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One of the most important tasks in the oil and gas industry is to predict the values of geological parameters of productive
formations in the interwell space. The accuracy of estimating the effective oil-saturated thickness or the values of filtration and
capacity properties at the locations of the project well stock directly affects the efficiency of oil and gas assets development and
economic indicators.

The task of predicting the values of geological parameters is complicated by the fact that the geological environment has been
studied by wells in fragments, and sources of information about the interwell space, despite continuous technological progress,
have limited accuracy. In addition, the real geological structure in most cases is much more complex than our understanding of
it. The vertical and lateral heterogeneity of productive formations and the high degree of geological properties variability do not
allow the effective use of interpolation methods.

This paper presents the results of testing the author's methodology aimed at finding the most reliable implementations of a
three-dimensional lithology model.

The proposed approach is based on the use of Bayesian optimization to determine the most optimal values of variogram ranges
along the X and Y axes during the modeling of a three-dimensional lithology cube. The mean absolute error of the predicted
total effective thickness of the reservoir, calculated using cross-validation, was employed as the primary metric to evaluate the
reliability of the three-dimensional lithology model. The results demonstrate the advantages of applying Bayesian optimization
compared to the classical grid search method for parameter optimization. Firstly, the proposed approach enabled the creation of
a three-dimensional lithology model with higher predictive capability. Secondly, the developed methodology significantly
reduced the computational resources required for the calculations.

OpHOM M3 BaXHEWIUX 3ajad B HedTera3ofoOHIBalOIell OTPACIU SABJIAETCA NPOrHO3UPOBaHHE 3HAYEHWH TIeoJIOTMYEeCcKHX
napaMeTpoB IPOAYKTHUBHBIX IJIACTOB B MEXCKBaXXVHHOM NPOCTPaHCTBE. TouHOCTH OLIEHKU BII)QJGKTMBHOﬁ Heq)TeHaChIH.]eHHOﬁ
TOJIIWUHBI UJIN 3HAYEeHUN (I)I/IJ'II)TpaIII/IOHHO-eMKOCTHHX CBOWICTB B MeCTax PacCIIOJIOXKEeHUs ITPOEKTHOI'O Q)OH}Z[a CKBaXXVH HaIpAMYy
BJIAAeT Ha 9 (PEeKTUBHOCTh pa3paboTKK HedTera3oBbIX aKTUBOB U Ha 9KOHOMUYECKHe IoKa3aTeJIu.

3ajaya NpPOTHO3MPOBAHMs 3HAYEHUIl TIeoJIOTMYECKUX IIapaMeTpOB OCJIOXKHAETCA TeM, YTO reoJlorMyeckas cpeja H3ydyeHa
CKBaXUHaMU (bparmeHTapHo, a HCTOYHUKU I/lH(bOpMaLu/Il/I 0 MEXCKBaXHNHHOM IIPOCTPaHCTBE, HECMOTPpA Ha HereprBHbIﬁ
TEXHOJIOTUYECKUI mporpecc, oﬁna,uamr OFpaHH‘{eHHOﬁ TOYHOCTBHIO. K TOMYy X€ peaJIbHO€ TeOJIOTHYEeCKOEe CTpPOE€HNE B
GOJIBIIINHCTBE CJlydyaeB 3HAUYWUTEJIbHO CJIOXKHEE, YeM Halle IpencraBJeHrue O HeM. Bemecaanaﬂ u JaTtepajibHas
HEOAHOPOAHOCTb TIPOAYKTHMBHBIX IUUIACTOB W BbICOKAasA CTEINEHb HN3MEHYMBOCTU TI'€OJIOTMYECKHX CBOICTB He MO3BOJIAIOT
9 HeKTUBHO KCNOIb30BATh METO/B! HHTEPIOJIALMH.

B nanHO# paGoTe mNpejCTaBIeHB pe3yJibTaThl anpobaluy aBTOPCKOH MeTOJ0JIOTMH, HanpaBJIeHHOH Ha INOUCK Haubosee
AOCTOBEPHBIX peanmaum?l TpeXMepHDﬁ MOOeJIn JINTOJIOTUH.

