Вильдеман В.Э., Третьяков М.П. Экспериментальное изучение закритического деформирования и разрушения сталей при высоких температурах // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2019. – № 1. – С. 27-37. DOI: 10.15593/perm.mech/2019.1.03

Wildemann V.E., Tretyakov M.P. Experimental study of postcritical deformation and failure of steels at high temperature. *PNRPU Mechanics Bulletin*, 2019, no. 1, pp. 27-37. DOI: 10.15593/perm.mech/2019.1.03

ВЕСТНИК ПНИПУ. МЕХАНИКА № 1, 2019 PNRPU MECHANICS BULLETIN

http://vestnik.pstu.ru/mechanics/about/inf/

DOI: 10.15593/perm.mech/2019.1.03 УДК 620.17/178.2

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ЗАКРИТИЧЕСКОГО ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ СТАЛЕЙ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

В.Э. Вильдеман, М.П. Третьяков

Пермский национальный исследовательский политехнический университет, Пермь, Россия

О СТАТЬЕ

Получена: 15 февраля 2019 г. Принята: 20 марта 2019 г. Опубликована: 30 марта 2019 г.

Ключевые слова:

экспериментальная механика, растяжение, металлы, прочность, закритическое поведение, живучесть, высокие температуры.

аннотация

Работа направлена на изучение прочности и живучести конструкций на основе представлений о кинетической природе разрушения материалов. Проведено экспериментальное исследование закономерностей и эффектов механического поведения конструкционных материалов на стадиях упругопластического и закритического деформирования при повышенных температурах. Реализованы испытания на одноосное растяжение образцов жаропрочной высоколегированной коррозионно-стойкой стали мартенситного класса ЭП517Ш и конструкционной легированной стали перлитного класса 40Х в широком диапазоне температур: 22, 200, 400, 500 и 600 °C. Рассмотрены методические вопросы проведения испытаний на универсальной сервогидравлической испытательной системе Instron 8801 с использованием печи и высокотемпературного экстензометра. На основе полученных экспериментальных данных построены диаграммы деформирования с развитыми участками разупрочнения, осуществлена оценка влияния скорости деформации на закритическое поведение стали 40Х. Проведено сопоставление основных прочностных и деформационных характеристик рассмотренных сталей при различных температурах. Получены изображения поверхностей изломов образцов после разрушения при высоких температурах, которые характеризуются различной морфологией. На основе опытных данных о механических характеристиках сталей построены диаграммы лепесткового типа, позволяющие проводить комплексный анализ свойств при различных температурах. Показано, что с увеличением температуры испытаний снижение прочностных характеристик. связанных с обеспечением статической прочности детали, сопровождается увеличением деформационных ресурсов (остаточное удлинение и относительное сужение после разрыва) и коэффициента реализации закритической стадии деформирования, что имеет положительный эффект с точки зрения живучести элементов конструкций в процессе разрушения.

© ПНИПУ

© Вильдеман Валерий Эрвинович – д.ф.-м.н., проф., e-mail: wildemann@pstu.ru, İD: <u>0000-0002-6240-4022</u>. Третьяков Михаил Павлович – к.ф.-м.н., с.н.с., e-mail: cem_tretyakov@mail.ru, İD: <u>0000-0001-6146-6769</u>.

Valerii E. Wildemann – Doctor of Physical and Mathematical Sciences, Professor, e-mail: wildemann@pstu.ru, D: 0000-0002-6240-4022.

Mikhail P. Tretiakov – CSc in Physical and Mathematical Sciences, Senior Researcher, e-mail: cem_tretyakov@mail.ru,

Эта статья доступна в соответствии с условиями лицензии Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

EXPERIMENTAL STUDY OF POSTCRITICAL DEFORMATION AND FAILURE OF STEELS AT HIGH TEMPERATURE

V.E. Wildemann, M.P. Tretyakov

Perm National Research Polytechnic University, Perm, Russian Federation

ARTICLE INFO

ABSTRACT

 Received: 15 February 2019
 cept

 Accepted: 20 March 2019
 regu

 Published: 30 March 2019
 regu

 Keywords:
 plas

 experimental mechanics, tension,
 sitic

 motels, strength, postsitical
 sitic

metals, strength, postcritical behavior, survivability, high temperatures.

