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One of the fundamental challenges in studying the properties of productive oil and gas reservoirs is the scale effect. Analysis of
multi-scale research results often reveals discrepancies in data. For example, porosity and permeability properties determined
from standard and full-size samples for the same depth interval can vary significantly. Similarly, these differences become even
more pronounced when transitioning to the scale of the near-wellbore zone. At the same time, the type of reservoir significantly
influences the scale effect. In porous reservoirs, the scale effect may not be pronounced, whereas in complex reservoirs,
transitioning from one scale to another can result in properties changing by an order of magnitude. This is due to high
heterogeneity caused by secondary processes such as leaching, dolomitization, and recrystallization. Neglecting the scale effect
can adversely affect understanding reservoir structure.

In this study, the scale effect of properties was examined using a complex carbonate reservoir as an example. A qualitative
assessment of the scale effect was performed using mathematical statistics and petrotypification methods. To quantitatively
evaluate the scale effect, a multiple regression model was developed to adjust porosity values from standard core samples to full-
size samples for constructing a porosity cube. Several machine learning algorithms were used to predict the permeability values
of full-size samples, including gradient boosting, random forest, multilayer perceptron, and k-nearest neighbors. It was found
that the random forest-based model was the most accurate. The developed models enable highly reliable predictions of porosity
and permeability when transitioning between scales (R*= 0.77-0.94).

OpmHolt 13 (yHIaMeHTaIbHBIX IPoOJIeM IpU HM3y4YeHUH CBOKCTB HMPOAYKTHUBHBIX He(TerasoBbIX pe3epByapoB fBJIAETCSA MAaCIITAOHBII
addexr. [Ipy aHaIM3e pe3ysIbTATOB PA3HOMACINTAOHBIX MCCJIEOBAHHMII 3a4acTyl0 OTMeYaeTcA pasjiMuve NaHHBIX. Hampumep, i
OJIHOTrO MHTepBaJjia IJTyOMH CBOKCTBA MOPHCTOCTH 1 IPOHMIIAEMOCTH, OIpe/e/ieHHble [l CTaHAApTHBIX U MOJHOpa3MePHBIX 00paslioB,
MOTYT 3HAuYMTeIbHO pasyinyarhea. Tak UM Mpy Iepexojie Ha MaciuTa® OKOJIOCKBaXMHHON 30HBI JaHHOE pas/iMuMe Ipossiisercs Gonee
KOHTPAacTHO. B TO e BpeMs CHJIbHOE BIIMAHKME Ha MacIITaOHbIA 2(deKT okasblBaeT TUIN KoJuUleKTopa. Ecim /71 opoBoro KojuleKTopa
nposiBjIeHe MacTabHoro sgdexra cBOHCTB MOXeT ObITh HE3HAYMTEJIHO, TO B CJIOKHONOCTPOEHHBIX KOJUIEKTOpax IpH Nepexofe OT
ofHOro Macmra6a K JPYroMy CBOMCTBA MOTYT M3MEHATHCS Ha MOPANOK BBUJY HaJM4MsA BHICOKOH HEONHOPOJHOCTH, 0OYCJIOBJIEHHOM
HaJIMYMeM BTOPMYHBIX NpeoOpa3oBaHMii, TaKMX Kak BhbllleJIauMBaHue, AOJOMUTH3alys, NepeKkpucTaumsanus. IlpeneSpexeHne
MacITabHbIM 3P PeKToM MOXKeT oKa3aTh HeraTUBHOe BJIMAHKE Ha IOHMMaHUe CTPOeHre pe3epByapa.

