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 One of the fundamental challenges in studying the properties of productive oil and gas reservoirs is the scale effect. Analysis of 
multi-scale research results often reveals discrepancies in data. For example, porosity and permeability properties determined
from standard and full-size samples for the same depth interval can vary significantly. Similarly, these differences become even 
more pronounced when transitioning to the scale of the near-wellbore zone. At the same time, the type of reservoir significantly 
influences the scale effect. In porous reservoirs, the scale effect may not be pronounced, whereas in complex reservoirs, 
transitioning from one scale to another can result in properties changing by an order of magnitude. This is due to high
heterogeneity caused by secondary processes such as leaching, dolomitization, and recrystallization. Neglecting the scale effect 
can adversely affect understanding reservoir structure.  
In this study, the scale effect of properties was examined using a complex carbonate reservoir as an example. A qualitative
assessment of the scale effect was performed using mathematical statistics and petrotypification methods. To quantitatively 
evaluate the scale effect, a multiple regression model was developed to adjust porosity values from standard core samples to full-
size samples for constructing a porosity cube. Several machine learning algorithms were used to predict the permeability values 
of full-size samples, including gradient boosting, random forest, multilayer perceptron, and k-nearest neighbors. It was found 
that the random forest-based model was the most accurate. The developed models enable highly reliable predictions of porosity 
and permeability when transitioning between scales (R2= 0.77–0.94).
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 Одной из фундаментальных проблем при изучении свойств продуктивных нефтегазовых резервуаров является масштабный
эффект. При анализе результатов разномасштабных исследований зачастую отмечается различие данных. Например, для
одного интервала глубин свойства пористости и проницаемости, определенные для стандартных и полноразмерных образцов,
могут значительно различаться. Так и при переходе на масштаб околоскважинной зоны данное различие проявляется более 
контрастно. В то же время сильное влияние на масштабный эффект оказывает тип коллектора. Если для порового коллектора
проявление масштабного эффекта свойств может быть незначительно, то в сложнопостроенных коллекторах при переходе от 
одного масштаба к другому свойства могут изменяться на порядок ввиду наличия высокой неоднородности, обусловленной
наличием вторичных преобразований, таких как выщелачивание, доломитизация, перекристаллизация. Пренебрежение 
масштабным эффектом может оказать негативное влияние на понимание строение резервуара. 
В рамках данного исследования проведено изучение масштабного эффекта свойств на примере сложнопостроенного
карбонатного коллектора. Выполнена качественная оценка масштабного эффекта методами математической статистики и 
петротипизации. Для количественной оценки масштабного эффекта построена модель множественной регрессии, позволяющей
скорректировать значения пористости от стандартных образцов керна к полноразмерным для построения куба пористости. Для 
прогноза значений проницаемости полноразмерных образцов использовалось несколько алгоритмов машинного обучения,
среди которых градиентный бустинг, случайный лес, многослойный перцептрон и k-ближайших соседей. Установлено, что 
наиболее точной является модель на основе алгоритма случайного леса. Построенные модели с высокой достоверностью
позволяют прогнозировать пористость и проницаемость при изменении масштаба (R2 = 0,77–0,94). 
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Introduction 
 
The scale effect of rock properties is one of the most 

important factors determining the accuracy and reliability 
of their interpretation. In the practice of designing field 
development certain properties at different scales can 
differ significantly [1]. 

The phenomenon of the scale effect is determined by 
the change in rock properties depending on the volume 
of the rock. Such changes can depend on various 
factors, the determining one of which is geological 
heterogeneity [2, 3]. 

Along with the scale effect, there is also the concept 
of "upscaling". The difference between the concepts is 
that the scale effect is a change in rock properties with a 
change in the volume of the studied rock, and upscaling 
is the process of setting equivalent filtration-capacitive 
properties when moving from one scale to another, for 
example, from a static model grid to a dynamic model 
grid [4–6]. Carbonate samples are characterized by a 
higher scale effect step compared to terrigenous ones due 
to the presence of high heterogeneity caused by the 
presence of secondary rock transformations, such as 
leaching, dolomitization, recrystallization, etc. [7, 8]. 

