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The article presents an approach to automation of interwell correlation based on the Dynamic Time Warping algorithm for
dynamic time scale transformation. This method is an effective tool for analyzing and comparing time series (in this case, well
logging curves). The key stages of implementing this approach are described, starting with preliminary data preparation:
selecting the most informative well logging curves, processing gaps, smoothing and standardizing the data. Then, clustering
methods (for example, k-means using PCA) are applied to determine reference wells that cover all possible behavior options for
well logging curves from the available data. At the next stage, the Dynamic Time Warping algorithm is used to calculate the
similarity between reference and target wells, which allows finding the optimal match between them. Finally, the position of
formation intersections in target wells is predicted based on expert marks in reference wells.

Experience shown high consistency of the algorithm results with expert estimates in 85 % of cases, confirming its
effectiveness. Discrepancies were noted, which in some cases were caused by subjective factors in expert interpretation,
while the Dynamic Time Warping algorithm demonstrated effectiveness in correctly recognizing the assigned behavior
patterns of well logging curves.

The proposed approach based on Dynamic Time Warping not only improves the accuracy and objectivity of data interpretation,
but also serves as a tool for identifying and correcting subjective errors associated with the human factor. This is especially
important when working with large volumes of data, where traditional analysis methods become extremely labor-intensive and
vulnerable to errors.

Thus, the use of Dynamic Time Warping opens up new opportunities for automating the processes of data analysis and
correlation in geophysical research, contributing to the increased efficiency of specialists in this field.

TpejcrasjieH NOAXOJ K aBTOMAaTH3alMM MEXCKBaXHHHON KOppeJIANUM, OCHOBAHHBI Ha aJroputMe JMHAMHYECKOU
TpaHcopMmanuu BpeMeHHOH mkanbsl Dynamic Time Warping. JlaHHblil MeTo[ sABjAeTcA 3PPEKTUBHEIM HMHCTPYMEHTOM JJiA
aHaJIM3a U CPaBHEHUA BPEMEHHBIX PANOB (B JAHHOM Cjlydyae KapOTaXXHBIX KPUBBIX). ONMCaHbl KJIIOYEBBle 3Tallbl peayn3aluu
JIaHHOTO MOAXOJa, HAauyMHasA C IpeJBapUTeJIbHOM IIOJrOTOBKM JaHHBIX: BBIGOP Haubosiee HMHGMOPMATUBHBIX KPUBBIX
reopU3NIeCKUX UCCIIEJOBAHMI CKBaXXUH, 06paboTKa IPOIYCKOB, CIIaXUBaHUe U CTAHAAPTU3AIMA JaHHBIX. 3aTeM IPUMEeHSATCA
MeTOoZbl KJlacTepusanuu (Hanpumep, k-means ¢ ucrnosjb3oBaHneM PCA) Ui onpefiesleHHUs STAJOHHBIX CKBAXHH, KOTOpPbIE
OXBaTHIBAIOT BCE BO3MOXHbBIE BADUAHTHI NTOBe/IeHHUA KPUBBIX reoPU3NUecKUX UCC/IeJOBAHUE CKBAXUH U3 UMeoIMXCA NaHHbIX. Ha
clefyomieM dTane ucnosbdyerca anroput™ Dynamic Time Warping 1A BBIYMCJIEHUA CXOJACTBA MEXIY OSTAJIOHHBIMU U
LieJIeBHIMU  CKBRXXMHAMHM, 4YTO I[I03BOJIAeT HANTH ONTHMMAaJIbHOE COOTBETCTBHME MeXAy HuMH. HakoHell, BHINOJIHAETCA
NPOrHO3MPOBaHKeE II0JIOXKEHUsA IIacTOIepeceyeHUi B IjeJIeBbIX CKBaXMHAX HA OCHOBE 3KCIEPTHBIX OTMETOK B 3TaJIOHHBIX
CKBaXXMHaX.