The work is aimed to studying the strength and survivability of structures on the base of perceptions about the kinetic nature of the destruction of materials. An experimental study of the regularities and effects of the mechanical behavior of structural materials at the stages of elastoplastic and postcritical deformation at elevated temperatures has been carried out. Tests on uniaxial tension of specimens of the heat-resistant high-alloyed corrosion-resistant steel of martensitic class X15CrNi12-2 and the structural alloyed steel of pearlite class 40Cr were implemented in a wide range of temperatures: 22 °C, 200 °C, 400 °C, 500 °C and 600 °C. The methodological issues of testing on the universal servohydraulic test system Instron 8801 with using of the furnace and a high-temperature extensioneter are considered. Based on the obtained experimental data, deformation diagrams with developed stages of softening were constructed, and the influence of the strain rate on the postcritical behavior of steel 40Cr was evaluated. Comparison of the main strength and deformation characteristics of the considered steels at different temperatures is carried out. Images of fracture surfaces of samples after fracture at high temperatures, which are characterized by different morphology, were obtained. On the basis of experimental data about the mechanical characteristics of steels, diagrams of the petal type have been constructed, which allow to a realize the complex analysis of properties at various temperatures. It is shown that with increasing the temperature of the test, the decreasing of the strength characteristics, associated with the provision of the static strength of the part, is take place. This is followed the increasing of the deformation resources (residual elongation and relative narrowing after rupture) and the coefficient of the postcritical deformation stage, which has a positive effect on survivability during destruction process.

© PNRPU

Введение

Вопросы экспериментального и теоретического изучения закономерностей закритического деформирования материалов привлекают внимание исследователей в связи с необходимостью исследования деформационных резервов материалов, повышения несущей способности и живучести конструкций и сооружений в процессе эксплуатации, а также более точного прогнозирования процессов разрушения и их устойчивости [1–8].

К настоящему времени разработаны основы теории процессов устойчивости закритической деформации разупрочняющихся сред: сформулирован признак закритической деформации, доказана теорема единственности решений упругопластических задач с граничными условиями контактного типа для тел с разрушенными областями, осуществлен вывод необходимых условий устойчивости закритического деформирования поврежденных элементов структуры неоднородных сред [1, 9].

На основе теоретических и экспериментальных данных показано, что учет стадии закритического деформирования позволяет обнаружить резерв несущей способности, оценить живучесть при частичном разрушении. Приведены результаты экспериментальных исследований закритической стадии с построением полных диаграмм деформирования и изучения основных зависимостей процессов накопления повреждений и макроразрушения при различных видах напряженнодеформированного состояния и параметрах жесткости нагружающих систем [10, 11].

В [12, 13] получены результаты численного моделирования процессов деформирования и разрушения неоднородных зернистых структур, демонстрирующих наличие ниспадающих участков на диаграммах нагружения. Внимание исследователей направлено на изучение вопросов моделирования методами конечных элементов процессов деформирования материалов, в том числе с учетом закритической стадии, и сопоставление результатов с опытными данными [5]. Получены аналитические и численные решения краевых задач, иллюстрирующие реализацию резервов несущей способности и повышения живучести конструкций и тел с трещинами с учетом закритического деформирования материалов [14-17]. В связи с тем что закритическое поведение металлов связано с развитыми пластическими деформациями, особое внимание уделяется теоретическому и экспериментальному изучению процессов локализации деформаций, сопровождающихся формированием шейки в рабочей части образца [18-22].

Внимание исследователей направлено на изучение влияния различного рода дополнительных воздействий,

которые могут быть связаны с реальными условиями эксплуатации конструкций или технологическими режимами. Такие воздействия, например вибрация, повышенная и пониженная температура, влажность, удар, могут оказывать существенное влияние на поведение материалов в условиях упругопластического и закритического деформирования [23–26].

Как показано в [27], при нормальной температуре изменение скорости деформации существенно не влияет на закритическое поведение сталей, однако в [28] отмечается зависимость механических характеристик и закономерностей деформирования металлов в условиях воздействия высоких температур. При этом существенную роль играет проявление эффектов ползучести и релаксации, которые активно протекают в металлах при воздействии высоких температур и длительных внешних нагрузок [29, 30].