Modern approaches to the design of oil and gas field 
development are based on the creation of geological and 
hydrodynamic models. One of the important components 
of creating geological and hydrodynamic models of oil 
carbonate reservoirs is the creating cubes of filtration-
capacity properties – absolute permeability and porosity 
[9–12]. These properties directly determine the 
development parameters, the amount of geological and 
recoverable reserves. 

It is generally accepted that the properties of rocks 
obtained in the laboratory (direct studies) are the most 
reliable [13]. The results of determining the properties 
are used at the initial stage of creating a digital 
geological and hydrodynamic model. However, while 
calculating oil reserves using the volumetric method, the 
coefficient of open porosity of standard-sized core 
samples (3×3 cm) is often used which may be 
unrepresentative in the case of high geological heterogeneity 
[14, 15]. For carbonate reservoirs, where a high degree 
of multi-scale heterogeneity is often observed, which is a 
consequence of secondary voids such as caverns and 
fractures, the petrophysical relationship "permeability – 
porosity" used as a basis for creating property cubes is 
most often unstable [16, 17]. Therefore, for carbonate 
reservoirs, the petrophysical relationship "permeability – 
porosity" is clarified by direct studies of the core with 
depth reference [18]. 

For carbonate reservoirs, where a high degree of 
multi-scale heterogeneity is often observed which is a 
consequence of secondary voids such as caverns and 
fractures, the petrophysical permeability-porosity 
relationship used as a basis for creating property cubes is 
most often unstable [16, 17]. Therefore, for carbonate 
reservoirs, the petrophysical permeability-porosity 
relationship is clarified by direct core studies with depth 
reference [18]. 

From the point of view of describing the filtration 
processes occurring in the reservoir when creating a 
permeability cube of a geological-hydrodynamic model, 
full-size samples are the most representative, since they 
reflect the filtration of both the matrix part and the 
cavernous-fractured-pore part [19–21]. While standard-
size samples characterize either rock properties taking 
into account the matrix part or the cavernous-fractured 
fraction of voids that predominates in a particular plug, 
the use of standard samples with a diameter and height 

of 3 cm does not correspond to the scale of the static 
model cell along the vertical (0.1 m); the height of the 
dynamic model cell is characterized by an even larger 
size (0.4 m) [22–24]. 

Many authors note the need to consider the 
elementary representative volume in the context of the 
scale effect [25–28]. Therefore this is the volume at 
which the fluctuation of properties is reduced to a 
minimum [29]. Determining this volume gives an idea of 
the degree of influence of the scale effect on rock 
properties. 

The scale effect is assessed and studied using various 
approaches. Porosity is determined at the microlevel by 
studying petrographic thin sections, porosity is calculated 
at the mesolevel by analyzing well logging data, and 
porosity at the macrolevel is determined by laboratory 
methods. In [30], it is shown that porosity fluctuations 
are minimized on the macroscale. In [31], a method is 
proposed for studying the effect of sample scale on 
reservoir properties. The basis of the method is the 
analysis of the results of gas-volumetric studies of 
porosity and permeability of the same core sample with 
subsequent reduction of the sample size [32]. A combination 
of gas-volumetric studies with the results of computed 
tomography is used [33]. The authors of [34] proposed a 
method for the transition from the core scale to the scale 
of a 3D static model by using nuclear magnetic resonance 
(NMR) curves. 

