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In this paper, the problem of studying the dynamics of transverse vibrations of plate, taking into 
account the elastic dissipative characteristics of the hysteresis type in conjunction with a liquid section 
dynamic absorber under the influence of kinematic excitations. In the differential equations of motion, 
the elastic dissipative characteristics of the plate material of the hysteresis type are taken into account 
by means of harmonic linearization coefficients based on the Pisarenko – Boginich hypothesis. The 
amplitude-frequency characteristic of the vibrating plate and the analytical expressions of the transfer 
function were determined using a differential operator from a system of differential equations of motion 
depending on the system parameters. In order to perform numerical calculations, the coefficients of 
the first three terms of the logarithmic decrement expression were found. In the amplitude interval, the 
function representing the vertical deviation of the amplitude-frequency characteristic decreases and 
the function representing the energy dissipation in the plate material increases. It has been shown that 
the efficiency of the liquid section dynamic absorber in quenching harmful plate vibrations at low 
frequencies can be evaluated based on the results of numerical calculations to ensure that the 
displacements of the plate point reach minimum values. Amplitude-frequency characteristics for plate 
points at different parameters were constructed for the distributed parametric system using the 
developed model and method. Recommendations for the selection of parameters of the system 
depending on the elastic dissipative and inertial properties are given. 
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Introduction 
 
The problem of protection of mechanical systems under 

the influence of various excitations used in modern 
techniques, technologies, mechanisms and their elements 
from harmful vibrations, taking into account their nonlinear 
characteristics, is one of the most urgent problems that need 
to be solved. So far, a lot of theoretical and experimental 
research has been done in this regard. However, there is a 
need to make important recommendations and research 
methods to protect mechanical systems, especially plates, 
from low-frequency harmful vibrations, taking into account 
the elastic dissipative characteristics of the hysteresis type, 
ie the use of liquid section dynamic absorber. 

The work [1] studied the transverse vibrations of the 
hysteresis type elastic dissipative characteristic wire 
stretched along the length of the plate and its upper surface 
under the influence of multigarmonic excitations. The 
effectiveness of the wire in quenching plate vibrations is 
shown by the results obtained based on the analysis of the 
energy dissipation factor of the system. Numerical analyzes 
have shown that the vibration amplitudes are directly 
proportional to the energy distribution factor of the system. 
Aluminum, steel and rubbers were selected for the wire 
material and their effectiveness in quenching vibrations at 
low frequencies was compared. 

The finite element method was used in the work [2] to 
solve the problem of plate vibrations. In this case, it is 
shown that the averaged equations of the energy equations 
with respect to time and coordinate represent the nature of 
the vibrations. It is shown that these equations can also be 
used to calculate the energies of complex systems in their 
vibrations. Expressions of plate energy distribution factors 
and external power frequencies were also determined and 
compared with the results obtained by other methods, 
revealing the reliability of the results. 

In the works [3; 4], the vibrations of the rectangular 
plate with the edges mounted on elastic springs were 
studied using approaching rows. The natural frequency was 
determined depending on the system parameters and 
quantified. The analytical expression of the mode shapes 
satisfying the boundary conditions is proposed in a new 
form, i.e., in the form of the addition of additional 
polynomials to the Fury series. Mode shapes were analyzed 
numerically and the effect of system parameters on their 
change was evaluated as a result of numerical calculations. 

The work [5] deals with the determination of analytical 
expressions of mode shapes and natural frequencies in the 
transverse vibrations of the plate. The method of integral 
substitutions was used. The plate base was taken as the 
Winkler elastic base, and the analytical expressions of the 
mode shapes and natural frequencies of the plate lying in 
the free tanks were analyzed numerically. It has been noted 
that energy methods are effective in determining natural 
frequencies. Recommendations are given for the 
identification of mode shapes that meet the boundary 
conditions. 

The work [6] deals with the vibrations and stability of 
the layer of rectangular plates. In this case, several layers of 
plates are connected by a linear elastic characteristic. The 
natural frequency and the critical forces in bending are 
analytically expressed. The expression for the natural 
frequency depends on the number of plate layers is taken. 
Explored the stability and the geometric dimensions of the 
layers were analyzed at different values of stiffness. The 
practical significance of the results and the application of 
the obtained equations in engineering practice are shown. 