OmnbIT NPUMEHEHMA T0Ka3aJl BHICOKYIO COIJIACOBAHHOCTh Pe3yJIbTaTOB aJropuTMa C 3KCIEPTHBRIMM OlLieHKamu B 85 % ciiyvaes,
noATBepx/as ero 3p@eKTuBHOCTb. OTMeYeHBl PAaCXOXAEHUA, KOTOphle B psfe cJyuyaeB ObUIM BbI3BAHBI CyObeKTUBHBIMU
dakropamMu Ipu SKCHEPTHON WHTeprpeTalnuy, B TO BpeMs Kak ajroputM Dynamic Time Warping npoaeMoHCTpUpOBas
3G PEeKTUBHOCTb B NPABUJIBHOM PACIO3HABAHUU 3a/laHHBIX €My IIAGJIOHOB NOBeJleHUA KPUBBIX reo®U3NYecKux HcciieJoBaHuN
CKBaXUH.

Tpe//IOKeHHBINT MOAXOJ] He TOJIKO IMOBBIIAET TOYHOCTh M OGBEKTUBHOCTb MHTEpIpeTaluy M[aHHBIX, HO U CJIYXUT
HMHCTPYMEHTOM [IJIfl BbIABJIEHUS U KOPPEKLUM CyOBbEKTHUBHBIX OMIMOOK, CBA3AHHBIX C 4eJI0BeYeCKUM (PakTOPOM. DTO 0COOEHHO
BaXXHO NpH paboTe ¢ GoIbIUMU 06beMaMU JJaHHbIX, Te TPaJULHOHHBIE METO/Ibl AHAJIN3a CTAHOBATCA KpaiiHe TPYAOeMKUMU U
YA3BUMBIMU [1J1s1 OIIMOOK.

Takum oGpa3oM, ucrosb3oBaHue Dynamic Time Warping OTKphIBaeT HOBblE BO3MOXHOCTH JJIi aBTOMAaTHU3allMH IIPOLIECCOB
aHajM3a YW KOpPpeJALMU JaHHBIX B reoU3NYECKUX HCCIIeOBAHUAX, CHOCOOCTBYS MOBBINIEHUIO 3((EKTUBHOCTH pPabOThI
CreLyuaaucToB B JAHHOM 06J1acTH.
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Introduction

The data volume is rapidly growing with the development
of modern technologies, challenging researchers and
specialists in various fields, including the oil industry.
Traditional data analysis methods, especially for large
information volumes, as well log (WL) data, are often time-
consuming. Correlating a large number of wells manually
becomes an extremely labor-intensive and complex task.

Geology experts must compare a great deal of curves
with one another, which is costly in time and can lead to
subjective conclusions. It necessitates implementing
automated analytical processes to improve the efficiency
and accuracy in decision-making.

The paper presents the approach to automating
interwell correlation, based on the Dynamic Time Warping
(DTW) algorithm and implemented by using the Python
programming language [1-14]. The following main stages
are outlined in this study:

1) well data preparation and pre-processing,
specifically the selection of the most representative well
logging curves, processing of missing data, smoothing
and standardization;

2) using clustering methods (K-means, with PCA
application) to determine the minimum sample of
reference wells that will contain all possible variations and
features of the well logging curves from the available data;

3) implementation of the DTW algorithm to calculate
the similarity between the reference and target wells using
a distance matrix. During the algorithm execution, each
reference well is compared to each target well, and the
optimal correspondence is subsequently determined on the
minimum DTW distance;

4) determination of layer intersection marks in target
wells based on expert (previously known) marks in
reference wells using optimal DTW distance between
the wells.

Preparation of input data

In the process of well data analysis, particularly in the
context of geophysical studies, the first stage is defined as
the data preparation and pre-processing. It includes several
key steps to ensure the quality and reliability of the
subsequent analysis.

First, the most informative logging curves are
selected, which clearly reflect the changes in reservoir
properties. Redundant and non-informative curves are
excluded from further analysis, which allows focusing on
the most relevant data. To test the algorithm, Middle
Devonian terrigenous deposits (D2) are singled out. Using
neutron gamma logging (NGK) and gamma logging (GK)
is sufficient to monitor their properties [15-18].

The next step is to process the missing data. Missing
values can significantly influence the results of the
analysis, so their processing is extremely important. Gaps
can be filled with mean values or medians, and
interpolated by neighbor data, or removed from the
analysis [19-21].

To reduce the effect of noise, the well logging curves
need to be smoothed. One of the commonly used smoothing
methods is the moving average method [22, 23], which
formula is as follows:

1
MA, =;Z Ye—is @

where MA, is the value of the moving average at time t;
v¢_; is the value of the initial series at time t — i; n is the
smoothing width.