HPE/:[J'IO)KGHHI:Iﬁ oAaxo OCHOBAaH Ha HMCIIOJIb30BAHUU 6aiiecoBCKOI ONTHUMU3alUU [JIA ONpEeNeJIeHUA HauboJiee ONTUMAJIBHBIX
3HaUeHUI PaHTroOB BapuorpaMM Io ocsM X U Y Ipu MoOAeJMpOBaHUU TpexMepHoro kyba juTosoruu. CpeaHsas abcoOTHAs
omubKa IPOrHO3a CyMMapHOH 3(@eKTUBHON TOJIIMHBI IIJIacTa, PACCYMTAHHAsA C MCMOJIb30BAHMEM KpOCC-BaMAaluy,
WCIIOJIb30BaHA B KayecTBe OCHOBHOM METpUKH, OL[eHPIBaIOH.]eﬁ HaJleXXHOCTh Tpexmepﬂoﬁ MOJeJI JIUTOJIOTUU. Honyl{en}me
pe3yJsibTaTbl AEMOHCTPUPYIOT IIPENMYyINEeCTBa NPUMEHEHUA 6aiiecoBCKOI ONTUMH3AaLU OTHOCHUTEJIbHO KJIACCUYECKOro rnoaxona
IIOMCKa ONTHUMAaJIbHBIX IIapaMeTpOB MoOJesu C nepe6op0M 0 CeTKe. Bo-nepBbe, IIPI/[MeHeHH]:Iﬁ IIoAXO0A ITO3BOJIVJI IOJIyYHUTH
TpEXMepHYI0 MoJieJIb JIMTOJIOTUU ¢ GoJjiee BBICOKOH IPOTHOCTHYECKOI crocoOHOCThi0. M BO-BTODHIX, aBTOpCKas MeTOHOJIOTHA
M03BOJIMJIA 3HAYMTEJIBHO COKPATUTh HEOOXOAMMBIE /ISl PaCYETOB BHIYMC/IUTE IbHBIE PECYpPChl.
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Introduction

In the early 1960s, the science of geostatistics emerged,
which enabled to perform not only spatial modeling of
parameters, but also facilitate spatial uncertainty analysis
[1-7]. Currently, such modeling methods as Sequential
Gaussian Simulation (SGS) for continuous parameters and
Sequential Indicator Simulation (SIS) for discrete
parameters are widely used in creation of three-
dimensional geological models [8-10]. These modeling
methods are based on variogram analysis and allow for the
generation of multiple equally probable realizations of the
geological properties distribution.

However, classical geostatistical methods have a
number of disadvantages, such as variogram sensitivity
and subjectivity in performing variogram analysis, low
adaptability to complex real conditions, high
computational complexity, etc. [11-14]. Therefore, a
promising direction for the development of geostatistical
methods is using hybrid models with artificial intelligence
algorithms, as machine learning, neural networks, genetic
algorithms, fuzzy logic, etc. [2-7, 10, 15].

When using geostatistical modeling algorithms, it is
important to consider not only the results of variogram
analysis, but also to assess the predictive ability of each
model. In some works [16-20] several quantitative criteria
are proposed for assessing the quality of three-dimensional
lithology parameter models and selecting optimal
modeling parameters. The proposed criteria enable to
estimate the predictive ability of each three-dimensional
lithology model implementation with most reliable ones.

The calculation in the above-mentioned works was
based on the theory of experimental design. The authors
determined the variation range for the modeling
parameters and the step of each parameter changes.
Consequently, the experiment included a full set of
possible combinations for lithology modeling parameters.
According to the experiment results the most reliable
implementations were selected using the values of
quantitative criteria. Calculations of lithology cubes were
performed by a stochastic algorithm with a variation of the
variogram rank values along the X'and Yaxes [16-20].

One of the three proposed criteria is the D, calculated
by well-based cross-validation using the leave-one-out
method for each combination of variogram ranks. The
criterion is necessary for assessing the predictive ability of
the model and is calculated using the formula:

>
i=1 n

where D, is the deviation from the true value of the
effective reservoir thickness, m; H,, — actual value of the
effective reservoir thickness in the well, m; /A — model
value of effective reservoir thicknesses obtained after
excluding the given well, m; 72— number of wells.

In machine learning, the approach described above is
called grid search, commonly applied using cross-
validation as the method for assessing the reliability of
each model. The main drawback of the proposed approach
is the huge computational load considering all possible
combinations of variogram ranks and using full well-based
cross-validation to calculate the D, criterion. The number
of the three-dimensional lithology parameter was
calculated as the product of the hyperparameter
combination number and the wells number. In some cases,
the number of three-dimensional lithology parameter
calculations was more than 10,000, and the time required
to compute the entire ensemble was over a day.