The work [7] studies the vibrations and the stability of 
the plate moving along an axis along its length. The partial 
derivative differential equations of motion are determined 
using the moment expressions. Natural frequencies were 
found using both the Galerkin and differential quadrature 
methods. If the velocity of motion along the axis does not 
change, the boundaries of instability are determined and 
their change is analyzed, provided that the real part of the 
roots of the characteristic equation is positive. The 
minimum of unstable areas is determined depending on the 
system parameters. 

The work [8] studies parametric vibrations and stability 
of complex shaped plates under the influence of static and 
periodic forces. Variational methods were used in the 
analysis of motion equations. The geometric parameters, 
boundary conditions, and the effect of the applied 
rectangular plate on the geometric center of the applied 
external forces on the domain are analyzed. In particular, an 
increase in the ratio of the side of the square hole to the 
smaller side of the plate has led to a decrease in the areas of 
instability. 

The work [9] presents an effective method for studying 
the vibrations of the plate moving along an axis along its 
length in a liquid. This method was developed using 
Kirchhoff’s theory and finite difference methods. In this 
case, the fluid is considered to be an ideal fluid and its 
equations are derived in the form of Bernoulli equations. 
The Hamiltonian principle was used to obtain the equations 
of motion of a plate in a liquid. It has been shown that an 
increase in the density of the liquid or the depth at which the 
plate is immersed in the liquid leads to a decrease in the 
natural frequency. 

The work [10] is devoted to defining the instability bor-
ders of plate motion. In this case, the equations of motion 
and boundary conditions are determined using the 
Hamiltonian principle. Analytical expressions of the 
boundaries of instability were derived from the Hurwitz 
criterion and the effect of damping coefficients on the areas 
of instability was investigated. The differential quadrature 
method was used to perform numerical calculations. 
Stability borders in the first four natural frequency and 
mode shapes were analyzed and conclusions were drawn. 

The works [11–13] deal with the problem of structural 
modeling of distributed systems with linear elastic 
characteristics by the method of bond graph. The equations 
of motion are expressed by first-order derivatives, and the 
stability of motion explored from the system matrix. The 
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vibration frequency ranges corresponding to the largest 
amplitudes are shown. Nonlinear free and forced vibrations 
of discrete and continuous systems have also been studied. 
The systems are mathematically modeled using the 
Lagrange equation. 

In the work [14], the transverse vibrations of the plate 
in conjunction with the dynamic absorber were investigated 
using finite difference method. The lumped mass was 
obtained as a dynamic absorber. Placing a single lumped 
mass in the center of the plate as a dynamic absorber has 
been shown to be effective only at a certain frequency. It is 
necessary to install several masses in different parts of the 
plate in order to reduce the vibrations of the plate over a 
wide range of frequencies. The optimal value of the set 
mass is determined. In this case, the product of mass 
density, surface area, height is obtained, and the optimal 
values for surfaces and heights are given. 

The work [15] deals with the problem of quenching the 
vibrations of right-angled, isotropic and orthotropic plates, 
which are protected from vibrations by fixed at the ends. As 
objects to protect against vibrations, in the first case, one 
mass is installed in the geometric center of the plate, in the 
second case, a total of four masses, one in the middle of the 
sides. In this case, the Reyleigh-Ritz method was used to 
determine the natural frequencies that satisfy the boundary 
conditions. The change in frequencies with the change in 
the aspect ratio was quantified. A methodology for 
determining mode shapes that satisfies boundary conditions 
has been developed. 

The work [16] presents methods for determining the 
natural vibration frequencies of the rectangular plate 
attached to an elastic base by experiment. In this case, 6061-
T6 aluminum was obtained for the plate material. The 
frequency values determined experimentally were compared 
with the results obtained according to Kirchhoff – Love 
theory and the reliability of the results was shown. It is 
revealed that the given frequency expression is effective in 
determining the natural frequencies of isotropic plates. 

In the work [17], the natural frequencies, masses, and 
stiffness matrices of an isotropic thin plate were determined 
by the finite difference method. The obtained frequencies 
were compared with the analytical solutions of the 
frequencies obtained when the mode shapes were obtained in 
the Levi type. The results obtained show that it is identical to 
its analytical solution for the plate with a free boundary 
condition. In this case, it was found that the change in plate 
thickness had no effect on the change in frequency. 