In the process of creating geological models and 
upscaling properties into a dynamic model, it is 
important to take into account the scale effect [35, 36]. 
Traditionally, upscaling the properties of a refined 
geological grid to a hydrodynamic one is carried out by 
averaging the data with arithmetic, harmonic or 
geometric means. A number of studies are aimed at 
developing upscaling methods based on hydraulic flow 
units [37]. In the process of upscaling, it is also 
important to take into account the scale effect of 
properties both vertically and laterally [38, 39]. The 
paper presents an approach for upscaling relative phase 
permeabilities that takes into account the scale effect for 
different facies zones by using digital core analysis [40]. 
Based on the analysis of publications, it can be noted that 
most of the works are aimed at a qualitative assessment 
of the scale effect using the results of direct studying 
cores of different scales. A quantitative assessment of the 
scale effect should also be carried out in order to clarify 
the initial data for creating geological and hydrodynamic 
models of the reservoir. Often, full-size core samples are 
not enough to characterize the well section; in such 
cases, in order to clarify the filtration properties of the 
reservoir, it is necessary to take into account standard-
size samples. To take into account the scale effect, it is 
necessary to use its quantitative assessment and 
introduce correction factors, which is the subject of the 
current study. Further, the work will present a geological 
description of the studied object, describe materials and 
methods including statistical analysis and comparison of 
standard and full-size core samples, typification of 
samples by petrophysical properties, quantitative 
calculation of scale factors and the approach to using 
factors when creating models. 

 
Geological description  
 
The studying core samples of Yelets carbonate deposits 

of the Alpha field located in the Timan-Pechora oil and gas 
province was conducted Reef deposits of the studied fields 
were formed during four reef-building cycles: one Zadonsk 
and three Yelets (Fig. 1) with the rocks of the first cycle 
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Fig. 1. Stratigraphic column  
 
 

 
a 

 
b 
 
 

Fig. 2. Lithotype: а – microbial limestone 
spherical-patterned; b – secondary dolomite 

calcareous fine-medium-grained, porous 

Table 1 
Reservoir properties  

 
Bed Parameter Average value. Min. Max. 

D3fm1 (el1)  
k, мД 86.05 0.1 9058.2 
φ, %  7.5 0.4 21.2 

D3fm1 (el3)  
k, мД 128 0.1 18143 
φ, %  6.45 0.9 29.6 

 
separated from later formations by a layer of dense but 
brittle carbonate rocks of variable thickness and 
composition. The growth of organogenic structures in the 
Zadonsk-Yelets time was accompanied by repeated local 
breaks caused by a slowdown in the growth of 
organogenic structures, which was reflected in a change 
in the color of limestones. The samples are represented 
by microbial-detrital limestone (spherical-patterned) 
(Fig. 2, a) with a secondary clotted-lumpy structure, 
locally pigmented bituminous organic matter and 
secondary calcareous dolomite, fine-medium-grained, 
porous (Fig. 2, b). 

The capacitive space of the studied section is 
determined mainly by pores and leaching caverns, 
dolomitization/recrystallization pores and fracturing. 

The reservoir properties are presented in Table 1. 
 
Materials and methods 
 
The study was based on the results of standard 

(3499 pcs.) and full-size (678 pcs.) rock samples collected 
from 12 wells at the Alpha field. Based on the results of the 
study a consolidated database of petrophysical properties 
was created. Full-size and standard samples were compared 
at depth marks within one drilling. 
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The statistical indicators of the sample properties were 
analyzed and compared using mathematical statistics 
methods. The degree of scale effect was calculated as the 
ratio of porosity and permeability between full-size and 
standard samples. 

The R35 parameter was calculated – the radius of pore 
channels corresponding to 35 % saturation of the pore 
volume with a non-wetting phase (mercury) (1): 

 
 lg𝑅35 = 0.732 + 0.588lg𝐾 − 0.864lg𝐾,  (1)  

 
where R35 is the radius of the pore channel corresponding 
to 35 % saturation of the pore volume with a non-wetting 
phase, μm; Kpr is the permeability coefficient, mD; Kp is the 
porosity coefficient, %. 

For a detailed statistical analysis of the filtration and 
capacity properties, petrophysical typing of core samples 
was carried out using the hydraulic flow units (HFU) 
method, since this approach is justified and used by 
many authors for typing carbonate reservoirs [41, 42]. 
The method is also largely applicable for typing rocks in 
geological and hydrodynamic modeling [43]. 

