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 The inapplicability of the reference formula for determining the convergence of two statically 

compressed parallel cylinders made of a homogeneous, isotropic and physically linear material 
has been proved due to a well-known logarithmic feature in the plane classical problem of me-
chanics of elastic solids. In the special case of the elastic interaction of a cylinder with a half -

plane, when one of the radii has an infinite length, it has been found that the convergence also 
becomes equal to infinity. This paradoxical result contradicts not only the physical and mechani-
cal meaning of the process under study, but also confirms the inadequacy of Flamant model of a 

simple radial stress state in determining displacements. The authors have proposed an algorithm 
for eliminating the contradictions based on the solution of Fredholm integral equation of the first 
kind. In the future, it can be considered as a new fundamental and applied problem of the theory 

of elasticity, which is of a great importance for a refined assessment of the contact strength and 
stiffness of the cylindrical parts of load-bearing structures taking into account the general and 
local deformations (cylindrical rollers, gears, road surfaces, when they are compacted with steel 

rollers, etc.) on the basis of a flat Flamant calculation scheme considering three stress compo-
nents and the width of the cylinder contact area previously developed and mathematically ap-
proximated by the authors. 
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The load-bearing structural elements in the form of cy-

lindrical rollers interacting in contact on a surface of finite 

dimensions are widely used in various branches of modern 

mechanical engineering and construction. The typical ex-

amples of such parts are: plain bearings; supporting parts of 

bridges, overpasses and sluice gates; wheels of railway roll-

ing stock, etc. [1–5]. 

The well-known constructively nonlinear [6] theory of 

small elastic contact deformations of two physically linear, 

isotropic and homogeneous circular cylinders is based on 

the following assumptions (Fig. 1) [1–3, 7–24]: 

1) radii R1, R2 of the cylindrical bodies are large com-

pared to the 2a size of the contact area, i.e.  

 
1 2 ,R a  

2 2R а  (1) 

here а is half the pressure band width; 

2) the cylinders are substantially parallel to the longitu-

dinal axis O1, O2 and width 2l a ; 

3) within the limits of assumption (1), the contact pad 

can be considered as part of the plane tangent to the guide 

(circle) of the undeformed cylinders at the place of their 

initial contact in a straight line; 

4) there is no friction between the touching surfaces, 

which are assumed to be absolutely smooth; 

5) the contacting elements are pressed against each oth-

er by two equal in magnitude and oppositely directed exter-

nal forces – resultants Q, distributed over a given length l of 

the cylinders as a constant static load  

 const,
Q

P
l

    (2) 

if the equilibrium condition is met [8, 10–15, 17, 18] 

   ,

a

a

l q y dy P l Q


     (3) 

here  q q y  – reactive boundary stress approximated by 

the elliptic Hertz function [8, 19-24, 27-31] 

  
2

2
1 ,  ,o

y
q y q a y a

a
    (4) 

having an extremum [1, 8–13, 17–19, 20, 22] 

 

Fig. 1. Design and construction layout of contacting elastic cylinders 
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2

max.o

Q
q

a l
  
 

  (5) 

If the cylinders are made of materials with elastic mod-

ulus E1, E2, Poisson's ratio are 
1 2,   , the formulas ,  oa q  and 

total kinematic displacement δ (convergence of axes O1, 

O2), have the form [1, 2, 32]: 

 
 

2 2

1 2 1 2

1 2 1 2

1 1
2 , 

R RQ
a

l R R E E

   
    

   
 (6) 

 
 

1
2 2

1 2 1 2

1 2 1 2

1 1
, o

R RQ
q

l R R E E


   

    
    

  (7) 

 2

1 1

1

1 22
ln 0,407

RQ

l E a

    
      

   

 

 
2

2 2

2

1 2
ln 0,407 , 

R

E a

  
    

 
  (8) 

The relations (6)–(8) are used in the quantitative as-

sessment of the bearing capacity of the cylindrical system of 

Figure 1. From a practical point of view, these are the de-

sign calculations for the contact strength and stiffness of 

friction and gear gears, roller parts of bridge supports and 

other critical elements of engineering structures. 

At the same time, it should be noted that the determina-

tion of the δ displacement according to the reference-

normative formula (8) has a significant mechanical and 

mathematical incorrectness [2, 7], like in the classical Fla-

mant problem [2, 7, 9, 10, 15–24, 29, 34] on the action of 

the concentrated-distributed force constP   (See Fig. 1) on 

the elastic isotropic half-plane underlying the relation (8), 

where the displacement is calculated relative to a point suf-

ficiently distant from the point of contact, the position of 

which is unknown.  

The centers of curvature O1 and O2 (See Fig. 1) are taken 

as such points in the analytical dependence (8) under the hypo-

thetical assumption that the δ parameter is determined only by 

the general deformations of the cylinders, without taking into 

account the contact components, which, according to [35], can 

represent a significant part (from 30 to 90 %) in the total bal-

ance of elastic displacements of the contacting parts. 

The specified uncertainty (multivariance) in the choice 

of the fixed point coordinate when determining the dis-

placements directed perpendicular to the boundary of the 

half-plane is a consequence of the general logarithmic fea-

ture of Flamant physical and mathematical model [7, 9, 10, 

19, 27, 29]. In the same connection, the author of the classi-

cal fundamental publication [7] states that it is possible to 

determine only the stresses in the parallel contacting cylin-

ders on the basis of Flamant solution, and the calculation of 

displacements in this case is not possible. Thus, it can be 

stated that the evaluation of the contact stiffness according 

to the formula (8) will not adequately characterize the de-

formed state of the cylinders. Another negative consequence 

of the presence of the ln logarithm in the dependence (8) is 

shown for its special case when one of the radii, for exam-

ple, is 2 .R    At the same time, we will have a fairly 

common engineering problem in the design calculations 

about the contact of a compressible cylinder with an elas-

tically deformable half-plane (Fig. 2) [1–5]. 

