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This paper analyzes delamination of multilayered inhomogeneous beam structure by utiliza-
tion a non-linear viscoelastic mechanical model. The non-linear time-dependent response is 
treated by a non-linear spring and a non-linear dashpot connected in series to a system of two 
linear springs and two linear dashpots. The model is under stress that is a linear function of time. 
The constitutive law of the model representing a non-linear dependence between stress, strain 
and time is derived. The main goal of the paper is to obtain a solution of the strain energy re-
lease rate for the delamination in the multilayered inhomogeneous beam by applying the non-
linear viscoelastic model. Solutions are derived by using the complementary strain energy and 
by analyzing the balance of the energy with taking into account the non-linear viscoelastic be-
haviour. For this purpose, the constitutive law of the non-linear viscoelastic mechanical model is 
used. The solutions are applied to obtain results for multilayered beams with non-linear variation 
of material properties in longitudinal direction. The influence of different parameters on the time-
dependent strain energy release rate is assessed. The study indicates the effectiveness of the 
viscoelastic mechanical models with non-linear springs and dashpots in time-dependent delami-
nation analyses of multilayered inhomogeneous beam structures. 
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Introduction 
 
In contemporaneous engineering practice very often 

load-bearing engineering structures are subjected to heavy 
loadings and extreme external influences. At the same 
time, all the requirements towards the engineering struc-
tures have to be satisfied with minimum expenditure of 
materials not only because of the cost but also because of 
the fact that the weight of structures is usually an issue. 
This situation leads to necessity of introduction of new 
structural materials of adequate properties to withstand the 

complicated conditions of work. One type of such materi-
als is continuously inhomogeneous structural materials  
[1–12]. One of the most important peculiarities of these 
materials is the fact that their properties vary smoothly 
along one or more coordinates in the structural member 
[13–15]. In the last four decades, the most widely used 
continuously inhomogeneous materials are the function-
ally graded materials [16–23]. They represent continu-
ously inhomogeneous composites made by mixing of two 
or more constituent materials. The microstructure and the 
properties of the functionally graded materials can be 
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formed technologically during the production process  
[24–34]. In this way, highly sophisticated structural mem-
bers with different material properties in different parts of 
a member can be manufactured.  

Multilayered inhomogeneous materials representing 
systems of adhesively bonded layers are frequently applied 
in various load-bearing structures in modern engineering 
[35–44]. Structural members made of multilayered ma-
terials have various advantages in comparison with the 
homogeneous load-bearing structures. For instance, the 
strength-to-weight and stiffness-to-weight ratios of multi-
layered systems are higher. Although the concept of multi-
layered materials is rather efficient, the multilayered struc-
tural members are highly sensitive to delamination (sepa-
ration) of layers [45–48]. Delamination can grow rapidly 
causing the failure of the multilayered inhomogeneous 
structure with catastrophic consequences. There are vari-
ous factors which affect the delamination behaviour. The 
effects of these factors have to be analyzed at length in 
order to improve the knowledge on the delamination. This 
knowledge can play an important role in safety design of 
load-bearing multilayered structural components. 

Usually, the multilayered inhomogeneous materials have 
non-linear viscoelastic behaviour. Therefore, non-linear vis-
coelastic mechanical models have to be utilized in time-
dependent delamination analyses of multilayered structures. 

For this purpose, in the present paper, a model repre-
senting a combination of linear springs and dashpots is 
modified by introducing a non-linear spring and a non-
linear dashpot. In this manner, a non-linear viscoelastic 
model is obtained. This model is utilized in a delamination 
analysis of a multilayered inhomogeneous beam. A solu-
tion of the strain energy release rate is derived. The bal-
ance of the energy is analyzed to verify the solution. When 
deriving the solution, the constitutive law of the non-linear 
viscoelastic model is used to describe the mechanical be-
haviour of the beam structure. It should be noted that this 
paper develops further the approach presented in [49; 50]. 
The main novelty is that a non-linear viscoelastic model is 
utilized in contrast to [49; 50] where delamination is ana-
lyzed by using viscoelastic models assembled by linear 
springs and linear dashpots. 