The method is based on the calculation of a complex 
parameter – the hydraulic flow unit indicator (Flow Zone 
Indicator – FZI): 

 
 FZI =  ୖ୕୍ ,  (2)  

 
where RQI (Reservoir Quality Index) is the reservoir 
quality index, μm; φz is the normalized porosity index, 
fractions of units. RQI is determined by the expression: 
 
  RQI =  0.0314ට,  (3)  

 
where k is the permeability coefficient, mD; φ is the 
porosity coefficient, fractions of a unit. φz characterizes 
the ratio of the volume of voids to the volume of the 
solid phase of the rock and is determined by the 
expression: 
 
 φ௭ =  ଵି.  (4)  

 
Differentiation of core samples into different classes by 

the FZI parameter was carried out using the DRT 
(distribution of relaxation time) method [44]. The formula 
for determining the DRT class is given below: 

 
 DRT =  2 ln(FZI) + 10.6.  (5)  

 
Multiple regression methods were used to identify the 

parameters that most determine the degree of scale effect. 
The equation for multiple linear regression is: 

 
 Y = β0 +β1 ∙ X1 +β2 ∙ X2 +…+βk ∙ Xk +ε.  (6)  

 
 
In this case, the variable Y depends on k explanatory 

variables X, i.e. regressors, ε is a random error. The model 
is linear with respect to the unknown parameters β. 
Estimates of the model parameters (β0, β1, β2) are usually 
calculated using the ordinary least squares (OLS) method 

which minimizes the sum of the squares of the forecast 
errors. The corresponding parameter estimates will be 
denoted as b0, b1 and b2. 

The error ε has a random nature and its own 
distribution function with a mean value equal to 0 and a 
variance σ equal to 2. Multiple regression allows us to 
decompose the total influence of factors into its 
constituent parts, more accurately identifying the marginal 
contribution of each factor. 

At the next stage, machine learning methods are used 
to create a model for predicting the scale effect, or in other 
words the properties of full-size samples based on standard 
ones. 

Since the models are prepared with data with true 
values, this regression problem is considered as supervised 
learning. Therefore, the most common and well-established 
algorithms were used: random forest [45, 46], gradient 
boosting [47–49], multilayer perceptron and k-nearest 
neighbors. 

Random forest is a machine learning method that is an 
ensemble of decision trees. Gradient boosting is a machine 
learning method based on sequential model construction. 
Each subsequent model tries to correct the errors of the 
previous one [50, 51]. 

Multilayer perceptron [52, 53] is a class of feedforward 
artificial neural networks consisting of at least three 
layers: input, hidden, and output. 

K-nearest neighbors [54] is a metric algorithm for 
automatic classification of objects or regression. In the case 
of using the method for regression, the object is assigned the 
average value of the k-nearest objects to it which values are 
already known. 

Hyperparameters were also tuned for greater accuracy. 
Hyperparameters are adjustable parameters of a machine 
learning model that cannot be learned during the training 
process and must be specified in advance. The 
hyperparameters were selected using the Grid Search method. 
Grid search is a method for optimizing hyperparameters of 
machine learning models which involves trying all possible 
combinations of hyperparameter values and selecting the 
best one. 

To analyze the accuracy of the constructed models, the 
convergence of the predicted and actual data was assessed 
using a number of metrics: 

– MAE (mean absolute error) ‒ the degree of 
discrepancy between the actual and predicted value in 
absolute values; 

– MAPE (mean absolute percentage error) is the degree 
of discrepancy between the actual and predicted value in 
percent; 

– MSE (mean square error) is the arithmetic mean of 
the squares of the differences between the actual and 
predicted values; 

– R2 (coefficient of determination) – estimates the 
proportion of dispersion, which gives an idea of the degree 
of conformity. 

 
Results 
 
Statistical analysis. Qualitative assessment of the scale 

effect. At the first stage, the petrophysical dependence of 
the permeability of porosity for standard and full-size core 
samples was constructed (Fig. 3). 

While analyzing the petrophysical dependence, it can 
be noted that, in general, the cloud of values for full-size  
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Fig. 3. Permeability-porosity relationship for standard and 

 full-size core samples 
 

and standard core samples overlap each other, being 
mainly in the same ranges. However, for standard samples 
a significant proportion of samples with low reservoir 
properties is noted, while a pair of samples are 
characterized by high porosity values (more than 22 %), 
which is not typical for the main part of the sample. 
Statistical indicators are presented in Table 2. 