In the work [18], the transverse vibrations of the plate 
with a circular hole in the center were studied. The natural 
frequencies were determined by the Reyleigh – Ritz 
method. The characteristics of the hole are expressed by the 
Bessel function and the effect of vibration reduction is 
evaluated. The change in natural frequency with increasing 
diameter was analyzed under different boundary conditions 
and the optimal parameter for the radius was determined. 

The work [19] examines the damping properties of a 
passive liquid section dynamic absorber, which is effective 

in quenching harmful vibrations of engineering systems. 
The problem of optimization to minimize the amplitude of 
vibration over a wide range of frequencies, taking into 
account the maximum rise limit of the fluid in the columns, 
was considered and solved using numerical methods. 

The works [20; 21] focus on the optimal design of liq-
uid section dynamic absorber to control the seismic impact 
of structures. Algorithms were used in the optimization 
process to achieve the optimal solution. 

In the works [22; 23], several types of liquid section 
dynamic absorbers were compared. The impact properties 
of liquid section dynamic absorbers on the object have been 
shown to be modified by the application of their different 
shapes, the installation of additional barriers inside the shell 
surrounding the water, and the application of different types 
of fluid. 

The works [24; 25] have shown that semi-active systems 
cover the properties of passive and active systems. A passive 
liquid section dynamic absorber converted to a semi-active 
system with variable damping properties was analyzed. 

The work [26] analyzes the effect of a liquid section 
dynamic absorber on the motion of nonlinear systems under 
the influence of narrow and wide-band random excitations. 
The hysteresis type elastic dissipative properties of the 
system are based on the Bouc – Wen model. The equivalent 
statistical linearization method was used to analyze the 
dynamic nature of the system. The results showed that setting 
the liquid section dynamic absorber switch at frequencies 
close to the frequency of the system at wide-band random 
vibrations, and at frequencies with a high probability of 
external force vibrations at narrow-band random vibrations 
would be optimal values for its efficiency. 

In the work [27], the liquid section dynamic absorber 
was used to quench low-frequency vibrations of the drilling 
platform. Initially, the equation of joint motion of liquid 
section dynamic absorber and the drilling platform was 
obtained and analyzed using numerical methods. In the rota-
tional motion of the drilling platform, its interaction with 
the liquid section dynamic absorber was evaluated and the 
torsional vibrations in the rotational motion of the drilling 
platform at low frequencies were quenched. 

In the work [28], a liquid section dynamic absorber was 
used as a new energy-absorbing mechanism to quench the 
horizontal vibrations caused by external influences in the 
vertical flat rotational motions of the underwater platform. 

The use of liquid section dynamic absorber to protect 
structures from harmful vibrations has been studied in [29]. 
The statistical linearization method was used for random 
processes. The standard deviation values are expressed 
analytically depending on the system parameters 

The works [30–32] study the dynamics of complex 
mechanical systems and the bending of systems consisting 
of several layers of distributed parameters. 

A mathematical model of transverse vibrations under the 
influence of harmonic and random excitations of a plate with 
elastic dissipative characteristics of the hysteresis type, 
protected from vibrations, is presented and studied in [33]. The
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Fig. 1. Scheme of plate and liquid section dynamic absorbing system 

 
elastic characteristics of the hysteresis type of the plate material 
are obtained on the basis of the Pisarenko – Boginich 
hypothesis. Quantitative calculations were performed and 
analyzed on the obtained results, conclusions were drawn and 
recommendations were developed. 

In the works [34; 35], the mathematical model of 
transverse vibrations of systems of elastic dissipative 
characteristic of hysteresis type protected from vibrations is 
given and explored the stability. In this case, a conventional 
dynamic absorber is taken as an object that protects the 
plate from harmful vibrations. 

In the work [36] considered the problem of determining 
the mode shapes of liquid section dynamic absorber when it 
is used as an object to quench the vibrations. 

The analysis of the above works shows that one of the 
most important problems of mechanics is the solution of 
low-frequency vibrations in plates with elastic dissipative 
characteristics of the hysteresis type under the influence of 
kinematic excitations. 

This work is devoted to solving the problem of studying 
the dynamics of nonlinear transverse vibrations of the plate 
in conjunction with the liquid section dynamic absorber 
under the influence of kinematic excitations. 

