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 Pipes conveying fluid are considered as a fundamental dynamical problem in the field of flu-
id-structure interaction. They are widely used in the petroleum industry, in nuclear engineering, 
aviation and aerospace, in nanostructures.  

This article investigates the effect of temperature load on the dynamic stability of a straight 
pipe conveying pulsatile flow. The fluid velocity is a harmonic function of time. The Galerkin 
method is applied for the solution of the differential equation of the transverse vibrations of the 
pipe. The differential equation is reduced to a first-order differential equation system. The system 
of differential equations is transformed and rewritten in a matrix form. The harmonic function of 
the fluid velocity allows the Floquet theory to be applied in order to investigate the dynamic stabil-
ity of the system. The static scheme of the investigated pipe is a beam with restricted horizontal 
and vertical displacements at both of its ends. A numerical solution for a straight pipe conveying 
fluid with specified geometric and physical characteristics has been carried out. The temperature 
load and the constant fluid rate are considered as parameters of the problem. The results show 
that the temperature load affects the vibrational characteristics of the pipe, as well as its critical 
velocity. 
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Introduction 
 

Fluid conveying pipes find applications in a number of 
areas of engineering. They are widely used in the petroleum 
industry for transportation of oil and gas. Another broad use 
of them is in the transport of water. Pipelines are also pri-
mary structural parts in power plants, hydraulic systems, 
air-conditioners, refrigerators etc. 

Nanoscale tubes find application in nanophysics, nano-
biology and nanomechanics as nanofluidic devices in nano-
containers for gas storage and nanopipes conveying fluid. 
The experiments at the nanoscale are difficult and expen-
sive. That is why the continuum elastic models have been 
used to study the fluid-structure interaction. The carbon 
nanotubes are considered with Euler- and Timoshenko-
beam models [1–9]. 

The flow of the fluid in the tube causes oscillations in 
it. The dynamic characteristics of the pipe’s oscillations 
depend on the velocity and the mass of the conveyed fluid. 
For pipes conveying fluid with a constant velocity it is 
known that the natural frequency of the pipe becomes lower 
when the velocity of the transported fluid increases. The 
velocity of the fluid corresponding to a natural frequency 
equal to zero is called critical velocity. At that point the 
system is at the edge of loss of stability. When the pipe 
conveys pulsatile flow, the pipe loses stability even though 
the mean velocity of the fluid is smaller than the critical 
velocity [10]. 

The research of the dynamic stability of pipes convey-
ing fluid is branched into two directions: a) dynamic stabil-
ity of pipes with a rectilinear axis [11–25] and b) dynamic 
stability of curved pipes [27–32]. 

The oscillations of a pipe with a flowing fluid, support-
ed at both ends, were investigated in [36]. The global prop-
erties of the spectrum in dependence on fluid velocity, tube 
and fluid material densities, magnitude and direction of lon-
gitudinal force are established. 

In [37] the linear stability of elastic collapsible pipes 
with flowing fluid is investigated, in the case when the equi-
librium configuration of the pipe is helical. The geometric-
variational approach was applied to study the 3D dynamics 
of collapsible pipes.  

The dynamic stability of elastic membrane axisymmet-
ric tubes filled with fluid was investigated in [38]. The con-
sidered fluid is non-viscous and incompressible.  

Thermal loads may induce excessive vibration in the 
system, leading to loss of stability. Therefore, analysis of 
the dynamic stability due to thermal loading is essential for 
the safe operation of the pipeline. 

The most common methods used for dynamic analysis 
of the pipes conveying fluid are the Transfer matrix method 
(TMM) and the Generalized differential quadrature method 
(GDQM). The both methods have significant advantage 
from the Finite element method (FEM). The conventional 
FEM can be very time consuming when it comes to investi-
gation of a pipeline with a high number of spans. The order 
of the overall property matrices for the whole multispan 

pipeline increases with the number of spans. This is unlike 
the TMM in which the order of the overall transfer matrix is 
independent on number of spans and is kept unchanged. 

The GDQM approximates a derivative of a function in 
the partial differential equation of the lateral vibration of the 
pipe at any discrete point as a weighted sum of the function 
values at all discrete value at the domain. The main ad-
vantage of the method is its high convergence with a small 
number of grid points. 

The paper is structured as follows. First, it is presented 
the model of the pipe and the governing differential equa-
tion of its transverse vibration. The Galerkin method is em-
ployed to approach the solution of the problem. The Floquet 
theorem is applied to investigate the stability of the trivial 
solution. Finally, the obtained results from the numerical 
solution are presented and several important conclusions are 
summarized.  

 
1. Problem formulation 

 
The present paper uses the Euler-Bernoulli beam theory 

to investigate the dynamic stability of a pipe of length l, 
conveying fluid and and subjected to thermal load T. The 
pipe, shown in Fig. 1, is hinged at its both ends. 