В [31–34] рассматриваются методы механических испытаний металлов при высоких температурах. Рассмотрено влияние температуры и скорости деформации на сопротивление деформированию, способность к упрочнению, пластические свойства и величину удельной работы формоизменения. В [35, 36] рассмотрено влияние высоких температур на усталостную прочность конструкционных материалов. Показано, что повышение температуры приводит к снижению предела выносливости и циклической долговечности. Влияние степени предварительной пластической деформации на сопротивление усталости возрастает с ростом температуры и существенно зависит от амплитуды приложенного напряжения.

Целью настоящей работы является исследование закономерностей и эффектов механического поведения конструкционных сталей на стадиях упругопластического и закритического деформирования при повышенных температурах.

1. Используемые материалы и оборудование

Экспериментальные исследования проводились на сплошных цилиндрических образцах двух материалов: жаропрочной высоколегированной коррозионно-стойкой стали мартенситного класса ЭП517Ш (15Х12Н2МВФАБ-Ш) и конструкционной легированной стали перлитного класса 40Х, изготовленных с учетом требований стандарта ГОСТ 1497-84 «Металлы. Метод испытаний на растяжение». Образцы изготовлены из прутка в состоянии поставки без дополнительной термообработки. Эскиз образца представлен на рис. 1, вид образца до испытаний приведен на рис. 2, б. Химический состав сталей приведен в табл. 1 и 2. При изготовлении образцов обеспечивался минимальный разогрев материала в рабочей части. Захватные части выполнены в виде резьбового соединения, что обеспечивает надежное закрепление образца в высокотемпературных тягах испытательной машины и отсутствие зазоров при нагреве. Перед испытаниями все образцы были промаркированы, и проведен замер фактических размеров рабочей части с точностью 0,01 мм. В рабочей части образцов дополнительно выполнено кернение механическим способом для определения остаточного удлинения после разрыва.

Таблица 1

Химический состав используемых материалов, %

Table 1

40X								
С	Cr Mn		Si Cu		Ni	W		
0,362	0,996	0,619	0,240	0,204	0,166	0,030		

15Х12Н2МВФАБ-Ш (ЭП517Ш)								
С	Cr	Si	Nb	Ni	W	Mo	V	
0,13	12,50	0,05	0,20	2,05	0,70	1,50	0,20	

Рис. 1. Эскиз образца для испытаний при высоких температурах

Fig. 1. Sketch of sample for high temperature tests

Испытания проводились на универсальной сервогидравлической испытательной системе Instron 8801 (рис. 2, *a*) (диапазон нагрузок \pm 100 кH, частота нагружения до 30 Гц), предназначенной для проведения как статических, так и циклических испытаний. Точность измерения составляет 0,5 % от измеряемой величины в диапазоне нагрузок от 0,2 до 1 кH и 0,4 % в диапазоне нагрузок от 1 до 100 кH. Для компенсации инерционных сил от движущихся масс в датчик нагрузки встроен акселерометр.

Нагрев образцов осуществлялся с использованием высокотемпературной печи Instron CP103202 с максимальной рабочей температурой 1100 °С. Деформация в рабочей части образцов измерялась с использованием индукционного высокотемпературного экстензометра Epsilon 3648-010M с базой измерений 10 мм и рабочим диапазоном измерения деформаций $\pm 2,5$ % (рис. 2, *в*). Экстензометр обеспечивает измерение деформаций с погрешностью не более 0,5 % от измеряемой величины. Температура контролировалась по термопаре, закрепленной непосредственно в рабочей части образца (рис. 2, *г*). Все опытные данные, кроме приведенных на рис. 7, получены при скорости удлинения образцов 6 мм/мин по встроенному датчику перемещения испытательной машины.

Рис. 2. Установка для проведения испытаний на растяжение при повышенных температурах (*a*); исходный образец (*б*); высокотемпературный экстензометр Epsilon 3648-010М (*в*); установленная термопара (*г*)

Fig. 2. Equipment for tensile testing at elevated temperatures (*a*); initial specimen (*b*); high-temperature extensioneter Epsilon 3648-010M (*c*); installed thermocouple (*d*)