B pamMkax [aHHOTO HCCJIeIOBaHMA IIPOBeNeHO M3ydeHHe MacmrabHoro sdd@ekTa CBOMCTB Ha IIpUMepe CJI0XKHOIOCTPOEHHOrO
Kapﬁoﬂa'moro KOJUIEKTOpa. BeimosiHeHa KauecTBeHHas OLIEHKa MacmTabHOro Bll)qJeKTa MeTrogaMmu MaTeMaTUYEeCKOH CTAaTHUCTUKU U
NeTPOTUIM3ANUY. J{JIA KOJIMIeCTBEHHOH OLeHKH MacITabHoro a¢deKra MocTpoeHa MoJieIb MHOXECTBEHHOI perpecciy, NO3BOJIAIOMIei
CKOPPEKTHPOBATh 3HAYEeHs IOPHCTOCTH OT CTAaHJAPTHBIX 00Pa3IioB KepHa K IOJIHOpa3MepHbIM I NOCTPOeHHsA Kyba nopuctocTy. [
MPOTHO3a 3HAYeHUIl MPOHUIAEMOCTH MOJIHOPa3MepHBIX 00paslioB HCIOJIB30BAJIOCh HECKOJIbKO aJITOPUTMOB MALIMHHOIO O0YyYeHMUs,
cpeay KOTOPbIX I'DAIeHTHBIA OYCTHHI, CJIyYaiHbIN JieC, MHOTOCJIOMHBIA MepUenTpoH U k-Givpkaliimx cocefieil. YCTaHOBJIEHO, YTO
HauboJlee TOYHOI ABJIAETCA MOZIeJIb Ha OCHOBE aJropuTMa CJIydaiHoro Jieca. IToCTpOEHHble MOJENIM C BBICOKOH JIOCTOBEPHOCTBIO
MO3BOJISIOT MIPOTHO3UPOBATh TIOPUCTOCTH M IPOHUI[AEMOCTb P M3MeHeHU Macitaba (R? = 0,77-0,94).
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Introduction

The scale effect of rock properties is one of the most
important factors determining the accuracy and reliability
of their interpretation. In the practice of designing field
development certain properties at different scales can
differ significantly [1].

The phenomenon of the scale effect is determined by
the change in rock properties depending on the volume
of the rock. Such changes can depend on various
factors, the determining one of which is geological
heterogeneity [2, 3].

Along with the scale effect, there is also the concept
of "upscaling". The difference between the concepts is
that the scale effect is a change in rock properties with a
change in the volume of the studied rock, and upscaling
is the process of setting equivalent filtration-capacitive
properties when moving from one scale to another, for
example, from a static model grid to a dynamic model
grid [4-6]. Carbonate samples are characterized by a
higher scale effect step compared to terrigenous ones due
to the presence of high heterogeneity caused by the
presence of secondary rock transformations, such as
leaching, dolomitization, recrystallization, etc. [7, 8].

Modern approaches to the design of oil and gas field
development are based on the creation of geological and
hydrodynamic models. One of the important components
of creating geological and hydrodynamic models of oil
carbonate reservoirs is the creating cubes of filtration-
capacity properties — absolute permeability and porosity
[9-12]. These properties directly determine the
development parameters, the amount of geological and
recoverable reserves.

It is generally accepted that the properties of rocks
obtained in the laboratory (direct studies) are the most
reliable [13]. The results of determining the properties
are used at the initial stage of creating a digital
geological and hydrodynamic model. However, while
calculating oil reserves using the volumetric method, the
coefficient of open porosity of standard-sized core
samples (3x3 cm) is often used which may be
unrepresentative in the case of high geological heterogeneity
[14, 15]. For carbonate reservoirs, where a high degree
of multi-scale heterogeneity is often observed, which is a
consequence of secondary voids such as caverns and
fractures, the petrophysical relationship "permeability —
porosity" used as a basis for creating property cubes is
most often unstable [16, 17]. Therefore, for carbonate
reservoirs, the petrophysical relationship "permeability —
porosity" is clarified by direct studies of the core with
depth reference [18].

For carbonate reservoirs, where a high degree of
multi-scale heterogeneity is often observed which is a
consequence of secondary voids such as caverns and
fractures, the petrophysical permeability-porosity
relationship used as a basis for creating property cubes is
most often unstable [16, 17]. Therefore, for carbonate
reservoirs, the petrophysical permeability-porosity
relationship is clarified by direct core studies with depth
reference [18].