 
Analysis of the time-dependent strain energy  
release rate 

 
The mechanical model presented in Fig. 1 exhibits non-

linear viscoelastic behaviour due to the non-linear spring, inp , 
and the non-linear dashpot, inw , which are added to the linear 
springs with modulae of elasticity, BiE  and DiE , and linear 
dashpots with coefficients of viscosity, ηBi  and ηDi . 

The model in Fig.1 is under stress,  σi , that varies with 
time, t, according to following equation: 
 σσi iv t= ,  (1) 

where σiv  is a parameter that governs the loading. 

 
Fig. 1. Non-linear viscoelastic model 

The constitutive law of the model represents a non-
linear dependence between stress, strain and time (the non-
linearity is generated by the non-linear spring and dashpot). 
In order to derive this constitutive law, first, the strain, εi , 
is expressed as (Fig. 1) 

 ε ε εi Qi Ri= + ,  (2) 

where εQi  is the strain in the spring with modulus of elastic-

ity, BiE , and in the dashpot with coefficient of viscosity, ηBi . 
The strain, εRi , is written as 

 ε ε εRi npi nwi= + ,  (3) 

where εnpi  is the strain in the non-linear spring, εnwi  is the 
strain in the non-linear dashpot as shown in Fig. 1. 

The mechanical behaviour of the non-linear spring is 
described by the following non-linear stress-strain relation-
ship [51]: 

 
2

ε
σ

1 ε
i npi

npi

npi

H
=

+
,  (4) 

where σnpi  is the stress in the spring, iH  is a material 
property. From Fig. 1, it is obvious that 

 σ σnpi i= .  (5) 

After substituting of (5) in (4) and performing some 
mathematical transformations, one derives 

 
2 2

σε
σ

i
npi

i iH
=

−
.  (6) 

The response of the non-linear dashpot is treated by us-
ing the following relationship: 

 
2 2

εσ
1 ε

i nwi
nwi

i nwi

L
f

=
+




,  (7) 

where iL  and if  are material properties, εnwi  is the first 
derivative of the strain with respect to time. By using (7) 
and taking into account that (Fig.1) 
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 σ σ ,nwi i=  (8) 

one derives 

 
2 2 2

σε
σ

i
nwi

i i iL f
=

−
 .  (9) 

By substituting of (1) in (9), one obtains 

 σ
2 2 2 2

σ

ε i
nwi

i i i

v t
L f v t

=
−

 .  (10) 

Equation (10) is solved with respect to εnwi . The result is 

 2 2 2 2
σ 12

σ

1ε ,nwi i i i
i i

L f v t C
f v

= − − +   (11) 

where 1C  is an integration constant. Since 

 ( )ε 0 0nwi = ,  (12) 

one derives 

 1 2
σ

i

i i

LC
f v

= .  (13) 

By combining of (11) and (13), the strain in the non-
linear dashpot is found as 

 2 2 2 2
σ2

σ

1εnwi i i i i
i i

L L f v t
f v

 
= − − 

 
.  (14) 

The next step is to obtain the strains in the linear 
springs and dashpots. For this purpose, the following equa-
tion of equilibrium is used: 

 η ησ σ σ σ
Di Di BiE i+ + = ,  (15) 

where σ
Diη , σ

DiE  and ησ
Bi

 are the stresses in the spring with 

coefficient of viscosity, ηDi , in the spring with modulus of 
elasticity, DiE , and in the dashpot with coefficient of viscosity, 
ηBi , respectively (Fig. 1). These stresses are expressed as 

 ησ ε η
Di Qi Di=  ,  (16) 

 σ ε
DiE Di QiE= ,  (17) 

 ησ η ε
Bi Bi Bi=  ,  (18) 

where εBi  is the first derivative of the strain in the dashpot 
with coefficient of viscosity, ηBi . The stress in the spring 
with modulus of elasticity, BiE , is equal to ησ