2. Результаты испытаний

В работе реализованы испытания на одноосное растяжение образцов рассматриваемых сталей до разрушения при следующих температурах: 22, 200, 400, 500 и 600 °С. Время нагрева составляло от одного до трех часов, в зависимости от требуемой температуры. Каждый образец после нагрева выдерживался при заданной температуре в течение одного часа для обеспечения равномерного прогрева как самого образца, так и частей оснастки, находящихся в печи. Использование высокотемпературного экстензометра позволило получить точные данные о деформировании материалов на начальной стадии упругопластического деформирования, однако рабочий диапазон датчика не позволял использовать его на протяжении всего испытания. После достижения уровня деформаций 2,5 % ножки экстензометра отводились от образца, а дальнейшее удлинение регистрировалось встроенным датчиком перемещений. Полные диаграммы деформирования, отражающие поведение испытанных сталей как на упругопластической, так и на закритической стадии деформирования, приведены на рис. 3 в координатах «напряжение – деформация». Деформации на графиках рассчитаны по данным встроенного датчика перемещений. Напряжения получены путем отношения нагрузки к начальной площади образца. Из приведенных диаграмм деформирования

видно, что повышение температуры при растяжении образцов стали ЭП517Ш приводит к снижению сопротивления, которое также сопровождается постепенным снижением максимальной деформации при разрушении. Увеличение предельной деформации наблюдается только при температуре 600 °С. Повышение температуры при растяжении образцов стали 40Х приводит к снижению сопротивления, что выражается в снижении максимальных напряжений, однако при этом наблюдается увеличение предельной деформации при разрушении до температуры 500 °С. При дальнейшем повышении температуры наблюдалось снижение остаточной деформации после разрушения, что может быть связано со склонностью стали к красноломкости из-за повышенного содержания серы и фосфора (охрупчивание сплавов при высоких температурах, вызываемое оплавлением примесей по границам кристаллов).

Рис. 3. Диаграммы деформирования стали ЭП517Ш (*a*) и 40Х (*б*) при различных температурах: *1* − 22 °С; 2 − 200 °С; *3* − 400 °С; *4* − 500 °С и *5* − 600 °С

Fig. 3. Strain curve of steel X15CrNi12-2 (*a*) and 40Cr (*b*) at various temperatures: I - 22 °C; 2 - 200 °C; 3 - 400 °C; 4 - 500 °C and 5 - 600 °C

Диаграммы деформирования демонстрируют наличие развитых участков закритического поведения, характеризующихся различной протяженностью и наклоном в зависимости от температуры. Для анализа опытных данных для каждого образца получены следующие механические характеристики: модуль Юнга *E* (ГПа), который определялся на начальном линейном участке диаграмм деформирования, предел пропорционально-

значение коэффициента $k_p = 0,34$. Аналогичный анализ изменения значений предела пропорциональности σ_{m} , условного предела техучести

пропорциональности σ_{nu} , условного предела текучести $\sigma_{0,2}$ и предела прочности σ_{B} (рис. 6, *a*), а также коэффициента реализации закритической стадии деформирования k_p (рис. 6, δ) проведен по данным одноосного растяжения образцов стали 40Х. В результате отмечено отличие в закритическом поведении стали 40Х, которое заключалось в том, что при температурах 500 и 600 °C получено максимальное значение коэффициента реализации закритической стадии деформирования $k_p = 1$, что отражается в получении диаграмм деформирования с полной реализацией закитической стадии и разделе-

 $k_p = 0,87$ и $k_p = 0,94$ при температуре 600 °С. При

температурах 22, 200 и 400 °С получено постоянное

сти $\sigma_{\pi\mu}$ (МПа), условный предел текучести $\sigma_{0,2}$ (МПа), предел прочности σ_{B} (МПа), остаточное удлинение после разрыва δ (%), относительное сужение после разрыва ψ (%). Указанные механические характеристики являются стандартизированными и несут информацию об упругом и упругопластическом поведении материалов. С целью получения дополнительной информации о закритическом поведении определены значения разрушающего напряжения σ_{p} (МПа), при достижении которого происходило разделение образца на части, и рассчитаны величины коэффициентов реализации закритической стадии деформирования $k_p = 1 - P_p / P_B = 1 - \sigma_p / \sigma_B$, которые смогут принимать значения в диапазоне $0 \le k_p \le 1$ [11]. Значения механических характеристик при различных температурах испытаний приведены в табл. 2 для стали ЭП517Ш и в табл. 3 для стали 40Х. Значения остаточных удлинений для образцов, разрушение которых произошло по месту механического кернения, отмечены в таблицах знаком (*).