 
1. Materials and methods 

 
Under the influence of kinematic excitations, elastic 

dissipative characteristic of hysteresis type rectangular plate 
with sides a, b, and thickness h vibrates in conjunction with 
a liquid section dynamic absorber (Fig. 1): 1m  and 3q  are 
the mass and displacement of the outer body of the dynamic 
absorber surrounding the liquid, respectively; 2m  and 4q  
are the mass and displacement of the solid of the dynamic 
absorber, respectively; 3m  is mass of the liquid; 4m  is mass 
of the liquid adhering to the body with mass 2m ; Fb  is the 
coefficient of resistance of the damper; 1c  and 2c  are stiff-
ness coefficients. 

When the kinematic excitations consist of forces 
 L LF t F  and  R RF t F  placed between the opposite 

sides of the plate, the motion of the elastic dissipative 
characteristic plate of the hysteresis type protected from the 
vibrations under consideration can be mathematically 
modeled as follows: 

 ,AQ BQ CQ F      (1) 
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kmq  are displacements of plate points; 13* 1 3;m m m   vm  is 
mass of the liquid squeezed by the solid with mass 2m ; Sb  is 
the viscosity coefficient of the liquid; kmm  and kmс  are modal 
masses and stiffnesses, expressed as , 1( ) :k m n   
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 is density of the plate material;  ,km kmu u x y  are mode 
shapes; 0 1 0 1, , , , , , ,R ND D D K K K   are parameters 

determined experimentally [37]; 
 

3

212 1 n

EhD 


 – is a cylin-

drical stiffness; E is Young’s module; n  is Poisson's coeffi-
cient; kmaq  are amplitude values of plate vibration forms; km  
are natural frequencies of the plate;  1 2 22, ,sign      

 1 2 22, sign      are constant coefficients depending on the 
dissipative properties of the plate material and are determined 
experimentally [33];   is a system frequency; 2 1j   ; 
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are the values of the mode shapes at the points where the forces 
are applied and at the point where the liquid section dynamic 
absorber is installed. 

In order to determine the amplitude-frequency 
characteristic of the system under consideration, we write 
the system of differential equations (1) as a system of 

algebraic equations by the differential operator dS
dt

 , ie 
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The obtained system of equations (2) is a system of 
linear equations with respect to the variables 3 4 ., ,kmq q q  
This allows us to solve this system of equations with respect 
to these variables. Given that the absolute values of the 
variables 3 4, ,kmq q q  determine the amplitude values of the 
vibrations of the system under consideration, the solution of 
the system of equations (2) and the determination of their 
absolute values requires solution. 

2. Results and discussion 
 
In order to determine the amplitude-frequency 

characteristic of the transverse vibrations of the plate with 
an elastic dissipative characteristic of the hysteresis type in 
conjunction with the liquid section dynamic absorber under 
the influence of kinematic excitations, we solve the system 
of equations (2) on the basis of Kramer's rule. 
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Expressions (3) allow the study of the dynamic 
character of the hysteresis type elastic dissipative 
characteristic plate and the liquid section dynamic absorber. 

Let the external forces LF  and RF  acting between the 
opposite sides of the plate give the system acceleration 

0 * cosW p t    ( *p  is the amplitude value of the base 
acceleration,   is a small parameter). In that case 

 * cos .L R kmF F m p t       (4) 

The system of equations (3) is a complex expression. In 
order to determine their absolute values, we define the real 
and imaginary parts. To do this, we move from the 
variable S  to the variable j . In this case, we take into 
account that the expression of modal stiffnesses kmс  is a 
complex expression, ie 

 1 2 ,km km kmс с jс    (5) 

where 1kmс  and 2kmс  are the real and imaginary parts of the 
expression of modal stiffnesses kmс , respectively. 

As a result, the absolute value of the first equation of 
the system of equations (3) is: 
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4 1 4 2 3 5 6 2 1 7; 0; 2 ; 0;F Sp M M M M p p b с b с p         

 8 4 1 ; F Sp b M b M    

 0 1 2 1 1 2 1 22 ; 2 ;km F S kmr с с с r b с b с с     

   2
2 1 4 2 1 1 2 1 1 12 2 ;F S km km kmr с M b b с M с с с m u M       

 3 4 1 2 ;F S kmr b M b M с   

   2
4 1 4 1 2 1 1 1 12 .km km F S km F Sr с m M c b b с M u с b b M        

5 ;kmr m    6 1 2 2 7 2 1 12 ; 2 ;  km F S kmr с с с r b с b с с    

 8 1 4 2 1 2 ;2F S kmr с M b b с M с     

    2
9 4 1 1 2 1 1 12 ;F S km F S km kmr b M b M с b c b c m u M       

10 2
2

11 4 1 1 * 0 .
;

( ) ;
km

km F S km F km km kmb

r с
r m b M b M u b u u u 

 

   
 

The expression (6) represents the amplitude-frequency 
characteristic of the system under consideration. 