This method helps to reduce random fluctuations and
identify general trends, improving data interpretation and
increasing the accuracy of analysis.

Selecting the smoothing window width (n) is an
important step. A window that is too small may not
eliminate enough noise, while a window that is too large
may lead to excessive smoothing and loss of important
details. Choosing the smoothing window width for well
logging curves requires a compromise between noise
reduction and useful data preservation.

On the tested field, the geological cross-section is
characterized by interbedding of fine layers, which can
be significant for correlation. Considering the data
sampling interval of 0.1 m, a smoothing value of n = 10
was chosen, corresponding to a smoothing window of
1 m. It helps to reduce the influence of noise and high-
frequency oscillations on the data, while maintaining a
sufficient detail to identify minor features of the cross-
section.

To facilitate comparison between different well logging
curves, the data need to be standardized. The 2z-score
normalization method is used for standardization to
transform the data so that it has a mean of 0 and a
standard deviation of 1 [24, 25]. The formula for the
z-score is as follows:

X — 1t
z; = lo , (2)

where z; is a standardized value for the point i
x; is the initial value for the point i; p is an average value
of the initial data; o is a standard deviation of initial
data.

After standardization, all well logging curves have the
same statistical characteristics, which facilitates their
comparison and analysis.

The performed well logging data preprocessing steps
result in smoothed and standardized data, which enhances
interpretation and increases analysis accuracy, as well as
facilitates comparison between different well logging
curves (Fig. 1).

Determination of minimum reference wells samples

It is important to create a reference sample for
predictive model construction of the reservoir
characteristics based on well research data. To obtain the
high-quality and representative reference sample, it is
reasonable to use clustering methods. Clustering allows the
existing wells to be divided into homogeneous groups
(clusters) based on characteristic features. It helps to form
a minimum set of reference wells, covering all the selected
clusters.

In this study, the overall DTW distance [26-37]
between two time series, represented by well logging
curves, is proposed as the key clustering parameter. The
total DTW distance serves as similarity magnitude between
time series.

DTW is used to construct a distance matrix between
all possible pairs of points in two time series. An optimal
path through this matrix is then determined, which
minimizes the total distance between the corresponding
points (Fig. 2).
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Fig. 1. Well log curves before and after processing
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Fig. 2. Distance matrix between well pairs using gamma logging
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Fig. 3. Correspondence graph

In general, the DTW distance matrix is calculated as
follows:

DTW(X,Y)=myin Z d(xi,v) |, 3)

@ey

where DTW (X,Y) is the overall distance between two time
series X,Y; i,j are indices that indicate the position of an
element in a time series X uY respectively; y is the set of
all possible paths representing a sequence of index pairs
@)); d(x,-,y]-) is the distance function between the
elements x;, of time series X and elements y;, of time

series ¥; min, is identified minimum value among all
possible paths y.

A graphical model of the two time series comparison is
shown in the curve correspondence graph (Fig. 3), where
the optimal DTW path is shown as a line that connect
corresponding points on the well logging curves.

When analyzing multiple time series for each well, in
this case, the neutron gamma logging and gamma logging,
the distance matrix represents the sum of the distances for
each pair of well logging curves.

Two wells — A and B are considered as an example of
algorithm's operation. For each well, a data matrix w is
formed, where each row represents the sampling frequency
(depth), and each column corresponds to the value of the
respective well logging curve:

NGK,, GKgy NGKg, GKg,
Wa = : : : :
NGKap, GKap NGKgm GKgpm

Next, a distance matrix Dyp of (n + 1) X (m + 1) size is
created, where num is the number of values in the
matrices w, u wg respectively.