Таблица 2

Механические характеристики стали ЭП517Ш, полученные в опытах на растяжение при высоких температурах

Table 2

Mechanical properties of X15CrNi12-2 steel obtained in tensile tests at high temperatures

Сталь ЭП517Ш									
Маркировка	<i>T</i> , °C	<i>Е</i> , ГПа	σпц, МПа	σ₀,2, МПа	σв, МПа	σ _p , МПа	$k_{\scriptscriptstyle P}$	δ, %	ψ, %
Э04	22	200,1	630	852	1051	699	0,34	12,12	55,85
Э05	200	194,8	462	725	917	605	0,34	11,77	58,72
Э01	400	192,7	491	688	887	583	0,34	11,84	54,34
Э07	500	179,1	442	634	756	427	0,43	8,40*	51,21
Э02	600	140,0	397	514	547	34	0,94	11,84*	76,97
Э06	600	147,7	387	515	574	73	0,87	21,51	82,11

Таблица 3

Механические характеристики стали 40Х, полученные в опытах на растяжение при высоких температурах

Table 3

Сталь 40Х T, ℃ Е, ГПа σ0,2, МПа Маркировка $σ_{\pi u}$, ΜΠα σв, МПа σ_p, МПа k_p δ, % ψ, % X01 22 198.2 320 480 839 602 0,28 14,48 54,24 200 188,1 231 425 771 575 0,25 12,09* 44,37 X02 182,2 27,98 82,03 X03 400 260 437 781 157 0,80 X05 500 166,8 235 376 575 0 1,00 33,25 73,05 X04 600 149,2 175 288 371 0 1,00 18,57 23,16 X07 600 138,1 310 325 119 0,63 19,30 25,67 261

Mechanical properties of steel 40Cr obtained in tensile tests at high temperatures

На рис. 4 и 5 представлены зависимости основных прочностных и деформационных характеристик от температуры испытания для стали ЭП517Ш. Повышение температуры приводит к постепенному снижению значения модуля Юнга (рис. 4, *a*), а также значений предела пропорциональности σ_{nu} , условного предела текучести $\sigma_{0,2}$ и предела прочности $\sigma_{\rm B}$ при реализованных температурах испытаний, приведенных на рис. 4, *б*. В то же время повышение температуры до 500 °С не приводит к существенному изменению остаточного удлинения после разрыва δ и относительного сужения ψ , которые увеличились только при температуре 600 °С (рис. 5, *a*). Увеличение коэффициента реализации закритической стадии деформирования k_p (рис. 5, *б*) наблюдалось при температурах выше 400 °С и достигло значений

Рис. 4. Механические характеристики стали ЭП517Ш при различных температурах: a – модуль Юнга (•); δ – предел пропорциональности σ_{nii} (•); условный предел текучести $\sigma_{0,2}$ (•) и предел прочности σ_B (•)

Fig. 4. Mechanical characteristics of steel X15CrNi12-2 at different temperatures: a – Young modulus (•); b – proportional limit σ_{nn} (•), yield stress $\sigma_{0,2}$ (•) and the ultimate strength σ_{B} (•)

Рис. 5. Механические характеристики стали ЭП517Ш при различных температурах: *a* – остаточное удлинение после разрыва δ (▲) и относительное сужение ψ (■); *б* – коэффициент реализации закритической стадии деформирования *k*_p (♦)

Fig. 5. Mechanical characteristics of steel X15CrNi12-2 at different temperatures: a – residual elongation after rupture $\delta(\blacktriangle)$ and relative reduction $\psi(\blacksquare)$; b – the coefficient of implementation of the postcritical stage of deformation $k_p(\blacklozenge)$

Рис. 6. Механические характеристики стали 40Х при различных температурах: *a* – предел пропорциональности σ_{пц} (■), условный предел текучести σ_{0,2} (▲) и предел прочности σ_в (♦); *б* –коэффициент реализации закритической стадии деформирования *k*_p

Fig. 6. Mechanical characteristics of steel 40Cr at different temperatures: a – proportional limit $\sigma_{\pi\pi}$ (**a**), yield stress $\sigma_{0,2}$ (**b**) and the ultimate strength σ_{B} (**•**); b – the coefficient of implementation of the postcritical stage of deformation k_p

Проведение испытаний стали 40Х при температуре 500 °C с различной скоростью (см. рис. 7) показало су-