From the point of view of describing the filtration
processes occurring in the reservoir when creating a
permeability cube of a geological-hydrodynamic model,
full-size samples are the most representative, since they
reflect the filtration of both the matrix part and the
cavernous-fractured-pore part [19-21]. While standard-
size samples characterize either rock properties taking
into account the matrix part or the cavernous-fractured
fraction of voids that predominates in a particular plug,
the use of standard samples with a diameter and height

of 3 cm does not correspond to the scale of the static
model cell along the vertical (0.1 m); the height of the
dynamic model cell is characterized by an even larger
size (0.4 m) [22-24].

Many authors note the need to consider the
elementary representative volume in the context of the
scale effect [25-28]. Therefore this is the volume at
which the fluctuation of properties is reduced to a
minimum [29]. Determining this volume gives an idea of
the degree of influence of the scale effect on rock
properties.

The scale effect is assessed and studied using various
approaches. Porosity is determined at the microlevel by
studying petrographic thin sections, porosity is calculated
at the mesolevel by analyzing well logging data, and
porosity at the macrolevel is determined by laboratory
methods. In [30], it is shown that porosity fluctuations
are minimized on the macroscale. In [31], a method is
proposed for studying the effect of sample scale on
reservoir properties. The basis of the method is the
analysis of the results of gas-volumetric studies of
porosity and permeability of the same core sample with
subsequent reduction of the sample size [32]. A combination
of gas-volumetric studies with the results of computed
tomography is used [33]. The authors of [34] proposed a
method for the transition from the core scale to the scale
of a 3D static model by using nuclear magnetic resonance
(NMR) curves.

In the process of creating geological models and
upscaling properties into a dynamic model, it is
important to take into account the scale effect [35, 36].
Traditionally, upscaling the properties of a refined
geological grid to a hydrodynamic one is carried out by
averaging the data with arithmetic, harmonic or
geometric means. A number of studies are aimed at
developing upscaling methods based on hydraulic flow
units [37]. In the process of upscaling, it is also
important to take into account the scale effect of
properties both vertically and laterally [38, 39]. The
paper presents an approach for upscaling relative phase
permeabilities that takes into account the scale effect for
different facies zones by using digital core analysis [40].
Based on the analysis of publications, it can be noted that
most of the works are aimed at a qualitative assessment
of the scale effect using the results of direct studying
cores of different scales. A quantitative assessment of the
scale effect should also be carried out in order to clarify
the initial data for creating geological and hydrodynamic
models of the reservoir. Often, full-size core samples are
not enough to characterize the well section; in such
cases, in order to clarify the filtration properties of the
reservoir, it is necessary to take into account standard-
size samples. To take into account the scale effect, it is
necessary to use its quantitative assessment and
introduce correction factors, which is the subject of the
current study. Further, the work will present a geological
description of the studied object, describe materials and
methods including statistical analysis and comparison of
standard and full-size core samples, typification of
samples by petrophysical properties, quantitative
calculation of scale factors and the approach to using
factors when creating models.

Geological description

The studying core samples of Yelets carbonate deposits
of the Alpha field located in the Timan-Pechora oil and gas
province was conducted Reef deposits of the studied fields
were formed during four reef-building cycles: one Zadonsk
and three Yelets (Fig. 1) with the rocks of the first cycle

HEOPONOJIb3OBAHUE



PERM JOURNAL OF PETROLEUM AND MINING ENGINEERING

Fig. 1. Stratigraphic column
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Table 1
Reservoir properties
Bed Parameter  Average value.  Min. Max.
k, MJI 86.05 0.1 9058.2
D,yfm, (el,)
0, % 7.5 0.4 21.2
k, ]I 128 0.1 18143
D,fm, (el,)
o, % 6.45 0.9 29.6

separated from later formations by a layer of dense but
brittle carbonate rocks of variable thickness and
composition. The growth of organogenic structures in the
Zadonsk-Yelets time was accompanied by repeated local
breaks caused by a slowdown in the growth of
organogenic structures, which was reflected in a change
in the color of limestones. The samples are represented
by microbial-detrital limestone (spherical-patterned)
(Fig. 2, a) with a secondary clotted-lumpy structure,
locally pigmented bituminous organic matter and
secondary calcareous dolomite, fine-medium-grained,
porous (Fig. 2, b).

The capacitive space of the studied section is
determined mainly by pores and leaching caverns,
dolomitization/recrystallization pores and fracturing.