Each (i,j) element in the matrix D,z (except the first
column and first row) is calculated by a recurrent relation
that includes the spatial distance between points and the
accumulated distance from previous paths:

Dag(i,j) = d(NGK), NGKL) + d(GKL, GKL) +

+ min ( W) - DAB (i - p’j - Q)) (4)
(p.g)€T

The formula components are the following:

1) Dyg(i,j) is an element of the distance matrix D,g,
the cumulative distance between two wells A and B in
positions i and j respectively;

2) d(NGK},NGK}) is a spatial distance between
parameter NGK for well A4 in position i and for well B in
position j; ]

3) d(GK},GK}) is a spatial distance between parameter
GK for well A in position i and for well B in position j;

4) min (
er

minimum of wepiqghted cumulative distances for all valid
transitions (p,q) from the set I', where T is the set of
valid transitions in the step template; (p,q) is a pair of
indices defining a specific transition in the step template;
W(pq) iS a transition weight (p,q) in the step template;
D,p(i —p,j — q) are the values from previous steps in the
distance matrix Dyg.

The step pattern determines how the algorithm moves
through the distance matrix. To find the optimal alignment
between two series, it specifies the allowed transitions
between time series elements and their weights. Patterns
can be defined individually according to the specific tasks
and data characteristics. To solve the problem of well
logging curve matching, the Rabiner-Juang template was
applied [38]. Although the template is standard, it can be
modified and adapted to fit specific tasks and data
characteristics. In Python, this template is defined by the
rabinerJuangStepPattern (type, slope.weighting) function,
where the first argument is the step pattern type, that

Wpq - Dag (i —p,j —q)) is the sum
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determines the wvalid transitions between time series
elements and their weights. The second argument
(slope.weighting) is a parameter that determines how the
transitions will be weighted. The classification of Rabiner—
Juang step patterns includes seven main templates, each
having four subtypes of weights. Thus, we have a total of 28
potential transition templates, however, not every combination
is meaningful in the context of a particular task.

After the distance matrix is calculated, the optimal
alignment step is determined. This step is a sequence of
index pairs (i,j), which minimizes the total cumulative
distance between two time series:

(i—=pJj—q) =arg min (Wepa - Dasi =, = @). (5)

Thus, finding the optimal step is a process of backtracking
through the distance matrix, where at each step the next
element is selected that minimizes the sum of the distances
with given weights and previous steps. This process continues
until the initial element of the matrix is reached.

The final step is to find the total DTW distance, which
is the cumulative distance between wells A and B. This
value is found in the last element of the distance matrix
Dy, specifically in D,z (n, m), where n,m are the lengths of
time series in wells A and B, respectively.

The formula for calculating the total distance in DTW
is the same as for the matrix elements, but in this case the
final element of the matrix is taken:

Dag(n,m) = d(NGK}, NGKJ™) + d(GK[, GKI™) +

+min ( Z Wp,q) " Dag (m—p,m—q)), (6)
(p.@)€Tr

where D,p(n,m) is the total cumulative distance between
the time series of wells A and B.

The distance matrix using multiple time series is a
square matrix where each element contains a measure of
the distance between corresponding pairs of time series
(Fig. 4).

The step pattern used in this work is defined by the
function of rabinerJuangStepPattern (4, "c") (Fig. 5). Type 4
is focused on anomaly detection, while subtype “c” includes
weighting functions that can account for global trends and
anomalies. This combination allows for anomaly analysis
considering global patterns and identifying complex
relationships, which is crucial in the context of interwell
correlation.

After calculating the DTW distance for all well pairs, a
square matrix of size NXN is created, where N is the
number of wells. The matrix elements are initialized with
values corresponding to the DTW distances between well
pairs (Fig. 6). This matrix will be used later for clustering
the wells on their similarity.

It is worth noting that using the DTW algorithm for
clustering and for best matching of well logging curves has
different approaches:

Clustering:

—objective: well grouping based on minimum DTW
distance;

— method: the DTW distance matrix is used to divide
wells into clusters using the K-means algorithm;

— results: each well receives a cluster label, which is
determined by its overall similarity to other wells in the
cluster.

Well Depth Index 2

DTW Distance

Well Depth Index 15

Fig. 4. Distance matrix between a pair of wells using gamma and
neutron gamma logging

Well Depth Index 2

-2 =1 o
Well Depth Index 15

Fig. 5. RabinerJuangStepPattern (4, "c"). By selecting the step
pattern (number) and weights (letter), different combinations of
traversal can be specified, depending on the configuration of the

compared time series

DTW distance matrix

Wells

Fig. 6. DTW distance matrix for all pairs of wells

Selecting the best match between reference and target
wells:

— objective: to find a reference well that is most similar
to the target well;
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— method: comparison of each target well with each
reference well;

— results: the best well is selected on the minimum
DTW distance, regardless of the cluster label.