щественное влияние скорости деформации на сопротивление и закритическое поведение материала. Снижение скорости деформирования приводило к снижению сопротивления рассмотренной стали на стадиях упругопластического и закритического деформирования, что свидетельствует об активно протекающих процессах ползучести, в том числе и на стадии разупрочнения. Наличие на стадии закритического деформирования эффекта возникновения локализации деформаций в виде шейки существенно усложняет как методику проведения испытаний, так и анализ опытных данных, направленных на изучение закономерностей ползучести и релаксации на стадии разупрочнения и, несомненно, заслуживает самостоятельных исследований.

На рис. 8 и 9 представлен общий вид и изображения поверхностей излома разрушенных образцов стали ЭП517Ш (см. рис. 8) и стали 40Х (см. рис. 9) после испытаний на одноосное растяжение при повышенных температурах. Фотографии на рис. 8 и 9 соответствуют испытаниям при следующих температурах: a - 22 °C, б - 200 °C, в - 400 °C, г - 500 °C, ∂ - 600 °C. Разрушение образцов происходило по типу «чашка-конус», который характеризуется наличием матовой центральной части

a

нормального отрыва и периферийными областями пластического деформирования по типу среза. Из рис. 8 и 9 видно, что деформирование образцов сталей при рассмотренных температурах сопровождалось выраженной локализацией деформаций в виде шейки.

Рис. 7. Диаграммы деформирования стали 40Х при различных скоростях деформирования

Fig. 7. Strain curves of 40Cr steel at different stress rates

в

Рис. 8. Общий вид и соответствующие изображения поверхностей излома образцов стали ЭП517Ш после растяжения при различных температурах: 22 °С (*a*); 200 °С (*б*); 400 °С (*в*); 500 °С (*c*) и 600 °С (*д*)

Fig. 8. General view and correspondence pictures of the fracture surfaces of specimens of X15CrNi12-2 steel after tension at different temperatures: 22 °C (a); 200 °C (b); 400 °C (c); 500 °C (d) and 600 °C (f)

При сопоставлении полученных данных для стали ЭП517Ш отмечено, что повышение температуры способствует большей степени деформации материала в шейке к моменту разрушения, которая оценивалась по величинам остаточного удлинения и относительного поперечного сужения после разрыва. Повышение температуры испытаний в рассмотренном диапазоне способствовало уменьшению центральной зоны нормального отрыва в центральной части поверхностей излома образцов (см. рис. 8) и увеличению областей пластического среза, что проявляется на диаграммах деформирования в более полной реализации закритической стадии деформирования и снижении нагрузки к моменту разрушения практически до нулевого значения.

Рис. 9. Общий вид и соответствующие изображения поверхностей излома образцов стали 40Х после растяжения при различных температурах: 22 °С (*a*); 200 °С (*b*); 400 °С (*b*); 500 °С (*c*) и 600 °С (*d*)

Fig. 9. General view and corresponding pictures of the fracture surfaces of specimens of 40Cr steel after tension at different temperatures: 22 °C (*a*); 200 °C (*b*); 400 °C (*c*); 500 °C (*d*) и 600 °C (*f*)

В результате анализа полученных опытных данных для стали 40X отмечено, что повышение температуры приводит к большей степени деформации материала, в том числе непосредственно в шейке, к моменту разрушения, однако, при температуре 500 °С (рис. 9, г) наблюдается уменьшение периферийных областей пластического среза, а при температуре 600 °C (рис. 9, ∂) они отсутствуют и всю поверхность излома занимает зона нормального отрыва, что может говорить о склонности материала к красноломкости. Распределение деформаций по длине рабочей части образца является более равномерным, а локализация деформаций в виде шейки не выражена. Важно отметить, что вид поверхности разрушения образца стали 40Х при температуре 500 и 600 °С (см. рис. 9, г и д) соответствует реализации полных диаграмм деформирования (см. рис. 3, б) и разделению образцов на части при снижении нагрузки до нулевого значения ($k_p = 0$).