Bi
 

 ( )ε ε η εBi Qi Bi Bi BiE − =  .  (19) 

By using of (15)–(19), one obtains 

 1 2 2ε ψ ε ψ ε ψBi i Bi i Bi it+ + =   ,  (20) 

where 

2
1

1

δψ
δ

i
i

i

= , 2
1

ψ
δ

Di
i

i

E= , 2
1

ψ
δ

Di
i

i

E= , σ
3

1

ψ
δ

i
i

i

v= , 

  1
η ηδ Di Bi

i
BiE

= , 2δ η η ηDi
i Di Bi Bi

Bi

E
E

= + + .  (21) 

The solution of (20) is found as 

 ( ) 1 2ρ2 1

2 1 2 1

ρ ρε
ρ ρ ρ ρ

i it ti i i i i i
Bi i i

i i i i

A B B At e e At Bρ− −= + + +
− −

,  (22) 

where 

3

2

ψ
ψ

i
i

i

A = , 1 σ
2
2 1

ψ
ψ δ

i i
i

i i

vB = − , 1 1 χρ 0.5ψ ρi i i= − + ,  

 ( )2 0.5
χ 1 2ρ 0.5 ψ 4ψi i i= − , 2 1 χρ 0.5ψ ρi i i=− − .  (23) 

By combining of (1), (19) and (21), one derives 

( ) 1 2ρ ρ 1
1 2 2

1 2 1

σ ψε σ λ σ λ σ
δ ψ δ

t t i i
Qi i i i i i

i i i

t e e
t

= + + − +  

 1 2ρ ρ
1 1 2 2

1

η σ 1ρ λ ρ λ
δ

i it tBi i
i i i i

Bi i

e e
E t

 
+ + + 

 
,  (24) 

where 

( )
2
2 1

1 2
2 1 2 1

ψ ψλ
ρ ρ ψ δ

i i
i

i i i it
+=

−
,   ( )

2
1 2

2 2
2 1 2 1

ψ ρ ψλ
ρ ρ ψ δ

i i i
i

i i i it
− −=

−
,    

 
( )

2
2 1

1 2
2 1 2 1

i i
i

i i i it
ψ + ψ

λ =
ρ − ρ ψ δ

.  (25)  

 ( )
2

1 2
2 2

2 1 2 1

ψ ρ ψλ
ρ ρ ψ δ

i i i
i

i i i it
− −=

−
. (26) 

By using of (1), (2), (3), (6), (14) and (24), one obtains 
the following non-linear constitutive law that relates time, 
stresses and strains in the model in Fig. 1: 

( ) 1 2ρ ρ 1
i 1 2 2

1 2 1

σ ψε σ λ σ λ σ
δ ψ δ

t t i i
i i i i i

i i i

t e e
t

= + + − +  

1 2ρ ρ
1 1 2 2

1

η σ 1ρ λ ρ λ
δ

i it tBi i
i i i i

Bi i

e e
E t

 
+ + + + 

  2 2

σ
σ

i

i iH
+

−
 

 2 2 2
2 σ
σ i i i i

i i

t L L f
f

 
− − 

 
.  (27) 

The constitutive law (27) is applied for treating the 
time-dependent mechanical behaviour of the i-th layer in the 
multilayered inhomogeneous non-linear viscoelastic beam 
structure in Fig. 2 when deriving a solution of the strain 
energy release rate. 

The beam consists of an arbitrary number of adhesively 
bonded layers with different thicknesses and material prop-
erties. The cross-section of the beam is a rectangle of width, 
b , and thickness, h . The beam length is denoted by l . The 
beam is clamped in its right-hand end. A delamination crack  
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Fig. 2. Multilayered beam structure with delamination crack 

of length, a, is located between layers so as the thicknesses of 
the lower and upper delamination crack arms are 1h  and 2h , 
respectively. The beam is loaded by a bending moment, M, 
applied at the free end of the upper crack arm. Therefore, the 
lower crack arm is free of stresses. The bending moment var-
ies with time according to the following dependence: 