Absolute acceleration of the plate 

 0 ,kma kmW W w      (7) 

where    , .km km kmw u x y q t  
Using the absolute acceleration expression, we obtain 

the ratio of the acceleration expression to the base 
acceleration expression as follows: 

 
2

0

1 .km km
km

u qW
W


     (8) 

The result obtained (8) is the transfer function of the 
system under consideration. 

We put the first equation of the system of equations (3) 
into the transfer function (8). As a result, we get its absolute 
value. 

 
2 2
0 1
2 2
0 1

.km
G GW
R R





  (9) 

where 
2 3 4 6

0 0 1 2* 3 4* 5* ;G r r r r r r           
2 3 4 5

1 6 7 8 9* 10 11* ;G r r r r r r           

 
 

2* 1 4 2 1 1

2
1 2 1 1 *

2

2 ;
F S km

km km km km km

r с M b b с M с

с с m u M u m u

    

  
 

 
   

2
4* 1 1 1 1*

* 4 1 2 11 2 ;
km km F S

km km km F S

r с u M b b с

u u m M c b b с M

     

   
 

 5* *1 ;km km kmr m u u    

 
  

9* 4 1 1

2
1 1 * 1 22 ;

F S km

km km km km km S F

r b M b M с

m u M u m u с b с b

   

   
 

   2
11* 1 * 4 11 .km F km km km F Sr u b u u m M b b M     

We obtain mode shapes for transverse vibrations with 
the liquid section dynamic absorber mounted on the 

geometric center 1 1,
2 2
a bx y   of the plate, the two 

opposite sides of which are fixed and the other two opposite 
sides are free: 

  1 2

3 4

, cos cos sin sin

cos cos sin sin ,

km
kx my kx myu x y B h h B h h
a b a b

kx my kx myB B
a b a b

   
  

   
 

 (10) 

where 

* *
1 3 22 2, ,

2 2kma kma

p pB B B
q q
 

   
 


 

    
 

      

22 22

*
4 32

4
[

2

(sinh sinh cosh 1
kma

D mb kapB
q l km ab

k m k

 
 



     

 

  

      2 2 22 2
2 1 1 12

2 2
0 1

cosh 1 )

( 2 )S F

m

с M M b c b

P P

   

    




 

 

cos cos sin sin ],
2 2 2 2
k m k mh h h h      

 
 

    
 

      

22 22

3

2 2 22 2
2 1 1 12

2 2
0 1

4

( 2 )
.

S F

D mb ka
l

km ab

с M M b c b

P P

 
 

    





 

In order to perform numerical calculations on the 
obtained results, we take the aluminum alloy AL19 for the 
plate material: 

4 6
2 2

3

6 964119 10  , 26 487 10 ; 

2780 ; 0,32.n

N NE G
m m
kg
m

   

   
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Let the sides of the plate be 2.6 ,a b m   and the 
thickness 33 10  h m  . In that case the natural frequency 
of the plate for 1k m   will be 1

11 13.4 s  . 
Based on the results obtained in the study [33], we take 

the parameters of the liquid section dynamic absorber as 
follows: 

3

2 3 4

264,7 10 ; 0,524 ;

1,456 ; 3,665 ; 0,314 .

S v
N sb m kg
m

m kg m kg m kg


 

  


 

We select the remaining parameters as follows: 

6 6
1 1 26.987 ; 10 ; 10 .F

N Nsm kg c c b
m m

   
 

Here are the experimental relationships between 
logarithmic decrement and normal, shear stresses [37]: 

Table 1 

The relationship between normal stresses and logarithmic 
decrement 

2, /kN m  29430 39240 58860 78480 98100 

 * ,f   % 0.36 0.45 0.57 0.65 0.69 

 
Table 2 

The relationship between shear stresses and logarithmic 
decrement 

2, /kN m  9810 19620 29430 39240 49050 

 * ,f   % 0.1 0.1 0.28 0.63 1.04 

 
Based on Tables 1 and 2, using the method presented in 

[38], we define the first three terms of the coefficients of 
logarithmic decrements [33]. 