Table 1
Main geological and physical
characteristics of the object
Weighted Number of
Total .
. Effective average value permeable
Parameter thickness, X . ./ .
thickness, m  of K, unit intervals in
m . .
fraction wells, unit
Min 7.59 3.56 0.15 1
Mean 16.56 9.12 0.22 3
Max 33.59 22.55 0.25 8
Std 5.69 3.66 0.02 2

Another limitation of the proposed approach is the
variation of only two lithology modeling parameters:
variogram ranks along the X and ¥ axes. When examining
all possible combinations of variogram ranks, most models
are anisotropic, meaning they have different rank values.
Meanwhile, the azimuth value is always fixed at 0°. This
assumption is justified by computational constraints, since
including the azimuth parameter in the variogram
experiment will significantly increase the number of
implementations.

The aim of this work is to develop an improved algorithm
that enables the efficient automated search for the most
reliable implementations of a geological model without
calculating a full ensemble of models.

Object of Study

The object of the study is a terrigenous layer of
alluvial genesis in the X field, located within the Volga-
Ural oil and gas province (OGP). The main geological
and physical characteristics of the object, determined
according to geophysical logging data in 62 wells, are
presented in Table 1.

Alluvial deposits are heterogeneous both laterally
and vertically, which significantly complicates the task
of predicting geological parameters in the interwell
space [21-24].

The study area is covered by 3D seismic surveys, the
interpretation results of which were used for both
structural imaging and lithological modeling.

Three-Dimensional Geological Model
Description of the Object

Since the studied interval of the X field is
characterized by regular bedding, a proportional type of
three-dimensional grid with a lateral cell size of 50 X 50 m
was used in this work. The average vertical size of
the cell is 0.26 m, and the total number of active cells
amounted to over 3 million. Such detailed grid division
is connected, firstly, with the presence of thin siltstone
interlayers in the flooding sand facies, and secondly,
with the need for maximum correspondence of the
averaged well data to the initial data for more effective
calculations.

The 3D lithology cubes were modeled using the SIS
geostatistical algorithm. A combination of trends was
used, including the 1D trend, which is the geostatistical
distribution (GSD) of the reservoir proportion for each
grid layer, and the 2D trend, as the sandiness map,
obtained by dividing the forecast effective thickness map
by the total formation thickness map.

The forecast map of effective thicknesses was
calculated based on data from dynamic analysis using
3D seismic methods with a multivariate forecast of
reservoirs [25, 26].

HEOPONOJIb3OBAHUE
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Main descriptive statistics of the D,,,* criterion for two calculation options fable 2
Ca(l)(;liitrilon No obs. Average Median Min. Max. Dispersion St. dev. Coeff. var. Asymmetry Excess
Option 1 100 1.093 1.083 0.923 1.360 0.0092 0.0957 8.758 0.6797 0.0652
Option 2 100 1.061 1.033 0.839 1.452 0.0188 0.1372 12.934 0.6853 -0.0128
Methodology

The basis for developing the author's algorithm was
the works described above [16-20]. The aim of this
study is to automatically select hyperparameters to
minimize the error without calculating all possible
model variants. An example of such an approach is the
gradient descent method in a neural network [27, 28],
in which the weights of neurons are adjusted to
minimize the forecast error tends.

The algorithm development can be divided into several
steps. The aim of the first step was to reduce the number
of calculations for the model reliability metric. At the
second step, optimization algorithms were selected that
allow for the automatic adjustment of the model's
hyperparameters — in this case, the values of the variogram
ranks — so that the error is minimized.

The quantitative metric for assessing the reliability of
each calculated implementation of the three-dimensional
lithology model was the D, * criterion (mean absolute
error) found with the formula

n \H_ —-H”
* ef ef
D, =y @

=1

Unlike the D, criterion described above (1), which can
reach a value close to zero when averaging negative and
positive error values, the D, * criterion is not sensitive to
the error and can serve as a basis for optimization by
global and local minima.

Cross-Validation

The task of reducing the calculation number for the
quality criterion D,,* was accomplished by using a more
representative "training" sample with a smaller number of
"training" cycles. Instead of using leave-one-out cross-
validation method to calculate the D, * criterion,
jackknife cross-validation was applied, dividing the
initial well data into several equal parts in terms of
quantity and coverage density of the sample area.

