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This paper presents the solutions for the plane-strain extrusion of porous material. We con-
sider the problem of a stationary plastic flow through a wedge shaped die. We neglect friction 
between the die and the deformed material since it is rather a negative effect and should be 
avoided in manufacturing. The elliptic Green type yield condition and its piecewise-linear ap-
proximation are adopted for this problem. In the last case, we obtain analytical solution that links 
extrusion pressure and area reduction to the initial and final density of the porous material. For 
elliptic Green yield condition the problem reduced to nonlinear ODE that integrated numerically.
The results are compared with known solution for Gurson model. The extrusion pressure pre-
dicted by the piecewise-linear model is lower than what obtained by the elliptic Green model. In 
turn, the pressure predicted by elliptic Green model is lower than the pressure obtained in the 
frame of Gurson model. At low values of area reduction, all three models predict approximately 
the same extrusion pressure. With a small initial porosity of the material, the Gurson model gives 
results that are close to the elliptic Green model, and with a large initial porosity, to the piece-
wise-linear Green model. 

 
© PNRPU

 

Extrusion is a valuable technological process that has 
long been used for continuous metal processing as well as in 
pharmacy and food industry [1–3]. 

When the die walls are smooth enough and the taper 
angle is small, a radial flow of the material is realized dur-
ing extrusion. Plane strain radial plastic flow is one of the 
classical problems in the theory of plasticity. The first 
known solution was obtained by Nadai [4], who determined 
the stress field in an ideal plastic material. The stationary 
velocity field corresponding to this solution was found by 

Hill [5] and, independently, by Sokolovsky [6]. Sokolovsky 
also found a complete solution to the problem for the mate-
rial with power-law hardening according to the Hollomon 
equation. The result of Durban and Budiansky [7] is ob-
tained for linear-hardening material (Ludwik equation). 
Haddow and Danyluk obtained an elastic-plastic solution of 
the same problem for non-hardening material in the frame-
work of the Prandtl – Reuss theory [8]. Some other analyti-
cal and numerical results can be found in [9–12]. All the 
mentioned results were obtained for plastically incom-
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pressible materials. Plastically compressible (porous) mate-
rials can be described by the classical Mohr – Coulomb, 
Drucker – Prager, or Mises – Schleicher yield conditions. 
Although the associated plasticity for these yield conditions 
can leads to known discrepancies between the calculated 
volumetric strain and the experimental one, they often used 
to construct the models of complex media on the base of 
micromechanical solutions [13–15]. More precise yield 
conditions (for example, Green type models [16] and Gur-
son model [17]) are explicitly depend on the relative density 
(or porosity) of the material. For the Gurson model, an ap-
proximate analytical solution (of the first order in porosity) 
for stationary plane-strain radial plastic flow is known [18]. 
The Gurson model is also utilized to analyze plane-strain 
extrusion in [19–21]. Numerical results for the anisotropic 
model are presented in [22]. For Green type models, a num-
ber of results for axisymmetric extrusion were presented 
[23–25]; also the analytical solution [26; 27] for equal 
channel angular extrusion can be mentioned. 

The present paper provides the solutions to the plane-
strain problem of a stationary plastic flow through a wedge 
shaped die (Fig. 1). For the piecewise-linear Green type 
criterion, an exact analytical solution is obtained. For ellip-
tic Green yield condition the problem reduced to nonlinear 
ODE that integrated numerically. As in [18; 28], friction 
between the die and the deformed material is neglected 
since it is rather a negative effect and should be avoided in 
manufacturing. The results are compared with solution [18] 
for Gurson model. 

 

 

Fig. 1. Plane-strain extrusion through a wedge-shaped die 

 
1. Plane-strain radial flow 

 
The problem with cylindrical symmetry is considered. 

The radial flow is described by velocity vector r rvv e , 
0rv  . It is assumed that the cylindrical surface 0r r  is a 

free boundary (see Fig. 1). 
The strain rate tensor has the following form 

   

φ φ.

1 =
2

=

T

r r
r r

v v
r r
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For stationary flow, the continuity equation 

  0.v = =t     

is satisfied, where t  is the time,  is the dimensionless den-
sity of the porous material (the value 1   corresponds to a 

porosity-free material), 1e e er zr r z

  
   

  
 is the 

Hamiltonian. Hence, for the problem under consideration, it 
follows that 

 ρ constrr v  .   (1) 

From (1) it follows that 

 1 .rrD r dL
D dr

 
     

   (2) 

The equilibrium equation   0rr rrr r        
with respect to (2) takes the form 

 
1

rrrr

L
 

 
 

.   (3) 

From (2) it also follows that density distribution obeys 
the equation 

 
 

1ln
1

out
outr dp
r L p p
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 .  (4) 

 
2. Green type elliptic yield criterion 

 
We utilize the elliptic Green yield condition and the 

associated flow rule 

   2 2 1 0s s         ,  

 D σ   .  (5) 

where functions  s   and  s   are shear and volumetric 
plastic moduli, respectively; σ tr 3σ  is the mean stress, τ  is 
the shear stress intensity, 2 2 2tr 2 tr 6σ σ   , σ  is the (mac-
roscopic) Cauchy stress tensor,   is a scalar plastic multiplier. 

From (5) it follows that (see Appendix A) 

2 2

tr
2 tr tr
σ D + I D

D Ds




 
, 

where I  is the unit tensor,  2 2 1 3s s     . Hence 
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  (6) 

where   11     . 
Substituting (6) into (3), one can obtain nonlinear first-

order ODE that determines the function  L  . Boundary 
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condition    out outL      is according to (6) since the 

surface outr r  is traction-free, i.e.   0rr outr  . 