 ,M vt=   (28) 

where v  is a parameter that controls the loading. 
The layers exhibit continuous material inhomogeneity 

along the beam length. The following dependences are used 
for describing the variation of the material properties in-
volved in the constitutive law (27) in the longitudinal direc-
tion in the i-th layer of the beam: 

1

1

μω α
α μ

i

i

B i B i
Bi B i

E EE E x
l
−= + , 2

2

μω α
α μ

i

i

D i D i
Di D i

E EE E x
l
−= + , 

  3

3

μω α
α μ

η ηη η i

i

B i B i
Bi B i x

l
−= + ,  (29) 

4

4

μω α
α μ

η ηη η i

i

D i D i
Di D i x

l
−= + , 5

5

μω α
α μ

i

i

i i
i i

H HH H x
l
−= + ,  

 6

6

μω α
α μ

i

i

i i
i i

L LL L x
l
−= + ,  (30) 

where 

 0 x l≤ ≤ ,  (31) 

 1, 2, ..., .i m=   (32) 

In formulae (29) and (30), αB iE , αD iE , αηB i , αηD i , αiH  
and αiL  are the values of BiE , DiE , ηBi , ηDi , iH  and iL  at 
the free of the beam, respectively. The values of BiE , DiE , 
ηBi , ηDi , iH  and iL  at the clamped end of the beam are 

ωB iE , ωD iE , ωηB i , ωηD i , ωiH  and ωiL , respectively. The pa-
rameters, 1μ i , 2μ i , 3μ i , 4μ i , 5μ i  and 6μ i  control the varia-
tion of BiE , DiE , ηBi , ηDi , iH  and iL , respectively, x  is 
the longitudinal centroidal axis of the beam, m  is the number 
of layers. 

In order to derive solution of the strain energy re-
lease rate for the delamination in the beam in Fig. 2, first, 
the complementary strain energy in the beam, *,U  is ob-
tained as 

 * * *
1 2U U U= + ,  (33) 

where *
1U  and *

1U  are the complementary strain energies in 
the upper delamination crack arm and in the un-cracked 
beam portion, 0 x l≤ ≤ , respectively. The complementary 
strain energy, *

1U , is found as 

 
1 11

1

* *
1 0 1

1 0

i

i

zai m

i
i z

U b u dxdz
+=

=

=    ,  (34) 

where 1m  is the number of layers in the upper crack arm, *
0iu  

is the complementary strain energy density in the i-th layer, 
1iz  and 1 1iz +  are, respectively, the coordinates of the upper 

and lower surfaces of the layer, 1z  is the vertical centroidal 
axis of upper crack arm cross-section. 

Due to non-linear character of the constitutive law (27), 
the stress can not be determined explicitly. Therefore, the 
complementary strain energy density that is involved in (34) 
is obtained as 

 
σ

*
0

0

ε σ
i

i i iu d=  .  (35) 

By combining of (27) and (35), one derives 

1 2

2
ρ ρ* 1

0 1 2 2
1 2 1

σ ψ1λ λ
2 δ ψ δ

t ti i
i i i

i i i

u e e
t

 
= + + − + 

 
 

1 2

2
ρ ρ

1 1 2 2
1

2 2
2

η σ 1ρ λ ρ λ
2 δ

σ

i iBi i t t
i i i i

Bi i

i
i i i

i

e e
E t

L tH H
f

 
+ + + + 

 

+ − − + −
 

 
2

2 2 2i
2

σσ σ arcsin
σ 2 2

i i i
i i i

i i i i

L ft L f
f f L

 
− − + 

 
.  (36) 

The boundaries of integration, 1iz  and 1 1iz + , in (34) are 
replaced with σ iϖ  and σ iϑ , respectively (here, σ iϖ  and σ iϑ  
are the stresses in the upper and lower surfaces of the layer, 
respectively) 

 
1 σ

* *
1 0 1

1 0 σ

i

i

ai m

i
i

U b u dxdz
ϑ

ϖ

=

=

=    .  (37) 

Besides, 1dz  that is involved in (37) is expressed as a 
function of σi . For this purpose, the distribution of strains 
along the thickness of the upper crack arm is written as 

 ( )1 1 1ε κ nz z= − ,  (38) 

where 1κ  is the curvature of the crack arm, 1nz  is the coor-
dinate of the neutral axis. Formula (38) follows from the 
Bernoulli’s hypothesis for plane sections (this hypothesis is 
applicable here since beams of high length to thickness ratio 
are under consideration). 