 

Fig. 2. A model of a cylinder pressure on a plane 
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Given condition 
2R    and equality 

1R R , we get 

the final value in accordance with (6) for linear size a 

 
2 2

1 2

1 2

1 1
2 .

Q R
a

l E E

  
   

  
 (9) 

Substitution (9) in (8) at 
2R    results in the paradox-

ical solution    which contradicts the physical meaning 

of the contact problem under consideration and confirms the 

unacceptability of Flamant mathematical model in deter-

mining the δ displacements [7, 28]. 

The erroneous result    does not correspond to the 

basic fundamental Boussinesq problem of [12, 15–18, 25, 

27–29, 30, 31, 34, 36] on a perpendicularly directed concen-

trated force on an elastic half-space in which the above con-

tradictions are not present. 

A fundamentally new displacement formula has been 

obtained in the paper [37] guided by the classical interpreta-

tion of the plane linear elastic deformation [2, 8, 9, 19–22, 

26, 28–30] and the refined innovative solution of Flamant 

problem [37], which includes three stresses (compared to 

one radial component [19, 20]) and the a parameter  

  
  222 1

3
h h

P a
v v y

E y

    
   

  
  (10) 

half-plane boundaries in an unlimited range of the variable 

variation y. 

In contrast to the incorrect logarithmic dependence [9, 

19-21, 28, 29, 31] 

  
 22 1

ln ,k

hf hf

P l
v v y

E y

  
  


 (11) 

containing the distance to an arbitrary point K (Fig. 3) and 

approximating only the relative value of the displacements 

hfv  on a closed interval k kl y l   , the formula (10) de-

rived in [37] allows determining the absolute draft of the 

0x   boundary of the half-plane without reference to the 

parameter kl  on a theoretically infinite interval y  . 

 

Fig. 3. General view of the changes in the * ,hv  *

hfv  functional dependencies:  *

hv y  is a solid curve according to the new formula (12) [37]; 

 *

hfv y  the dashed line is in accordance with the Flamant solution (13) [8, 19-21, 28, 29, 31] 
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The behavior of functions (10) and (11) is illustrated in 

the dimensionless forms 

    
 

2

*

2

2
,

31
h h

E a
v y v y

yP

 
    

   
 (12) 

    
 

*

2
2 ln

1

k

rf rf

lE
v y v y

yP


   

 
 (13) 

in Fig. 3 using the numerical information of the table. 

The values of the functional relations (12), (13)  

when 6kl a  

y 0 a  2a  4a  6a  8a  10a    

*

hv    0,6667  0,1667  0,0416  0,0186  0,0104  0,0066  0 

*

hfv    3,5836  2,1972  0,8110  0 0,5751  1,0216    

 

A mechanical system in which a local uniformly dis-

tributed stationary P force acts on an elastic isotropic medi-

um (see Fig. 1–3) should be considered as abstract, not re-

flecting the actual possible conditions. However, using the 

formally idealized mathematical solution (10), we proceed 

to the real simulation of the reactive load  q q y  that 

occurs between contacting elastic-deformable bodies 

(see Fig. 1). 

That is why we present the following the Fredholm 

equation of the first kind [9, 20, 23, 27–29, 38, 39] with an 

unknown  q y  function under the sign of a certain integral 

by analogy with the developed theory of calculating the 

draft of the belt foundation [37] and guided by [8, 9, 22, 24, 

28-31, 38-40] to answer the question: 

2 22

1 2

1 2

1 2

1 12

3
r r r

a
v v v

E E

  
       

  
 

 
 

 
2

2

1 2

1 1 1
 .

2

a

a

q y dy
t

R Rt y

  
      

  
  (14) 

here   ,  ,  , oq q y q a   are the desired physical and geo-

metric features of the interaction process of two round 

cylindrical elements in compliance with the obvious re-

quirements  

    ,  0,  0 m x= aoa y a q a q q       (15) 

and fulfilling the condition (3); t is an auxiliary variable that 

varies within the range of a t a    [2, 35]. 

As the paper [37] authors note, comparing with an ab-

solutely-idealized original (10) in which the directions of P 

force and 0hv   movement coincide (see Fig. 3) in formula 

(14), the “minus” indicates the opposite effect of the contact 

pressure  q y  and 1 2, h hv v  kinematic components within 

each cylinder (see Fig. 1, 3). 

The analysis of the conducted computational and 

theoretical studies allows drawing the following conclu-

sions. 

 

Conclusions 

 

1. The impossibility [7, 8, 28] of applying the refer-

ence dependency is confirmed and proved (8) [1, 2, 32] for 

calculating the convergence of the cylinders (see Fig. 1, 2) 

due to the logarithmic singularity noted in the well-known 

fundamental mechanical and mathematical works [7, 9, 15, 

19, 28]. 

2. For the same reason (see point 1), it is proved that 

Flamant basic model [8, 9, 19-23, 28-32, 36] is incorrect to 

solve any plane problems of the theory of elasticity (see Fig. 

3) related to the assessment of the contact stiffness [35] of 

the parallel cylindrical parts of load-bearing structures. 

3. In order to completely eliminate the contradictions 

considered in the article, a linear integral equation (14) is 

formulated that allows determining: the reactive pressure 

function  q y  and its extremum 0 maxq  ; the half-width 

a of the contact area and the total mutual displacement δ of 

the points O1, O2 (see Fig. 1). 
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