 

Fig. 1. Static scheme and cross-section of the investigated pipe 
 

The transverse vibration of a straight pipe conveying 
pulsatile inviscid fluid and under thermal load is governed 
by the following differential equation 

 
( )

( )

4 2 2
2

4 2

2

2

2

0,

f f

f f p

w w wEI m V EA T m V
x tx x

d V w wm m m
d t x t

∂ ∂ ∂
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∂ ∂∂ ∂

∂ ∂
+ + + =

∂ ∂


  (1) 

where t is the time, ( ),w x t  is the lateral displacement of 
the pipe axis, x is the coordinate along the axis, EI is the 
rigidity of the pipe. The mass of the pipe per unit length is 
denoted by pm  and the mass of the fluid per unit length of 

the pipe by .fm  V is the flow velocity of the fluid in the 
pipe. A is the area of the cross-section of the pipe. α is the 
coefficient of linear thermal expansion of the material of the 
pipe. 

The fluid velocity is the following harmonic function of 
the time t 

 ( )( )0 1 cos fV V t = + ,  (2) 
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where 0V  is the constant fluid rate,  is the excitation coef-

ficient and f  is the fluid pulsation frequency.  
The spectral Galerkin method is applied to approximate 

the solution of the boundary value problem (1). According 
to this method, an approximate solution is sought in the 
form [33]: 

 ( ) ( ) ( )
1

,
n

i i
i

w x t y x z t
=

= ∑ .  (3) 

In this expression ( )iz t  are unknown functions. yi(x) 
are basic functions satisfying the boundary conditions of the 
tube. The eigenfunctions for the pipe with stationary fluid 
( 0V = ) are used as basic functions in the present paper. 

For a Bernoulli-Euler tubular beam filled with station-
ary fluid, one has 

 ( )
4 2

4 2 0f p
w wEI m m

x t
∂ ∂

+ + =
∂ ∂

.  (4) 

Free vibration of the beam has the form 

 ( ) ( ), i tw x t y x e = ,  (5) 

where ω is the natural frequency of the beam and 1i = − . 
The substitution of (5) in (4) yields 

 ( ) ( )4IV
i i iy x y x= ,  (6) 

where 

 
( ) 2

4 f p i
i

m m
EI




+
= .  (7) 

Substituting (3) in equation (1) one obtains the residual 
function, which does not vanish identically since ( ),w x t  is 
not exact solution of equation (1). Here, and in the sequel, 
dots denote derivatives with respect to t and primes denote 
derivatives with respect to x. 
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According to the standard Galerkin procedure, the re-
sidual function ( ),R x t  should be orthogonal to the basic 

functions in the area [ ]0;x l∈ : 

 ( ) ( )
0

, 0
l

kR x t y x dx =∫ , for 1,...,k n=   (9) 

The result of the application of (9) is a system of n  dif-
ferential equations about the unknown functions ( ).iz t  This 
system for the differential equation (1) is: 

( ) ( )( ){ 0
1 0

2 1 cos
ln

I
f p i i f f i i

i
m m y z m V t y z 

=

+ + + +∑∫    

 
( )( )

( ) }
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0
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II
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   (10) 

For the solution of system (10) is employed the de-
scribed in [33] method. The beam is divided to sections 
with length of x∆ . The integrals in (10) are expressed in 
the following form 

 { } { }
0

l
T

i k i ky y dx y y x= ∆∫   (11) 

 { } { }
0

l
I I T
i k i ky y dx y y x= ∆∫   (12) 

 { } { }
0

1l
II T
i k i ky y dx M y x

EI
= ∆∫   (13) 

In equations (11), (12) and (13): 
{ }iy  is a column vector of the lateral displacements of 

the nodes on the axis of the pipe, corresponding to the i -th 
eigenform of a pipe with stationary fluid; 

{ }I
iy  is a column vector of the rotations of the nodes on 

the axis of the pipe, corresponding to the i -th eigenform of 
a pipe with stationary fluid; 

{ }iM  is the vector of the bending moments associated 

with the i -th mode shape { }iy . 
The substitution of (11), (12) and (13) in (10) yields 
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 ( ){ } { } }0 sin 0
TI

f f f i k im V t y y z x − ∆ =   (14) 

Writing equation (14) in matrix form gives: 

 ( ) ( ) 0M z C t z K t q+ + =    (15) 

The equation (15) could be transformed in the follow-
ing form 

 { } ( ) ( ) { }
00

0
0

II
q q

K t C tM
−

+ = ,  (16) 

where 

 { } { }1 1 1 1 2;...; ; ;...;T
n n n n nq q z q z q z q z+= = = = =    (17) 
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After some transformations for equation (16) one ob-
tains 

 { } ( ) { } 0q A t q= =   (18) 

where the coefficient matrix ( )A t  is periodic with period 

T , that is ( ) ( )A t T A t+ = . 