From (27) and (38), one obtains 
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1 2ρ ρ 1
1 1 2 2

1 1 2 1

σ ψ1 σ λ σ λ σ
κ δ ψ δ

t t i i
i i i i i

i i i

z e e
t


= + + − +


 

1 2ρ ρ
1 1 2 2

1

η σ 1ρ λ ρ λ
δ

i it tBi i
i i i i

Bi i

e e
E t

 
+ + + + 

  2 2

σ
σ

i

i iH
+

−
 

 2 2 2
12 σ

σ i i i i n
i i

t L L f z
f

  
+ − − +  

  
.  (39) 

By using (39), one derives 

1 2ρ ρ 1
1 1 2 2

1 1 2 1

ψ1 1λ λ
κ δ ψ δ

t t i
i i

i i i

dz e e
t


= + + − +


 

1 2ρ ρ
1 1 2 2 2 2

1

η 1 1ρ λ ρ λ
δ σ

i it tBi
i i i i

Bi i i i

e e
E t H

 
+ + + + + 

− 
 

 
( )

2

3 2 2 22 2

σ σ .
σσ

i
i

i i ii i

t d
L fH


+ + 

− −
  (40) 

The quantities, σ iϖ , σ iϑ , 1κ  and 1nz , are found in the 
following way. First, the equations of the equilibrium of the 
elementary forces in the cross-section of the upper crack 
arm are written as 

 
1

σ

1
1 σ

σ
i

i

i m

i
i

N b dz
ϑ

ϖ

=

=

=   , 
1

σ

1 1
1 σ

σ
i

i

i m

i
i

M b z dz
ϑ

ϖ

=

=

=  ,  (41) 

where N  is the axial force in the upper crack arm (for the 
beam under consideration, 0N = ), 1z  and 1dz  are found by 
(39) and (40), respectively. By using (27) and (41) and by 
replacing of 1z  with 1iz  and 1 1iz + , one obtains 

( ) 1 2 1
1 1 1 1 2 2

1 2 1

κ it t i
i n i i i i i

i i i

z z e e
t

ϖρ ρ
ϖ ϖ ϖ

σ ψ− = σ λ + σ λ + − σ +
δ ψ δ

 

1 2
1 1 2 2

1

1
i iBi i t t

i i i i
Bi i

e e
E t

ϖ ρ ρη σ  
+ ρ λ + ρ λ + + δ  2 2

i

i iH
ϖ

ϖ

σ
+

− σ
 

 2 2 2
2 i i i i

i i

t L L f
f ϖ

ϖ

 
+ − − σ σ  

,  (42) 

( ) 1 2 1
1 1 1 1 1 2 2

1 2 1

it t i
i n i i i i i

i i i

z z e e
t

ϑρ ρ
+ ϑ ϑ ϑ

σ ψκ − = σ λ + σ λ + − σ +
δ ψ δ

 

1 2
1 1 2 2

1

1
i iBi i t t

i i i i
Bi i

e e
E t

ϑ ρ ρη σ  
+ ρ λ + ρ λ + + δ  2 2

i

i iH
ϑ

ϑ

σ
+

− σ
 

 2 2 2
2 i i i i

i i

t L L f
f ϑ

ϑ

 
+ − − σ σ  

,  (43) 

where 

 11,2,...,i m= .  (44) 

It should be mentioned that (42) and (43) are written by 
replacing of iσ  with iϖσ  and iϑσ  in (41), respectively. 