To summarize, DTW is used in clustering to analyze
global patterns for grouping wells by similarity. Whereas
local similarity between two specific wells is assessed to
select the best well, regardless of their cluster.

To simplify visualization and reduce computational
complexity, the DTW distance matrix is transformed using
the Principal Component Analysis (PCA). PCA is a
statistical method for transformation of the original
variables into new ones called principal components, that
are uncorrelated with one another and ordered by their
variance. It allows the most important data to be preserved
in a lower-dimensional space [39, 40].

Formally, PCA is performed with multiplying the
original data matrix X by the weight matrix W, obtained
from the eigenvectors of the covariance matrix X. The
result is a transformed data matrix Z:

Z=XW. @)

One of the key aspects for applying the Principal
Component Analysis is determining the optimal number of
principal components specified in the process of
calculating the covariance matrix eigenvectors. In our
case, we retain two principal components, as the primary
goal is to visually interpret and analyze well clustering,
which is much easier to represent in two-dimensional
space. In addition, in this paper, two principal components
explain a significant part of the total data variance,
specifically 73 %, which compromise the information
retention and data simplification. The proportion of
explained variance for the first component is 48 %, and for
the second component is 25 %.

Before applying clustering, it is necessary to determine
the optimal number of clusters. The elbow and the
silhouette method are proposed to solve the task [41-43].
The elbow method is based on the sum of squared distances
within the clusters (SSE), while the silhouette method assess
the clustering quality for each object. Using both methods
allows for a more accurate determination of the optimal
clusters number and improves clustering results.

Formula for SSE calculation is as follows:

D -w? ®

where k is a number of clusters; C; is the i-th cluster; x is a
data point in the cluster C;; y; is the cluster centroid C;.

The elbow method algorithm is as follows: for each k
from 1 to a specified maximum value (in our -case,
10 clusters) clustering is performed, SSE is calculated for
each k, a dependence graph of SSE from k is constructed. The
optimal number of clusters is determined by the point at
which the curve begins to level off (Fig. 7, a).

The silhouette coefficient s(i) for the object i is calculated
with the formula:

~_ b —al)
s = max(a(i), b(i))’ ©

where a(i) is the average distance from the object i to all
other objects within the cluster; b(i) is the average
distance from the object i to all objects in the nearest
neighbor cluster.

SSE
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Fig. 7. Graphs: a - elbow method; b - silhouette method

The silhouette method algorithm consists of the
following steps: for each k from 2 to a specified maximum
value, clustering is performed, then the average silhouette
coefficient is calculated for all objects at the given k. The
graph of the average silhouette coefficient as a function of
k is constructed, and the optimal number of clusters is
determined by the maximum value of the average
silhouette coefficient (Fig. 7, b).

As a result of applying the elbow and the silhouette
method, it is established that three clusters are optimal, as
further increasing the number of clusters does not
significantly improve the clustering quality. However, the
graphs show a certain response to the value of five clusters,
which may indicate a more complex data structure related
to geological features as stratigraphic unconformities, faults,
and changes in sedimentation conditions. These factors can
introduce uncertainty into the interwell correlation. In this
case, using five clusters may help to form a more
representative sample of training wells that will cover a
broader range of well log behavior, and, thereby, increasing
the accuracy of the correlation process.

Next, clustering is performed using the K-means
method [44]. k centroids are randomly chosen, and then
each data point is assigned to the nearest centroid,
formally expressed as:

i = arg minllx; — I, (10)
where ¢; is the cluster index for the point x;; u; is the
cluster centroid of j.

Thereafter, the centroids are recalculated as the
average value of all points in the corresponding cluster:

1
M= > % 11)

where (; is a set of points assigned to a cluster j;
C; v is the number of points in this cluster.

HEOPONOJIb3OBAHUE
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The steps of assigning points to clusters and recalculating
centroids are repeated until convergence, that is, until the
centroids no longer change (Fig. 8).

As a result of clustering, most wells formed two
compact clusters, indicating a similar pattern of the well
logging curves within these groups. However, several wells
were separated into clusters, significantly different from
the bulk of the data.