In this paper, the initial well data are randomly
divided into five equal-sized samples. During each
calculation of the lithology cube, 20 % of the wells were
excluded, followed by the calculation of model effective
thickness deviation from the actual one for each excluded
well. In the second cycle, the next 20 % of wells were
excluded during the calculation of the lithology cube.
Thus,over five cycles, the deviation of the model effective
thickness from the actual one was calculated for all
available wells. The mean absolute value of all calculated
deviations serves as the quality criterion D, *. The size
of the test sample can be determined by the user;
however, 20 % is considered an optimal value in many
machine learning tasks [29, 30].

To evaluate the effectiveness of the proposed cross-
validation method, an experiment was conducted in this
work to calculate an implementation ensemble of three-
dimensional lithology cubes using the method proposed
in works [16-20] (option 1) and using the method

rank Y

Fig. 1. Response surfaces obtained by /eave-one-out cross-
validation (a) and jackknife cross-validation methods (5)

described above, with the well data divided into five
equal samples (option 2).

In both calculation options, only the variogram rank
values along the X and Y axes were varied. Based on
the density and uniformity of the well placement
and the size of the study object, the step for changing
the parameters was set at 500 m, with a variation
range from 500 to 5000 m. Thus, 100 combinations
of variogram ranks were used for the calculations.
In the first case, the forecast ability of each model
was assessed using the D, * criterion through well-
based cross-validation using the leave-one-out method
[16-20]. Since the number of wells was 62, the total
volume of the calculated three-dimensional cubes
amounted to 6200 (62 for each set of variogram ranks).
In the second case, the forecast ability of the models
was estimated by calculating the D, * criterion using
the jackknife cross-validation dividing the sample into
five equal parts. The number of calculations for
the three-dimensional lithology cube was 500 (five
calculations for each set of variogram ranks). Fig. 1
shows the final response surfaces of the D, * criterion
calculated with the /eave-one-out cross-validation (a)
and the jackknife cross-validation with the sample
divided into five equal parts ().
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Fig. 2. Histograms of the D, * criterion distribution
obtained by /eave-one-out cross-validation (a)
and the jackknife method (5)
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Fig. 3. Normal probability graphs for the D, *
criterion obtained with leave-one-out cross-validation (a)
and the jackknife method (5)

Table 3
Result of statistical criteria calculations
Statistical criterion Criterion value p< 0.05
Shapiro — Wilk 0.952 0.001
Kolmogorov — Smirnov 0.799 0.0001
t-criterion 2.94 0.0041
Wilcoxon test 2.91 0.0036

Visually, both response surfaces show similarities,
however, for a more substantiated comparison, the
analysis of the two approaches was performed. Table 2
presents the main descriptive statistics for the Dg*
criterion obtained from two calculation options: option 1 —
using well-based /Jeave-one-out cross-validation method,
option 2 - using jackknife cross-validation with five
equal samples.

As can be seen in option 2, the minimum and
average values of the D, * criterion are slightly lower
than in option 1. At the same time, in option 2, the

maximum value of the D, * criterion and the variance
are slightly higher.

To compare two samples, it is necessary to
determine whether their distributions are normal. For
this purpose, histograms and normal probability graphs
for the two samples of the D, * criterion were
constructed (Fig. 2, 3).

The histograms and normal probability graphs show
that the distributions in both optons are close to
normal, but in the areas of low and high values, the
deviation of actual frequencies from the normal
distribution increases. The calculation of the Shapiro-
Wilk and Kolmogorov-Smirnov statistical criteria also
showed that the distributions of the D, * parameter in
both variants differ from normal. However, since the
deviation from normality is insignificant, both
parametric and nonparametric criteria were used for
sample comparison (Table 3).

The obtained p-values from the #rcriterion and the
Wilcoxon criterion calculation are slightly below the
significance level of 0.05. The results of the sample
comparison are ambiguous and do not allow us to assert
statistically significant differences between the results of
applying the two different cross-validation methods.

For more substantiated conclusions, it is necessary to
conduct a regression analysis for the two sets of the D,
criterion. The scatter graph with the regression line is
shown in Fig. 4.

Regression equation:

D,,2% = 0.898 - D, 1* + 0.0799, (3)

where D, 1% is a criterion calculated by the leave-one-out
cross-validation method, D,2* is a criterion calculated
using the jackknife method; the correlation coefficient was
r = 0.62; the determination coefficient was 2 = 0.39;
p = 0.0001 < 0.05.

The result of the regression analysis demonstrates a
high degree of linear correlation between the two sets of
D, * criteria. The visual similarity of the response surfaces
also indicates that there is a statistically significant
relationship between the two sets of D, * criteria
calculated using different cross-validation methods.