Equations (41), (42) and (43) are solved with respect to 1κ , 

1nz , iϖσ  and iϑσ  where 11,2,...,i m=  by using the MatLab 
computer program at various values of time. 

Formula (37) is applied also to determine *
2U . For this 

purpose, 1m , iϖσ , iϑσ , *
0iu  and 1z  are replaced with m, 

iϖξσ , iϑξσ , *
0 iu ξ  and 2z , respectively. Here, iϖξσ  and iϑξσ  

are the stresses in the upper and lower surfaces of the i-th 
layer in the un-cracked beam portion, respectively, *

0 iu ξ  is 

the complementary strain energy density, 2z  is the vertical 
centroidal axis of the cross-section of the un-cracked beam 
portion. Besides, the boundaries of integration 0  and a  are 
replaced with a  and l , respectively. Analogical replace-
ments are performed in equations (41), (42) and (43) and 
then these equations are used to determine 2κ , 2nz , iϖξσ  

and iϑξσ  (here, 2κ  is the curvature of the un-cracked beam 
portion) at various values of time. 

The strain energy release rate, G , for the delamination 
in Fig. 1 is found as 

 
*dUG

bda
= .  (45) 

By substituting of *
1U  and *

2U  in (33) and then in (45), 
one derives 

 
1

*
0 1

1

i

i

i m

i
i

G u dz
ϑ

ϖ

σ=

= σ

=  *
0 2

1

i

i

i m

i
i

u dz
ϑξ

ϖξ

σ=

ξ
= σ

−  ,  (46) 

where the stresses and the complementary strain energy 
densities are found at x a= . The integration in (46) is car-
ried-out by using the MatLab computer program. The strain 
energy release rate is determined by (56) at various values 
of time. 

The strain energy release rate is derived also by analyz-
ing the balance of the energy for verification. The balance is 
written as 

 ,UM a Gb a
a

∂δϕ = δ + δ
∂

  (47) 

where ϕ  is the angle of rotation of the free end of the upper 
crack arm, aδ  is a small increase of the delamination 
length, U  is the strain energy in the beam. From (47), one 
obtains 

 1 UG M
b a a
 ∂ϕ ∂= − ∂ ∂ 

.  (48) 

The angle of rotation is found as 

 1 2
0

a l

a

dx dxϕ = κ + κ  .  (49) 
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It should be noted that (49) is derived by using the inte-
grals of Maxwell-Mohr. The strain energy in the beam is 
written as 

 1 2U U U= + ,  (50) 

where 1U  and 2U  are the strain energies cumulated in the upper 
crack arm and in the un-cracked beam portion, respectively. 

The quantity, 1U , is found as 

 
1

1 0 1
1 0

i

i

ai m

i
i

U b u dxdz
ϑ

ϖ

σ=

= σ

=    ,  (51) 

where 0iu  is the strain energy density in the i-th layer. The 
quantity, 0iu , is determined as 

 0
0

i

i i i i iu d
ε

= σ ε − ε σ .  (52) 

By using of (27) and (52), one derives 

1 2

2
2 2 2 1

0 1 2 2
1 2 1

1
2

t t i i
i i i i i i

i i i

u e e
t

ρ ρ σ ψ= σ λ + σ λ + − σ + δ ψ δ 
 

1 2

2

1 1 2 2
1

1
2

i it tBi i
i i i i

Bi i

e e
E t

ρ ρ η σ+ ρ λ + ρ λ + + δ 
 

2

2 2
i

i iH
σ +

− σ
 

2 2 2
2 i i i i

i

t L L f
f
 

− − σ − 
 

 

2 2
2

i
i i i

i

L tH H
f

− + − σ − +

 
2

2 2 2
2 arcsin

2 2
i i i i

i i i
i i i i

L ft L f
f f L

 σ σ− σ + σ  
.  (53) 

The strain energy in the un-cracked beam portion is 
found by replacing of 1m , iϖσ , iϑσ , 0iu  and 1z  with m , 

iϖξσ , iϑξσ , 0 iu ξ  and 2z  in (51). By combining of (48), (49), 
(50) and (51), one obtains 
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i

b u dz
ϑξ

ϖξ

σ=

ξ
= σ

 
+  

 
  ,  (54) 

where the curvatures, the stresses and the strain energy den-
sities are found at .x a=  The integration in (54) is carried-
out by the MatLab computer program. The strain energy 
release rate is determined by (54) at various values of time. 
It should be noted that the strain energy release rates found 
by (54) are exact matches of these obtained by (46) which is 
a verification of the solutions. 