Such separation may be caused by various factors.
Firstly, geological features such as tectonics or
sedimentation conditions may have led to the formation
of atypical well logging curves in these wells. Secondly, it
is possible that the quality of well logging data in these
wells is unsatisfactory, that may also have led to
“outliers”. The identified unique well groups require more
careful study and individual analysis.

To assess the quality of clustering, the Davies — Bouldin
Index and the Calinski — Harabasz Index are used [45].

The Davis — Boldin Index (DBI) is calculated as the
average ratio value of intra-cluster distance to inter-cluster
distance:

k
1 S;+S;

DBI = — ) max <¥>, (12)
k = J#i d(Ci,Cj)

where k is the number of clusters; S; and S; is intra-cluster
distance for clusters i and j respectively; d(c;, c]-) is the
inter-cluster distance between cluster centroids i and j.

The Calinski — Harabasz index (CHI) is calculated as
the ratio of inter-cluster variance to intra-cluster variance:

BGSS n—k
_ ok 13
CHI = 6ss k=1 (13)

where BGSS is inter-cluster sum of squares; WGSS is intra-
cluster sum of squares; k is a number of clusters.

As a result of the data clustering using the K-means
method, the Davies — Bouldin index was 0.37, indicating
low intra-cluster dispersion and high inter-cluster distance,
which is a sign of good clustering quality. The Calinski —
Harabasz index is 88.90, which also indicates good
separability of clusters.

After determining the minimum sample of wells, the
best ratio between the “reference well — target well” pairs
is calculated by the optimal step on the distance matrix
using the algorithm described earlier. Then a pair of wells
within the minimum DTW distance is selected.

The determination of layer intersections in target wells
is based on previously known expert points in reference
wells. For each point of layer intersection in the reference
well, the corresponding point in the target well is found
with indices from the DTW alignment matrix.

First, the nearest point to the specified depth of d,
layer intersection is found for the reference well. It is
performed by calculating the minimum difference between
a given depth and all depths in a reference well:

Imin = argmin|D; — dy|, (14)

where D, is the array of depth values for the reference
well; i;, is the index of the nearest point in the array of
reference well depths to the specified depth.

Then the DTW (i, j) matrix is used. The matrix contains
the information of the indices in the reference well
corresponded to the indices in the target well.
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Fig. 10. Correlation results for wells 2 and 15

The corresponding point in the target well is found
using the i, index:

Jmin = DTW(imin, j), (15)

where j;, is index of the corresponding point in the target
well.

Thus, the search layer intersection in the target well is
at the depth of D,[jnin], where D, is an array of depth
values for the target well (Fig. 9).

This algorithm is performed for each pair of wells,
resulting in calculated layer intersections for the target
wells (Fig. 10).

Analysis of results

To assess the results, a comparative analysis was
performed between expert and algorithm-calculated layer
intersections. The total number of layer intersections for
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which the algorithm was tested on amounts to 84. The
distribution of discrepancies across ranges showed that the
majority of the results (84.53 %) are concentrated within
the range of -1...1, indicating a high consistency with
expert marks in most cases (Fig. 11).

However, there are significant discrepancies. A detailed
analysis of the wells with substantial discrepancies (>1 m)
revealed that not in all cases the errors can be attributed to
the algorithm's performance.

As an example, a pair of wells 189 and 21 is considered
(Fig. 12). For well 21, the discrepancy between the
calculated and expert depths of the D2ef-II formation top
is 3.1 m.

In the reference and target wells, the expert applied
different methods of identifying the top of the D2ef-II
formation, which led to discrepancies in the results. In
contrast, the DTW algorithm demonstrated its effectiveness
by correctly identifying the points according to the training
template, regardless of subjective factors. This case
emphasizes that the algorithm can identify errors being
unnoticed by experts. Thus, the DTW algorithm improves
the accuracy and objectivity of data interpretation, and
serves as a tool for identifying and correcting subjective
human errors.

Conclusion

The approach based on the dynamic time warping
algorithm, demonstrates high efficiency and accuracy in inter-
well correlation performed automatically. This approach
significantly reduces time costs, increases the objectivity of

results and identifies human errors in expert interpretation,
making it promising for widespread practical application in
geological and geophysical fields, especially for large data
volumes.

Fig. 12. Correlation scheme of the D2ef-II formation
(wells 189 and 21)
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