Summarizing the selection and justification of the
cross-validation method, the following conclusions can be
drawn:

—the response surfaces show visual similarity, and
there is a statistically significant relationship between the
two sets of D, * criteria, revealed by regression analysis;

— despite the fact that three-dimensional lithology models
constructed by jackknife cross-validation are based on
significantly fewer well data compared to those constructed
by leave-one-out cross-validation, the forecast capability of
such models is not less. Moreover, the average accuracy
metric of D,,* is even slightly lower in option 2;

— calculations using the jackknife cross-validation method
are significantly less time-consuming and computationally
intensive. The difference increases with the number of wells.
In this study, the full cycle of calculations with the jackknife
cross-validation was found to be 12.5 times faster than
calculations using the leave-one-out cross-validation;

— one of the reasons for the impracticality of applying
leave-one-out cross-validation is the stationary noise
inherent in most geostatistical algorithms [8].

Depending on the calculation sequence, which is
determined by the random number of project seed, the
result of forecast error calculation may vary [10, 31]. Using
cross-validation with the leave-group-out method helps to
minimize the impact of forecast unpredictability and
stationary noise on the models.

HEOPONOJIb3OBAHUE
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Thus, it can be concluded that jackknife cross-validation
is no less effective in terms of assessing the forecast ability
of lithology models and more effective in terms of
computation speed. In the next stage of research, which
aims to test the algorithm for automatically selecting
variogram rank values, jackknife cross-validation will be
used, dividing the well dataset into five equal samples.

Bayesian Optimization

The optimal values of the model hyperparameters
are such values of the hyperparameters (the ranks of the
variograms along the X and Y axes) at which the
forecast error (metric D, *) tends to zero. The task of
finding a global minimum is complicated as stochastic
geostatistical algorithms, such as Sequential Indicator
Simulation, Sequential Gaussian Simulation, etc., are
influenced by stationary noise. It means that the value
of the forecast error will depend not only on the model
settings, but also to some extent on the random
component (random path) [10].

In the process of searching for a suitable algorithm,
several popular optimization methods were tested.
However, only the algorithm based on Bayesian
optimization turned out to be relatively effective.

Bayesian optimization is an effective method for
finding the extrema of complex functions, particularly
those influenced by random noise. It treats the objective
function as a realization of a Gaussian process,
establishing probabilistic relationships between function
values at different points. The algorithm iteratively
builds a Gaussian process model that incorporates all
previously obtained results. It employs an acquisition
function to select the next set of model parameters.
Initially, the acquisition function divides the search space
into large hypercubes, calculating a quality metric (in
this case, the average absolute error D, *) for each. The
hypercube with the lowest error is chosen, which is then
subdivided into smaller hypercubes for further
evaluation. This method allows for a focused search in
the most promising areas of the parameter space, thereby
accelerating the optimization process [32-37].

The scheme of the optimization process is presented
in Fig. 5.

The first stage involves initialization, which includes
defining the objective function, the range of
hyperparameter variation, and the stopping criterion for
optimization. In our case, the objective function is the
calculation of five iterations of a three-dimensional
lithology parameter, with the average absolute error for
all wells (D, * criterion) by jackknife cross-validation.
The hyperparameters are the variogram ranks along the
X and Y axes. The range of variogram ranks varies from
500 to 5000 meters. The stopping criterion in our case
is the completion of 100 iterations.

After initialization and selection of variogram rank, the
objective function is calculated. In the initial optimization
iterations, the values of the variogram ranks along the X
and Y axes are selected randomly. The objective function
calculation  involves  generating three-dimensional
lithology parameters using the SIS method with the
average absolute forecast error (D,,*) assessed with
jackknife cross-validation method.

Then, the result of the objective function calculation is
saved in the database, and the approximation model
is updated. Using the acquisition function, the principles
of which are described above, the next set of
hyperparameters is determined. The optimization process
is repeated for a specified number of cycles or until the
user-defined conditions are met.

s Actual Data
—— Regression Line

Dskv2*

Dskvl*

Fig. 4. The dependence between the D, 1* criterion calculated
with the leave-one-out cross-validation and the D, 2* criterion
calculated with the jackknife method
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Fig. 5. Flowchart of the algorithm for finding
optimal hyperparameters values

Below are the response surfaces calculated earlier by
varying the variogram ranks on the grid using the
jackknife cross-validation method. To demonstrate the
efficiency of the optimization process, the D, * parameter
calculation using Bayesian optimization are plotted on the
response surfaces (Fig. 6).