 
Numerical results 

 
This section deals with numerical results obtained by ap-

plying the solution of the strain energy release rate derived in 

section 2 of the paper. The numerical results illustrate the 
effects of various parameters on the delamination of the mul-
tilayered inhomogeneous non-linear viscoelastic beam. The 
strain energy release rate is presented in non-dimensional 
form by applying the formula ( )1/N BG G E bα= . 

 
Fig. 3. Two three-layered beam structures (a) with delamination 

between layers 1 and 2, and (b) with delamination between  
layers 2 and 3 

Two three-layered beam configurations are considered in 
order to investigate the influence of the delamination crack 
location along the beam thickness (Fig. 3). In the beam de-
picted in Fig. 3, a, the delamination is located between layers 
1 and 2. A beam with delamination between layers 2 and 3 is 
also considered (Fig. 3, b). The layers in the beams in Fig. 3 
have identical thicknesses. The beams are clamped in their 
right-hand ends. It is assumed that 0.025b =  m, 0.012h =  m, 

0.400l =  m, 1if =  s and 70.9 10v −= ⋅  Nm/s. 
First, the variation of the strain energy release rate with 

time is analyzed. The beam with delamination between layers 
1 and 2 is considered. The results obtained are shown in 
Fig. 4 where the strain energy release rate is plotted against 
the non-dimensional time (the latter is obtained by using the 
formula 1 1/N B Bt tE α α= η ). The curve in Fig. 4 indicates that 
the strain energy release rate increases with time. 

This is due to two factors (increase of the external load-
ing with time and the viscoelastic behaviour of the multi-
layered beam). 

The variation of the non-dimensional strain energy re-
lease rate with 1 1/B BE Eω α  ratio for both three-layered beam 
structures is shown in Fig. 5. 

It is apparent from Fig. 5 that the strain energy release 
rate decreases with increasing of 1 1/B BE Eω α  ratio. 

It can be concluded also that the strain energy release 
rate for the beam with delamination between layers 1 and 2 
is higher than that for the beam with delamination located 
between layers 2 and 3 (Fig. 5). 
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Fig. 4. Variation of the non-dimensional strain energy release 
 rate with non-dimensional time 

Fig. 5. Variation of the non-dimensional strain energy release rate 
with 1 1/B BE Eω α  ratio (curve 1 – for the beam with delamination 
between layers 1 and 2, curve 2 – for the beam with delamination 

between layers 2 and 3) 

  
Fig. 6. Variation of the non-dimensional strain energy release rate 

with 1 1/D DE Eω α  ratio (curve 1 – at  / 0.25a l = , curve 2 – 

at / 0.50a l =  and curve 3 – at / 0.75a l = ) 

Fig. 7. Variation of the non-dimensional strain energy release rate 
with 1 1/B Bω αη η  ratio (curve 1 – at 1 1/ 0.5D Dω αη η = , curve 2 – 

at 1 1/ 1.5D Dω αη η =  and curve 3 – at 1 1/ 2.5D Dω αη η = ) 
 
Figure 6 shows the variation of the non-dimensional 

strain energy release rate with 1 1/D DE Eω α  ratio for three /a l  
ratios. 

The beam with delamination between layers 1 and 2 is 
analyzed. 

From Fig. 6, it can be seen that the increase of the 
1 1/D DE Eω α  ratio leads to decrease of the strain energy re-

lease rate. It can also be seen that the strain energy release 
rate deceases with increasing of la /  ratio (Fig. 6). 

