based on the predictive model analysis with highly
permeable intervals, a series of measures are proposed to
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Fig. 18. Comparison of oil production dynamics (a—c) in the
forecast under the basic development system and considering

additional measures aimed at interaction with the super collector

Conclusion

The study proposes an approach for identifying highly
permeable intervals based on machine learning
algorithms. The most accurate algorithm for predicting
the intervals is gradient boosting. To improve the model
adaptation by development history data, a model trained
on logging and core data (P50 implementation) is

reduce the risks of water breakthrough in the intervals.
According to forecasts, these measures will allow for an
additional oil recovery of 750,000 m>.

The approach presented in this study allows us to
analyze and manage the development of a complex
carbonate reservoir considering secondary changes in
reservoir properties. It significantly improves the geologic
accuracy of the history matching process and enables the
forecasting of potential water breakthroughs due to the
presence of the super collector.
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