The Floquet theorem is applied to investigate the stabil-
ity of the trivial solution { } 0q ≡ . According to the theo-
rem the solution of the system (18) has the following form 

 ( ){ } ( ) ( ){ }0q t t q= Φ   (19) 

where ( )tΦ  is the fundamental matrix, solution of the  

T  – periodic system (18). The funda-mental matrix has the 
following form [34] 

 ( ) ( ) B tt L t eΦ =   (20) 

In (20) ( )L t  is a periodic matrix that has an initial val-

ue ( )0L I= . B  is a constant matrix. 

The matrix ( )TΦ  is known as monodromy matrix. 

The eigenvalues of ( )TΦ  are known as characteristic 

multipliers. The stability of the system is determined by the 
modules of the characteristic multipliers of the periodic sys-
tem (18) [34]. 

In principal the fundamental matrix is difficult to be de-
termined in an analytic way, but there are methods to ap-
proximate it [35]. The period T  is divided into k  subinter-
vals t∆ . For each time interval is calculated the matrix 

( )A t . 

 ( )2 1
2i

T i
A A

k
 −

=   
 

  (21) 

Then the monodromy matrix ( )TΦ  is calculated on 

the following formula 

 ( )
1

i

k
A t

i

T e ∆

=

Φ = ∏   (22) 

 
2. Numerical results 

 
Numerical studies have been carried out for the system 

in Fig. 1. 
The geometric and the material characteristics of the 

pipe are: the inner and the outer radii of the cross-section of 
the pipe are 0.012inR m=  and 0.014outR m= , Young’s 
modulus 210E GPa= , coefficient of linear thermal expan-

sion 5 110 C − −= , the density of the material of the pipe 

37800 /kg m= . The density of the flowing fluid is 
31000 /kg m= .  

The finite element method was used to obtain the basic 
functions ( )iy x . The eigenfunctions for the pipe with sta-
tionary fluid ( 0V = ) are used as basic functions in the pre-
sent paper. The first 14 modes were used in the present cal-
culations. 

The stability of the system is determined by the mod-
ules of the eigenvalues of the monodromy matrix (charac-
teristic multipliers). 

If all of the characteristic multipliers have modulus less 
than one, then the zero solution is asymptotically stable.  

If all of the characteristic multipliers have modulus less 
than one or equal to one, and if the algebraic multiplicity 
equals the geometric multiplicity of each characteristic mul-
tiplier with modulus one, then the zero solution is Lyapunov 
stable. 

If one or more of the characteristic multipliers has 
modulus greater than one, then the zero solution is unstable. 

For the pipe in Fig.1 is obtained the critical value of the 
constant fluid rate 0,crV  for different values of the thermal 
load T , excitation coefficient  and the fluid pulsation 
frequency f . The results are shown in Fig. 2 and Fig. 3. 

 

Fig. 2. Critical value of the constant fluid rate  
versus the thermal load for 10δ =  

 

 

Fig. 3. Critical value of the constant fluid rate  
versus the thermal load for 15f s−=  

1 – δ = 10, ωf = 5 s–1 
2 – δ = 10, ωf = 15 s–1 

1 – δ = 10, ωf = 5 s–1 
2 – δ = 5, ωf = 5 s–1 
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The obtained results show that the temperature load has 
a destabilizing effect on the pipe – with increasing the tem-
perature the critical velocity decreases.  

 
Conclusion 

 
Thermal loads on a structure could affect its integrity if 

they are not taken into account in the design process. The 
structures are subject to daily and seasonal temperature 
changes due to their exposure to outdoor air temperature, 
solar radiation or underground temperature. In the past 
thermal stresses have caused failures in the structures. Un-
derstanding the effect of the thermal loads on the structures, 
and how to minimize them, significantly reduces the risks of 
failure or serious damages and prevents from high repair 
costs. 

In the present paper is studied the influence of the tem-
perature on the stability of a pipe conveying pulsatile flow. 

The employed Floquet theory, in the case when the flu-
id velocity is a harmonic function of the time t , allows the 

investigation of the dynamic stability of the system. The 
applied in the paper method to approximate the monodromy 
matrix allows relatively easy the determination of the criti-
cal value of the constant fluid rate. 

The results obtained in the study could be summarized 
as follows: 

1. Increasing the temperature has a destabilizing effect 
on the system. That means that the fluid must flow through 
the pipe with lower velocity in order not to occur loss of 
stability of the system. 

2. The excitation coefficient  and the fluid pulsation 
frequency ωf also affect the stability of the system.  

The results obtained contribute to the safety of pipes 
conveying fluid. In order to avoid damages, the operator of 
the pipe shouldn’t allow higher transportation velocities 
than the critical velocity of the system. The operator of the 
pipe should strictly monitor all the parameters of the system 
(in the case – temperature, excitation coefficient and pulsa-
tion frequency) and correct respectively the velocity of the 
transported fluid in order the system not to lose stability. 
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