The standard deviation and dispersion of the 
permeability parameter for standard samples are lower 
than for full-size ones but if you look at the relative 
value of the spread relative to the average value – the 
variation coefficient, it is almost twice as high for 
standard samples. For porosity, while calculating the 
standard deviation and dispersion, the samples are 
comparable; but while relative assessing the value of 
the spread, it is significantly higher for standard 
samples (1.6 times). 

Next, the histograms of the distributing properties for 
full-size and standard samples are constructed (Fig. 4, a, b). 

Figure 4, a shows the distributing porosity for samples 
of different scales, it can be noted that the mode for 
standard samples is 2 %, for full-size samples 6 %, that is, 
a significant proportion of standard samples is located in 
the non-reservoir zone, justified from the point of view of 
the economic efficiency of field development (3.6 %). 

Figure 4, b shows the distributing the logarithm of 
different scales samples permeability. A significant 
difference in the mode is noted – 3.5 (standard samples) 
to 1.5 for full-size samples. Also, a significant proportion 
of samples correspond to the non-reservoir value (less 
than 0.6 mD), that is, it characterizes the matrix 
component of the rock without taking into account the 
influence of caverns and microcracks. 

Fig. 4, c, shows the histogram of the distribution of 
the logR35 parameter for samples of different scales. 

When comparing the distribution of the logR35 
parameter, the presence of a scale effect for the mode 
shift and the influence of the scale effect are also noted. 

At the next stage, petrotyping of rocks was carried 
out using the DRT method (Fig. 5, a, b). 

Due to the significantly larger number of samples, a 
more uniform distribution of values by classes for 
standard samples is visually noted (see Fig. 5, a), 
however, while examining the distribution histogram in a 
relative equivalent, it is clear that both samples are 
characterized by similar distribution laws. However, for 
standard samples, a slight shift in mode towards low 
classes and a more uniform distribution of middle classes 
are noted. 

The obtained statistical estimates and graphs of the 
distribution of properties quantitatively show the 
presence of a scale effect between standard and full-size 
properties. The scale effect affects the properties of 
samples, and as a consequence, the results of petrotyping 
of samples, which must also be taken into account when 
assessing the scale effect. The histogram (Fig. 6) shows 
that the modal value for both samples is located in the 
area of class 13, and the samples are generally 
characterized by a similar distribution, which indirectly 
indicates the possibility of quantitatively assessing the 
scale effect within each petrotype. 

Identification of parameters influencing the scale 
effect. Development of an approach for quantitatively 
assessing the scale effect. At the next stage, an additional 
database was collected to develop an approach for 
quantitatively assessing the scale effect. The database 
compares standard and full-size core samples by 
sampling depths in order to analyze the scale effect of 
properties for identical samples and intervals. A total of 
171 core samples from the common database remained 
after the comparison. The correlation fields of porosity 
(Fig. 7, a) and permeability (Fig. 7, b) between standard 
and full-size samples are presented below. 

While analyzing the correlation fields, the presence 
of a scale effect is noted for both porosity and 
permeability for samples compared by depth and 
chiselling. The degree of scale effect influence on rock 
permeability (R2 = 0.02) is significantly stronger than 
on porosity (R2 = 0.64). This is generally explained by 
the large scatter and heterogeneity of the initial data for 
permeability. 

Next, multiple regression models were built to quantify 
the scale effect and the degree of influencing the 
parameters. The target variables were the porosity of the 
full-size sample; the scale factor of permeability (the ratio 
of the permeability of the full-size sample to the standard 
one), since a direct prediction of the permeability value of 
the full-size sample did not show any results. The  
following parameters were considered as predictors: porosity 
of the standard sample, permeability of the standard  

 
Table 2 

 
Comparison of statistical parameters for standard and full-size core samples 

 
Parameter Amount Av.value Stand. 

deviation Min. Max. Dispertion Variation 
coef.