The reservoir properties are presented in Table 1.

Materials and methods

The study was based on the results of standard

b (3499 pcs.) and full-size (678 pcs.) rock samples collected

from 12 wells at the Alpha field. Based on the results of the

Fig. 2. Lithotype: a — microbial limestone study a consolidated database of petrophysical properties

spherical-patterned; b — secondary dolomite was created. Full-size and standard samples were compared
calcareous fine-medium-grained, porous at depth marks within one drilling.
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The statistical indicators of the sample properties were
analyzed and compared using mathematical statistics
methods. The degree of scale effect was calculated as the
ratio of porosity and permeability between full-size and
standard samples.

The R35 parameter was calculated — the radius of pore
channels corresponding to 35 % saturation of the pore
volume with a non-wetting phase (mercury) (1):

IgR35 = 0.732 + 0.588IgK,,, — 0.8641gK, 1)

where R35 is the radius of the pore channel corresponding
to 35 % saturation of the pore volume with a non-wetting
phase, um; K, is the permeability coefficient, mD; K,, is the
porosity coefficient, %.

For a detailed statistical analysis of the filtration and
capacity properties, petrophysical typing of core samples
was carried out using the hydraulic flow units (HFU)
method, since this approach is justified and used by
many authors for typing carbonate reservoirs [41, 42].
The method is also largely applicable for typing rocks in
geological and hydrodynamic modeling [43].

The method is based on the calculation of a complex
parameter — the hydraulic flow unit indicator (Flow Zone
Indicator — FZI):

Fzl = 24 )

@z

where RQI (Reservoir Quality Index) is the reservoir
quality index, pym; ¢, is the normalized porosity index,
fractions of units. RQI is determined by the expression:

RQI = 0.0314 \/% 3)

where k is the permeability coefficient, mD; ¢ is the
porosity coefficient, fractions of a unit. ¢, characterizes
the ratio of the volume of voids to the volume of the
solid phase of the rock and is determined by the
expression:

=2
0 = 1% @

Differentiation of core samples into different classes by
the FZI parameter was carried out using the DRT
(distribution of relaxation time) method [44]. The formula
for determining the DRT class is given below:

DRT = 2In(FZI) + 10.6. (5)

Multiple regression methods were used to identify the
parameters that most determine the degree of scale effect.
The equation for multiple linear regression is:

Y=0+B" X +B X, +... 4+ B Xi +e. (6)

In this case, the variable Y depends on k explanatory
variables X, i.e. regressors, ¢ is a random error. The model
is linear with respect to the unknown parameters [3.
Estimates of the model parameters (f3,, ;, B,) are usually
calculated using the ordinary least squares (OLS) method

which minimizes the sum of the squares of the forecast
errors. The corresponding parameter estimates will be
denoted as by, b; and b,

The error ¢ has a random nature and its own
distribution function with a mean value equal to 0 and a
variance o equal to 2. Multiple regression allows us to
decompose the total influence of factors into its
constituent parts, more accurately identifying the marginal
contribution of each factor.

At the next stage, machine learning methods are used
to create a model for predicting the scale effect, or in other
words the properties of full-size samples based on standard
ones.

Since the models are prepared with data with true
values, this regression problem is considered as supervised
learning. Therefore, the most common and well-established
algorithms were used: random forest [45, 46], gradient
boosting [47-49], multilayer perceptron and k-nearest
neighbors.

Random forest is a machine learning method that is an
ensemble of decision trees. Gradient boosting is a machine
learning method based on sequential model construction.
Each subsequent model tries to correct the errors of the
previous one [50, 51].

Multilayer perceptron [52, 53] is a class of feedforward
artificial neural networks consisting of at least three
layers: input, hidden, and output.

K-nearest neighbors [54] is a metric algorithm for
automatic classification of objects or regression. In the case
of using the method for regression, the object is assigned the
average value of the k-nearest objects to it which values are
already known.

Hyperparameters were also tuned for greater accuracy.
Hyperparameters are adjustable parameters of a machine
learning model that cannot be learned during the training
process and must be specified in advance. The
hyperparameters were selected using the Grid Search method.
Grid search is a method for optimizing hyperparameters of
machine learning models which involves trying all possible
combinations of hyperparameter values and selecting the
best one.