Low values of the D, * parameter are marked in blue,
high values in red, and average values in green. In Fig. 6,
it can be observed how the results of the Bayesian
optimization calculation tend to local minima on the
response surface of the D, * parameter, while the local
maxima are "avoided" by the function. It can also be stated
that the search space has been explored relatively
uniformly. The uniformity is achieved by dividing the
search space into hypercubes and calculating the quality
metric for each.

In most cases, the anisotropy of properties is not
clearly expressed in terrigenous layers of alluvial genesis
in the Volga-Ural oil and gas province, and the ratio of
variogram rank values is usually no more than 1:2.
Therefore, the optimization algorithm focus on exploring
search areas where the rank values along the X'and ¥ axes
do not differ by more than twice also indicates the validity
of applying Bayesian optimization technology for
geological modeling.

Results

In this work, a series of calculations for the three-
dimensional lithology parameter were performed using
the stochastic algorithm Sequential Indicator Simulation.
When calculating the lithology cubes, two parameters
were varied: the variogram ranks along the X and Y axes.
To assess the predictive ability of each model, the value
of the mean absolute error D, * was calculated.
Moreover, it was experimentally proven that jackknife
cross-validation method is more optimal than using
leave-one-out cross-validation. Initially, grid search
approach was used to assess the predictive capability of
each model, constructing a response surface that visually
indicates the hyperparameters values at which the model
is most accurate.

The next step involved calculating a set of three-
dimensional lithology parameters, but instead of using

HEAPOMOJIb3OBAHUE

GEOLOGY, PROSPECTING, EXPLORATION AND EXPLOITATION OF OIL AND GAS FIELDS




PERM JOURNAL OF PETROLEUM AND MINING ENGINEERING

Dskv*,
(response
surface)

1.47 g

120
1.00
o8

Dskv*,
(response
surface)

1455-
1.200
1.000
0824

rank Y

Legend:

————— — optimization path;
B — value of the mean absolute error Dy, * calculated during the optimization process

Fig. 6. Response surface of the D, * parameter
with the results of Bayesian optimization

a grid search to vary the hyperparameters, an algorithm
based on Bayesian optimization was used. In both cases,
the predictive ability of the models was determined as the
mean absolute error of the forecast (D, * criterion) using
jackknife cross-validation.

As a result, using the grid search approach, the
minimum value of the D, * criterion was 0.839 m,
with the rank values along the X and Y axes being 2000
and 4000 m, respectively. In case of applying Bayesian
optimization, the value of the D, * criterion for the
most reliable model was 0.803 m, which is 4.3 % lower
than that obtained by grid hyperparameter searching.
The variogram rank values for the most reliable model
along the X and Y axes were 3895 and 3547 m,
respectively.

Thus, the Bayesian optimization algorithm was
successfully applied to find the most optimal values of the

variogram ranks along the X and Y axes when modeling a
three-dimensional parameter of lithology. Bayesian
optimization allowed for a more detailed exploration of
the search area where the model error values are minimal,
moreover, it enabled a more precise selection of model
parameters. In contrast, the grid search, due to its fixed
step in changing hyperparameters, 'missed' the most
suitable hyperparameter values.

Conclusion

The application of modern computational algorithms
alongside the classical geostatistical tools significantly
enhances the reliability of geological modeling and
adapts it for solving a wide range of non-trivial tasks,
such as predicting properties in the interwell space and
in wells, forecasting reservoir development parameters,
and economic indicators [38-46]. The implementation of
geological parameters for forecasting tasks is often
complicated as the geological environment has a complex
and unpredictable structure, and modeling in such
conditions has numerous challenges.

In this paper, the object of modeling is a terrigenous
layer of alluvial genesis from one of the fields in
the Volga-Ural oil and gas province. The results of
applying Bayesian optimization to find the most reliable
models are demonstrated through the example of
modeling a three-dimensional lithology parameter. The
key advantage of Bayesian optimization lies in its
suitability for black box functions and functions that are
subject to noise.

Successful optimization of the process for identifying
the most reliable lithology models will allow further
complexity in the model by adding hyperparameters and
metrics of model reliability.

The author's methodology allows for overcoming a
number of limitations with the traditional application of
geostatistical tools and provides a more substantiated
forecast of the reservoirs distribution in the inter-well
space. This is particularly relevant for the task of
identifying targets for infill drilling in fields.
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