Permeability by standard samples, mD 3159 54.4 504.30 0.001 18143.0 254 318 927.21 

Permeability by all samples, mD 657 113.7 675.27 0.03 11543.8 455 988.7 593.67 

Porosity by standard samples, % 3499 4.7 3.83 0.10 29.6 14.6 81.57 

Porosity by all samples, % 678 7.0 3.65 0.43 21.4 13.3 52.50 
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Fig. 4. Histograms: a – distributing porosity of different scales 

samples; b – distributing the logarithm of different scales sample 
permeability; c – distributing the logR35 parameter for samples 

of different scales 
 

sample, sampling depth, FZI, R35. Based on the calculation 
results, the following scale effect model was obtained for 
porosity: 

 

φwcs = 0.76 ∙ φplug−0.99954 ∙ 𝑘plug – −0.078 ∙ FZIplug+0,21 ∙ 𝑅35plug+3.034, 
 R2= 0.94,  (7) 
 
where φwcs is the porosity of full-size samples, %; φplug is 
the porosity of standard samples, %; kplug is the permeability  

 
       а 

 

 
     b 

 
Fig. 5. Graphs of the “permeability – porosity” dependence: 
a – for standard core samples; b – for full-size core samples 

 

 
 

Fig. 6. Histogram of the distributing DRT categories of samples 
from different scales 

 
of standard samples, mD; FZIplug is the indicator of the 
hydraulic unit of flow of standard samples; R35plug is the 
radius of the pore throats corresponding to 35 % saturation 
of the pore volume with the non-wetting phase. 

According to the results of constructing the multiple 
regression model, the following parameters had a 
statistically significant effect (in order of influence): porosity 
of standard samples (p-value = 0), permeability of standard 
samples (p-value = 0.014), FZI (p-value = 0.028) and R35 
(p-value = 0.05) of standard samples. That is, based on 
these parameters of standard samples, when using the 
obtained model, the values of standard samples are adjusted 
to the scale of full-size samples. Figure 8 shows the  
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Fig. 7. Correlation fields of full-size and standard samples:  

a – porosity; b – permeability 
 
 

 
 

 
Fig. 8. Cross-plot of porosity between full-size and  

standard samples 
 
 

 
 

 
Fig. 9. Histogram of the porosity distribution of standard  

samples, full-size samples and values corrected by the  
obtained model 

 
 
 

Fig. 10. Correlation field of permeability of full-size and  
standard samples 

 

 
 
 

Fig. 11. Histogram of permeability distribution for standard,  
full-size and corrected values of standard samples 

 
cross-plot of porosity between full-size and standard 
samples. Figure 9 shows a histogram of the porosity 
distributing standard samples, full-size samples and adjusted 
values according to the obtained model. 

The obtained model allows reliable predicting the 
porosity values of a full-size core based on the parameters of 
a standard core (see Fig. 7, a). 

Based on the calculation results, the following model 
of the scale effect coefficient for permeability was 
obtained: 

 
K = 0.00023 ∙ Depth – 0.68 ∙ φplug – − 0.000027 ∙ 𝑘plug –  0.00487 ∙ FZIplug, 

 R2 = 0.017,  (8) 
 
where K is the scale effect coefficient for permeability; 
Depth is the core sampling depth, m; φplug is the porosity 
of standard samples, %; kplug is the permeability of 
standard samples, mD; FZIplug is the indicator of the 
hydraulic unit of standard samples flow. 

Based on the results of constructing the multiple 
regression model, it was revealed that the following 
parameters had a statistically significant effect (in order of 
influence): core sampling depth, porosity of standard 
samples, permeability of standard samples, FZI. That is, 
based on these parameters of standard samples, while 
using the obtained model, the scale factor is predicted, and 
then with its help the values of standard samples are 
adjusted to the scale of full-size samples. 

However, the coefficient of determing the model does 
not allow it to be used for a reliable forecast (Fig. 10, 11). 