To analyze the accuracy of the constructed models, the
convergence of the predicted and actual data was assessed
using a number of metrics:

— MAE (mean absolute error) — the degree of
discrepancy between the actual and predicted value in
absolute values;

— MAPE (mean absolute percentage error) is the degree
of discrepancy between the actual and predicted value in
percent;

— MSE (mean square error) is the arithmetic mean of
the squares of the differences between the actual and
predicted values;

— R? (coefficient of determination) — estimates the
proportion of dispersion, which gives an idea of the degree
of conformity.

Results

Statistical analysis. Qualitative assessment of the scale
effect. At the first stage, the petrophysical dependence of
the permeability of porosity for standard and full-size core
samples was constructed (Fig. 3).

While analyzing the petrophysical dependence, it can
be noted that, in general, the cloud of values for full-size

HEOPONOJIb3OBAHUE



PERM JOURNAL OF PETROLEUM AND MINING ENGINEERING

When comparing the distribution of the 1logR35
parameter, the presence of a scale effect for the mode

. * . shift and the influence of the scale effect are also noted.
4.7 '*s;-_.' " At the next stage, petrotyping of rocks was carried
e Ve out using the DRT method (Fig. 5, a, b).
') ,‘__'- * Due to the significantly larger number of samples, a

Permeability, mD

# Standard samples
# Full-size samples

Q 5 10

15 20 5 30
Porosity, %

Fig. 3. Permeability-porosity relationship for standard and
full-size core samples

and standard core samples overlap each other, being
mainly in the same ranges. However, for standard samples
a significant proportion of samples with low reservoir
properties is noted, while a pair of samples are
characterized by high porosity values (more than 22 %),
which is not typical for the main part of the sample.
Statistical indicators are presented in Table 2.

The standard deviation and dispersion of the
permeability parameter for standard samples are lower
than for full-size ones but if you look at the relative
value of the spread relative to the average value — the
variation coefficient, it is almost twice as high for
standard samples. For porosity, while calculating the
standard deviation and dispersion, the samples are
comparable; but while relative assessing the value of
the spread, it is significantly higher for standard
samples (1.6 times).

Next, the histograms of the distributing properties for
full-size and standard samples are constructed (Fig. 4, a, b).

Figure 4, a shows the distributing porosity for samples
of different scales, it can be noted that the mode for
standard samples is 2 %, for full-size samples 6 %, that is,
a significant proportion of standard samples is located in
the non-reservoir zone, justified from the point of view of
the economic efficiency of field development (3.6 %).

Figure 4, b shows the distributing the logarithm of
different scales samples permeability. A significant
difference in the mode is noted — 3.5 (standard samples)
to 1.5 for full-size samples. Also, a significant proportion
of samples correspond to the non-reservoir value (less
than 0.6 mbD), that is, it characterizes the matrix
component of the rock without taking into account the
influence of caverns and microcracks.

Fig. 4, c, shows the histogram of the distribution of
the logR35 parameter for samples of different scales.

more uniform distribution of values by classes for
standard samples is visually noted (see Fig. 5, a),
however, while examining the distribution histogram in a
relative equivalent, it is clear that both samples are
characterized by similar distribution laws. However, for
standard samples, a slight shift in mode towards low
classes and a more uniform distribution of middle classes
are noted.

The obtained statistical estimates and graphs of the
distribution of properties quantitatively show the
presence of a scale effect between standard and full-size
properties. The scale effect affects the properties of
samples, and as a consequence, the results of petrotyping
of samples, which must also be taken into account when
assessing the scale effect. The histogram (Fig. 6) shows
that the modal value for both samples is located in the
area of class 13, and the samples are generally
characterized by a similar distribution, which indirectly
indicates the possibility of quantitatively assessing the
scale effect within each petrotype.

Identification of parameters influencing the scale
effect. Development of an approach for quantitatively
assessing the scale effect. At the next stage, an additional
database was collected to develop an approach for
quantitatively assessing the scale effect. The database
compares standard and full-size core samples by
sampling depths in order to analyze the scale effect of
properties for identical samples and intervals. A total of
171 core samples from the common database remained
after the comparison. The correlation fields of porosity
(Fig. 7, a) and permeability (Fig. 7, b) between standard
and full-size samples are presented below.