The effects of 1 1/B Bω αη η  and 1 1/D Dω αη η  ratio on the 
strain energy release rate is illustrated in Fig. 7. It is ob-
served that the strain energy release rate decreases with in-
creasing of 1 1/B Bω αη η  ratio (Fig. 7). The effect of 

1 1/D Dω αη η  ratio is identical. 
The variation of the non-dimensional strain energy re-

lease rate with 1 1/H Hω α  ratio for three values of the pa-
rameter v  is displayed in Fig. 8. 

The effect of 1 1/H Hω α  ratio is to decrease of the strain 
energy release rate. From Fig. 8, it can be found also that 
the strain energy release rate increases with increasing of v. 

The influences of 1 1/L Lω α  and 2 1/L Lα α  ratios on the 
strain energy release rate are also studied. The strain energy 
release rate increases with the increase of these ratios as 
shown in Fig. 9. 
 
Conclusion 

 
A delamination analysis of a multilayered inhomogene-

ous beam by using a non-linear viscoelastic model is devel-
oped. A non-linear spring and a non-linear dashpot are 
added in a model that consists of two linear spring and two 
linear dashpots in order to describe the non-linear mechani-
cal behaviour of the beam under consideration. The re-
sponses of the non-linear spring and dashpot are treated by 
applying non-linear constitutive relationships. The stress-
strain-time constitutive law of the model is derived. The law 
is non-linear as a result of adding of non-linear spring and 
dashpot in the model. One of the important peculiarities of 
this constitutive law is that the stress can not be determined 
explicitly, in contrast to constitutive laws of linear viscoe-
lastic models. The material properties which are involved in 
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Fig. 8. Variation of the non-dimensional strain energy release rate 
with 1 1/H Hω α  ratio (curve 1 – at 70.3 10v −= ⋅  Nm/s, curve 2 – 

at 70.6 10v −= ⋅  Nm/s and curve 3 – at 70.9 10v −= ⋅  Nm/s) 

Fig. 9. Variation of the non-dimensional strain energy release rate 
with 1 1/L Lω α  ratio (curve 1 – at 2 1/ 0.5L Lα α = , curve 2 –  

at 2 1/ 1.0L Lα α =  and curve 3 – at 2 1/ 2.0L Lα α = ) 

 
the constitutive law are continuous functions of the longitu-
dinal coordinate since the layers exhibit continuous material 
inhomogeneity along the beam length. Solutions of the 
strain energy release rate for the delamination are obtained 
by using the complementary strain energy in the beam and 
by considering the balance of the energy. The two solutions 
generate identical results which prove their correctness. The 
solutions are time-dependent and take into account the non-
linear viscoelastic behaviour of the beam under external 
bending moment that is a linear function of time. The solu-
tions are applied to obtain numerical results which clarify 
the influence of various factors on the strain energy release 
rate. The results obtained indicate that the strain energy re-
lease rate increases with time. The influence of 1 1/B BE Eω α , 

1 1/D DE Eω α ,  1 1/B Bω αη η ,  1 1/D Dω αη η ,  1 1/H Hω α ,  1 1/L Lω α  
and 2 1/L Lα α  ratios on the strain energy release rate is  

analyzed (these ratios describe the material inhomogeneity 
along the beam length). The analysis indicates that the strain 
energy release rate decreases with increasing of these ratios. 
The effect of /a l  ratio is analyzed too (this ratio represents 
the relative length of the delamiantion crack). It is found 
that the strain energy release rate decreases with increasing 
of /a l  ratio. The results obtained demonstrate that the vis-
coelastic models with non-linear springs and dashpots are 
effective tools for treating time-dependent mechanical be-
haviour of multilayered inhomogeneous beam structures 
with delaminations when analyzing the strain energy release 
rate. It should be mentioned that these models can be devel-
oped further by introducing of more sophisticated combina-
tions of non-linear springs and dashpots for representing of 
more complicated time-dependent behaviour of multilay-
ered inhomogeneous beams with delamination. 
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