Therefore, another approach is proposed for a 
quantitative assessment of the scale effect of permeability, 
b which consists of building machine learning models. 
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Table 3 
Comparison of the effectiveness of machine learning algorithms 

 

Algorithm R2, training 
sample R2, test sample MAE, training 

sample MAE, , test sample RMSE, training 
sample 

RMSE, , test 
sample

Gradient Boosting 0.56 0.13 0.54 0.89 0.67 0.89

Multilayer perceptron 0.43 0.17 0.6 0.69 0.77 0.88

Random forest 0.91 0.61 0.25 0.5 0.31 0.44

K-nearest neighbors 0.37 0.17 0.63 0.67 0.8 0.87

 

 
 

 
Fig. 12. Graph of the ratio of actual and predicted permeability 

 

 
 

 
Fig. 13. Importance of features  

(parameters of standard samples) 
 

Machine learning methods for predicting the 
permeability scale effect. While compiling a model for 
predicting the permeability of full-size samples 
(permeability logarithm), the main influence was exerted 
by the parameters of standard sample porosity, standard 
sample permeability, sampling depth and LnR35 for 
standard samples. All algorithms were trained on these 
parameters. 

The comparing the efficiency of algorithms for predicting 
the porosity of full-size samples based on the parameters of 
standard samples is presented in Table 3. 

From Table 3 it is clear that only the random forest 
algorithm is applicable for this problem, where the 
determination coefficients were 0.91/0.61 for the training 
and test samples, respectively. 

Below there is the correlation field between the actual 
and predicted values (Fig. 12). According to Fig. 12, a 
high correlation is noted between the actual and 
predicted values. 

Next, the degree of importance of the features is 
calculated (Fig. 13). 

 
 

Fig. 14. Comparison of forecast and initial data 
 

 
 

Fig. 15. Histogram of permeability distribution for standard, 
 full-size and corrected standard samples 

 
Figure 13 shows that the most significant parameter 

is the porosity of standard samples (0.54), followed by 
logR35 (0.172), sampling depth (0.15) and permeability 
(0.14). That is, the greatest influence on the scale effect 
is exerted by the capacity and filtration properties, their 
interrelation and vertical zoning. Below is a comparison 
of the predicted values with the initial values of standard 
and full-size samples (Fig. 14, 15). 

The model obtained based on the random forest 
algorithm allows to significantly reduce the degree of 
influencing the scale effect on the permeability of samples 
(from R2 = 0.023 to R2 = 0.761). 

 
Conclusion 
 
Based on the results of the statistical analysis, the 

presence of a scale effect for porosity and permeability 
with a change in the size of samples of the carbonate 
reservoir of the Alpha field was established at a qualitative 
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level. Multiple regression models were built to 
quantitatively assess the scale effect. It was found that the 
magnitude of the porosity scale effect is most influenced 
by the porosity and permeability of standard samples, the 
indicator of the hydraulic unit of flow of standard samples, 
and the radius of the pore channels. The magnitude of the 
permeability scale effect is influenced by the core sampling 
depth, porosity and permeability of standard samples, and 
the indicator of the hydraulic unit of flow of standard 
samples. The resulting model of the scale effect for 
porosity also allows reliably reducing the values of 
standard samples to the scale of full-size ones – the 
determination coefficient was 0.94. For the permeability 
scale effect model, the determination coefficient was 0.017 
which allows using the model only to estimate the 
parameters affecting the magnitude of the scale effect. For 

a quantitative assessment, an approach based on the use of 
machine learning algorithms is proposed. For the purposes 
of forecasting the scale effect of permeability (permeability 
of full-size samples), the most reliable evaluation metrics 
were demonstrated by the random forest algorithm, the 
determination coefficients were 0.91/0.61/0.761 for 
training, testing and on average for the studied sample. 
While analyzing the parameters of predictors, the most 
significant is the porosity of standard samples (0.54), 
followed by logR35 (0.172), sampling depth (0.15) and 
permeability (0.14).  

The resulting approach allows using standard samples 
reduced to the scale of full-size ones in order to refine 
geological and hydrodynamic models. The authors will 
present the testing of the method on the Alpha field model 
in future works. 
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