While analyzing the correlation fields, the presence
of a scale effect is noted for both porosity and
permeability for samples compared by depth and
chiselling. The degree of scale effect influence on rock
permeability (R*> = 0.02) is significantly stronger than
on porosity (R* = 0.64). This is generally explained by
the large scatter and heterogeneity of the initial data for
permeability.

Next, multiple regression models were built to quantify
the scale effect and the degree of influencing the
parameters. The target variables were the porosity of the
full-size sample; the scale factor of permeability (the ratio
of the permeability of the full-size sample to the standard
one), since a direct prediction of the permeability value of
the full-size sample did not show any results. The
following parameters were considered as predictors: porosity
of the standard sample, permeability of the standard

GEOLOGY, PROSPECTING, EXPLORATION AND EXPLOITATION OF OIL AND GAS FIELDS

Table 2
Comparison of statistical parameters for standard and full-size core samples
Parameter Amount Av.value Stz.anc.l. Min. Max. Dispertion Variation
deviation coef.
Permeability by standard samples, mD 3159 54.4 504.30 0.001 18143.0 254 318 927.21
Permeability by all samples, mD 657 113.7 675.27 0.03 11543.8 455 988.7 593.67
Porosity by standard samples, % 3499 4.7 3.83 0.10 29.6 14.6 81.57
Porosity by all samples, % 678 7.0 3.65 0.43 21.4 13.3 52.50
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Fig. 5. Graphs of the “permeability — porosity” dependence:
a - for standard core samples; b — for full-size core samples

=3 Standard samples
Hoa =3 Full-size samples

Frequency, %
2 N
o s

=
"

%

-

73 o 12F 130 1S 00 123 250

DTR categories

Fig. 4. Histograms: a — distributing porosity of different scales
samples; b — distributing the logarithm of different scales sample
permeability; ¢ — distributing the 1ogR35 parameter for samples

of different scales

sample, sampling depth, FZI, R35. Based on the calculation
results, the following scale effect model was obtained for
porosity:
Pues = 0.76* 91g—0.99954 - ko —
—0.078 - FZI;,,+0,21 - R35,,,+3.034,
R?=0.94, @

where ewecs is the porosity of full-size samples, %; oplug is
the porosity of standard samples, %; kplug is the permeability

Fig. 6. Histogram of the distributing DRT categories of samples
from different scales

of standard samples, mD; FZIplug is the indicator of the
hydraulic unit of flow of standard samples; R35plug is the
radius of the pore throats corresponding to 35 % saturation
of the pore volume with the non-wetting phase.

According to the results of constructing the multiple
regression model, the following parameters had a
statistically significant effect (in order of influence): porosity
of standard samples (p-value = 0), permeability of standard
samples (p-value = 0.014), FZI (p-value = 0.028) and R35
(p-value = 0.05) of standard samples. That is, based on
these parameters of standard samples, when using the
obtained model, the values of standard samples are adjusted
to the scale of full-size samples. Figure 8 shows the
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Fig. 11. Histogram of permeability distribution for standard,
full-size and corrected values of standard samples

cross-plot of porosity between full-size and standard
samples. Figure 9 shows a histogram of the porosity
distributing standard samples, full-size samples and adjusted
values according to the obtained model.

The obtained model allows reliable predicting the
porosity values of a full-size core based on the parameters of
a standard core (see Fig. 7, a).

Based on the calculation results, the following model
of the scale effect coefficient for permeability was
obtained:

K = 0.00023 - Dy, — 0.68 * 0y —
—0.000027 - kg — 0.00487 - FZL,,
R = 0.017, 8

where K is the scale effect coefficient for permeability;
Depth is the core sampling depth, m; ¢plug is the porosity
of standard samples, %; kplug is the permeability of
standard samples, mD; FZIplug is the indicator of the
hydraulic unit of standard samples flow.