With calculated  L  , formulas (4) and (6) determine 
density and pressure in the channel. 

 
3. Green type piecewise-linear yield criterion 

 
Under the plane-strain condition, the following piece-

wise-linear criterion can be utilized: 

      1 3 1 32 2 1 0s s            .   (7) 

Here 1  and 3  are the largest and smallest eigenval-
ues of the stress tensor, respectively. In the problem under 
consideration it is reasonable to assume that 1 rr   , 

3    , 1 3 0    and according to (7) the following is 
obtained 

 2s s s s
rr

s s s s


    
   

     
.  (8) 

The normality rule associated with (7) leads to the ex-
pressions 

2
s s
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s s
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, 

2
s s

s s

D
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 
,  

   21 srr

s s

DL
D


    

  
.   (9) 

and according to (4) 

 1ln ln
2

out
out out s

s

r dp
r p





  
      

 .  (10) 

Taking into account the equalities (8) and (9), the equi-
librium equation (3) takes the form 

 rr
rr s


    


   (11) 

and hence 

   2

out

rr s
dpp
p





    .  (12) 

Equations (10) and (12) define the pressure distribution 
in the channel in a parametric form with the parameter 

 ,in out   . This solution is valid for *in   , where *  
can be determined from (12) with    * *rr s     . 
When *in   , the stress state at the inlet of a channel is 
hydrostatic compression. 

 
4. Results and discussion 

 
The model [29] was utilized to determine the plastic 

modules: 

2
3 1s


 


, 3

5 2s


 
 

. 

where   is the shear yield stress of a porosity-free material. 
Fig. 2 shows the dimensionless extrusion pressure P  , 

where σ
inrr r rP


  , versus area reduction 1 out inR r r   

calculated according the obtained solutions for different 
values of initial density. 

Fig. 3 shows the density of the material at the inlet of 
the channel, required to achieve the specified values of rela-
tive density at the outlet of the channel. 

For comparison, we write down an approximate solu-
tion [18] for the Gurson model 

 1 1in out e    , 

    
2

2ln 1 2 3 1
1

in
eP R e d

 





      

 
 , 

 cosh 3 2  ,   cosh 3 2 3 ln 1 R    . 

 
Fig. 2. Extrusion pressure and area reduction required to achieve 
the specified values of final density: x – Gurson model (solution 
[18]), blue line – elliptic Green type model (numerical solution), 
red line – piecewise-linear Green type model (eqs. (10) and (12)), 
dash line corresponds to  2ln 1P R     (incompressible von 

Mises material) 

 
Fig. 3. Initial density and area reduction required to achieve the 

specified values of final density: x – Gurson model (solution [18]), 
blue line – elliptic Green type model (numerical solution), 

red line – piecewise-linear Green type model (eq. (10)) 
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It should be noted regarding the elliptic Green model and 
Gurson model that extrusion pressure depends nonmonotoni-
cally on the area reduction R. With R above a certain value, 
there is a zone near the channel inlet where the pressure in-
creases in the direction of material motion. This effect is pro-
nounced for the Gurson model and is barely noticeable for the 
elliptical Green model. In addition, for both models, when 
area reduction is above a certain value, the compaction begins 
outside the tapered region. 

The extrusion pressure predicted by the piecewise-linear 
model is lower than what obtained by the elliptic Green 
model. In turn, the pressure predicted by elliptic Green model 
is lower than what can be calculated by solution [18], ob-
tained in the frame of Gurson model. At low values of area 
reduction R, all three models predict approximately the same 
extrusion pressure. With a small initial porosity of the mate-
rial, the Gurson model gives results that are close to the ellip-
tic Green model, and with a large initial porosity, to the 
piecewise-linear Green model. 

 
Appendix A. Stress derivation for Green model 

 
For the yield condition 

   2 2 1 0s s         ;  

2 2 2tr 2 tr 6σ σ   ,   tr 3σ   

the normality rule leads to the following expression for 
plastic strain rate tensor [30] 

 

2 2

2 2 2

2 2 2

1 3 tr tr
9 2 2

2 1 tr .
3 3

σ σD
σ σ σ

σ σI

s s s

s s s

     
            

  
         

  (13) 

Applying the trace operator to both sides of equality 
(13), we find 

 2
2 trtr
3

σD
s

 


.   (14) 

and    2tr 3 tr 2σ Ds   . Substituting the last expression 

in (13), we express the stress tensor as 

 
2 2 2

2
2 tr1
3 2

Dσ I Ds s s

s

   
       

  (15) 

and then 

24 2 2 2 2 22
2 2

2 2 2
2 tr tr

3 2 3 2
D Dσ D D Is s s s s s        

            
. 

Applying the trace operator to both sides of the last 
equality, we find 

4 4
2 2 2

2 4
3 1tr tr tr
4 3

σ D Ds s

s

   
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and then 
42 2 2

2 2
2

tr tr trtr
2 6 2 3
σ σ DDs  

       
. 

Substituting this expression together with (14) into the 
yield condition, we obtain the following expression for the 
plastic multiplier 

2 2
2 2

2
1 12 tr tr
2 3

D Ds

s s

   
         

. 

Substituting this expression into (15), after some alge-
bra, we have 

2 2

tr
2 tr tr
σ D + I D

D Ds



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, 

2
1 1
2 3

s

s

 
    

. 
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