 1 ;n
kma n kmaD q D q     (11) 

 1 .n
kma n kmaK q K q     (12) 

As a result, these coefficients are as follows: 
2

1 2
5

3

10.6662475; 55.22539871 10 ;
10.43466067 10 ;

D D
D

   

 
 

3
1 2

5
3

6.570000005; 13.85100002 10 ;
91.85400011 10 .

K K
K

   

 
 

We obtain the coefficients 1 22 1 22, , ,     as 1 1
3 ,
4

   
 

22 22
1    


 [33]. 

The real and imaginary parts of the expression of modal 
stiffnesses kmс  can be calculated: 

 111 11
2 3
11 11

4198.222003 22146.23517
1721230.096 705218.2446 ;

a

a a

c q
q q

 

 
  (13) 

 
2

211 11 11
3
11

9399.154126 730512.7413
299303.9188 .

a a

a

c q q
q





 
  (14) 

Based on the above values of the parameters, we make 
a numerical analysis of obtained analytical expressions 
( * 0.01 p m  ). First we draw graphs of functions (13) 
and (14). 

 
Fig. 2. Graphs of functions 111c  and 211c  (lines 1 and 2, respectively)  

As can be seen from Fig. 2, the 111c  function decreases 
with respect to the amplitude, while the 211c  function 
increases. Given that the 1kmc  function represents the 
vertical deviation of the amplitude-frequency characteristic 
and the 2kmc  function represents the energy dissipation in 
the plate material [33], it can be concluded that as the 
amplitudes increase, the vertical deviation of the system 
amplitude frequency characteristic decreases and the energy 
dissipation increases. 

We draw the graph of the amplitude-frequency 
characteristic of the system under consideration. 

 
Fig. 3. The changing of the amplitude-frequency characteristic 
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Fig. 4. The changing of the absolute value of the transfer function 

Figure 3 shows the change in the frequency amplitude 
characteristic of the system under consideration depending 
on the elastic and damping elements of the liquid section 

dynamic absorber ( 1 10 ; 10F
N N sc b
m m


   (dark green, 

line 1), 2 2
1 10 ; 10F

N N sc b
m m


   (blue, line 2), 6

1 10 ;Nc
m


 

610F
N sb
m


  (red, line 3)). It can be said that the plate 

material has a soft characteristic from the vertical to the 
left shift of the graphs in the Fig. 3. It is also possible to 
see the effectiveness of the use of the liquid section 
dynamic absorber in the quenching of harmful vibrations 
of the plate at low frequencies. 

In the field of values 4 4
1 10 ; 10F

N N sc b
m m


  , the 

efficiency of the liquid section dynamic absorber is high, 
and the amplitudes reach the lowest values. 

Draw the graph of the absolute value of the transfer 
function 11 .0.( 009 )aq m   

Figure 4 shows the change in the absolute value of  
the transfer function depending on the elastic and damping 
elements of the liquid section dynamic absorber 

( 4 4
1 10 ; 10F

N N sc b
m m


   (green, line 1), 1 0; 0Fc b   

(black, line 2), 2 2
1 10 ; 10F

N N sc b
m m


   (red, line 3)). It 

can be seen from these graphs that the transfer function 

reaches a small value when 2 2
1 10 ; 10 .F

N N sc b
m m


   

These values are the optimal values for the elastic and 
damping elements of liquid section dynamic absorber. 

 
Conclusion 

 
1. The amplitude-frequency characteristic and transfer 

function of the elastic dissipative characteristic of the 
hysteresis type plate vibrations, protected from vibrations 
under the influence of kinematic excitations, were expressed 
analytically depending on the system parameters. 

2. A methodology for studying the dynamics of the 
plate protected from vibrations using amplitude-frequency 
characteristics and transfer function was developed. 

3. It has been shown that the expression of the 
amplitude-frequency characteristic allows the selection 
of system parameters that achieve the minimum value of 
the displacement of the plate points protected from 
vibrations. 

4. The effectiveness of the liquid section dynamic ab-
sorber in quenching low-frequency harmful vibrations of 
the plate has been demonstrated as a result of numerical 
calculations. 

5. The resonance curves bend from vertical to the left, 
indicating that the plate material (when AL19 aluminum 
alloy is taken as the material) has a soft characteristic. 
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