Based on the results of constructing the multiple
regression model, it was revealed that the following
parameters had a statistically significant effect (in order of
influence): core sampling depth, porosity of standard
samples, permeability of standard samples, FZI. That is,
based on these parameters of standard samples, while
using the obtained model, the scale factor is predicted, and
then with its help the values of standard samples are
adjusted to the scale of full-size samples.

However, the coefficient of determing the model does
not allow it to be used for a reliable forecast (Fig. 10, 11).

Therefore, another approach is proposed for a
quantitative assessment of the scale effect of permeability,
b which consists of building machine learning models.
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Table 3
Comparison of the effectiveness of machine learning algorithms
TR Py —
Algorithm R?, training R?, test sample MAE, training MAE, , test sample RMSE, training RMSE, , test
sample sample sample sample
Gradient Boosting 0.56 0.13 0.54 0.89 0.67 0.89
Multilayer perceptron 0.43 0.17 0.6 0.69 0.77 0.88
Random forest 0.91 0.61 0.25 0.5 0.31 0.44
K-nearest neighbors 0.37 0.17 0.63 0.67 0.8 0.87
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Machine learning methods for predicting the
permeability scale effect. While compiling a model for
predicting the permeability of full-size samples
(permeability logarithm), the main influence was exerted
by the parameters of standard sample porosity, standard
sample permeability, sampling depth and LnR35 for
standard samples. All algorithms were trained on these
parameters.

The comparing the efficiency of algorithms for predicting
the porosity of full-size samples based on the parameters of
standard samples is presented in Table 3.

From Table 3 it is clear that only the random forest
algorithm is applicable for this problem, where the
determination coefficients were 0.91/0.61 for the training
and test samples, respectively.

Below there is the correlation field between the actual
and predicted values (Fig. 12). According to Fig. 12, a
high correlation is noted between the actual and
predicted values.

Next, the degree of importance of the features is
calculated (Fig. 13).

# Predicted value (random forest)

Permeability by standard samples, mD

Fig. 14. Comparison of forecast and initial data
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Fig. 15. Histogram of permeability distribution for standard,
full-size and corrected standard samples

Figure 13 shows that the most significant parameter
is the porosity of standard samples (0.54), followed by
logR35 (0.172), sampling depth (0.15) and permeability
(0.14). That is, the greatest influence on the scale effect
is exerted by the capacity and filtration properties, their
interrelation and vertical zoning. Below is a comparison
of the predicted values with the initial values of standard
and full-size samples (Fig. 14, 15).

The model obtained based on the random forest
algorithm allows to significantly reduce the degree of
influencing the scale effect on the permeability of samples
(from R* = 0.023 to R* = 0.761).

Conclusion

Based on the results of the statistical analysis, the
presence of a scale effect for porosity and permeability
with a change in the size of samples of the carbonate
reservoir of the Alpha field was established at a qualitative
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level. Multiple regression models were built to
quantitatively assess the scale effect. It was found that the
magnitude of the porosity scale effect is most influenced
by the porosity and permeability of standard samples, the
indicator of the hydraulic unit of flow of standard samples,
and the radius of the pore channels. The magnitude of the
permeability scale effect is influenced by the core sampling
depth, porosity and permeability of standard samples, and
the indicator of the hydraulic unit of flow of standard
samples. The resulting model of the scale effect for
porosity also allows reliably reducing the values of
standard samples to the scale of full-size ones - the

a quantitative assessment, an approach based on the use of
machine learning algorithms is proposed. For the purposes
of forecasting the scale effect of permeability (permeability
of full-size samples), the most reliable evaluation metrics
were demonstrated by the random forest algorithm, the
determination coefficients were 0.91/0.61/0.761 for
training, testing and on average for the studied sample.
While analyzing the parameters of predictors, the most
significant is the porosity of standard samples (0.54),
followed by logR35 (0.172), sampling depth (0.15) and
permeability (0.14).

The resulting approach allows using standard samples

reduced to the scale of full-size ones in order to refine
geological and hydrodynamic models. The authors will
present the testing of the method on the Alpha field model
in future works.

determination coefficient was 0.94. For the permeability
scale effect model, the determination coefficient was 0.017
which allows using the model only to estimate the
parameters affecting the magnitude of the scale effect. For
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