В результате экспериментальных исследований особенностей закритического поведения сталей при повышенных температурах можно отметить, что увеличение температуры испытаний приводит к известному снижению сопротивления материала, которое проявляется в снижении основных механических характеристик, связанных с переходом в пластическое состояние (предел пропорциональности и условный предел текучести) и прочностью. В то же время наблюдается увеличение характеристик, связанных с реализацией деформационных ресурсов. Сопоставление всех полученных опытных данных удобно проводить при построении лепестковых диаграмм, которые приведены на рис. 10 для сталей ЭП517Ш (*a*) и 40Х (б).

Левая часть диаграмм содержит информацию о деформационных характеристиках, таких как остаточное удлинение после разрыва δ , относительное сужение ψ и коэффициент реализации закритической стадии деформирования k_p . В правой части диаграмм приведены значения прочностных характеристик: предел пропорциональности σ_{nil} , условный предел текучести $\sigma_{0,2}$ и предел прочности σ_{B} . В центральной верхней части содержатся данные о значениях модуля Юнга. Все характеристики приведены в безразмерном виде и получены путем отношения соответствующих величин к максимальному значению. Диаграмма одного цвета отражает экспериментальные данные, полученные при соответствующей температуре. Смещение диаграммы в правую часть графика (черный цвет) интерпретируется как проявление материалом высоких прочностных свойств при относительно низкой реализации деформационных характеристик, что может проявляться в высокой статической прочности конструкции, работающей при нормальной температуре, и низких показателях живучести при разрушении. Смещение диаграммы в левую часть графика (красный цвет на рис. 10 (*a*) и оранжевый на рис. 10 (δ), соответствующие температурам 600 °C для стали ЭП517Ш и 500 °C для стали 40Х) отражает снижение статической прочности детали при увеличении степени реализации деформационных резервов и, следовательно, живучести конструкции при разрушении.

Рис. 10. Изменение механических характеристик сталей ЭП517Ш (a) и 40Х (δ) от температуры Fig. 10. Changing of mechanical properties of X15CrNi12-2 steel (a) and 40Cr (b) at different temperatures

Заключение

В статье представлено экспериментальное исследование механического поведения конструкционных сталей ЭП517Ш и 40Х на стадиях упругопластического и закритического деформирования при повышенных температурах в диапазоне от 22 до 600 °C с использованием современного испытательного и измерительного оборудования. На основе полученных данных построены диаграммы деформирования с развитыми участками разупрочнения, и проведено сопоставление основных прочностных и деформационных характеристик при различных температурах. Получены картины поверхностей изломов образцов после разрушения при высоких температурах. На основе опытных данных построены диаграммы лепесткового типа, позволяющие проводить сопоставление комплекса механических характеристик при различных температурах. Показано, что с увеличением температуры снижение прочностных характери-

Библиографический список

стик, обеспечивающих статическую прочность детали, сопровождается увеличением деформационных ресурсов и коэффициента реализации закритической стадии деформирования, что имеет положительный эффект с точки зрения живучести элементов конструкций в процессе разрушения.

Благодарности

Работа выполнена в Пермском национальном исследовательском политехническом университете при финансовой поддержке Российского научного фонда (грант № 18-79-00216).

Acknowlegments

The work was carried out at Perm National Research Polytechnic University with the financial support of the Russian Science Foundation (Project No. 18-79-00216). 1. Вильдеман В.Э., Соколкин Ю.В., Ташкинов А.А. Механика неупругого деформирования и разрушения композиционных материалов. – М.: Наука, 1997. – 288 с.

2. Bazant Z.P. Size effect on strength and lifetime probability distribution of quasibrittle structures // Sadhana-Academy Proceedings in Engineering Science. – 2012. – Vol. 37. – Iss. 1. – P. 17–31.

3. Волков С.Д., Дубровина Г.И., Соковнин Ю.П. Устойчивость сопротивления материала в механике разрушения // Проблемы прочности. – 1978. – № 6. – С. 65–69.

4. Стружанов В.В., Миронов В.И. Деформационное разупрочнение материалов в элементах конструкций / УрО РАН. – Екатеринбург, 1995. – 208 с.

5. Радченко В.П., Горбунов С.В. Метод решения краевой упругопластической задачи о растяжении полосы с концентраторами напряжений с учетом локальных областей пластического разупрочнения материала // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. – 2014. – № 4 (37). – С. 98–110.

6. Чаусов Н.Г. Полная диаграмма деформирования как источник информации о кинетике накопления повреждений и трещиностойкости материалов // Заводская лаборатория. Диагностика материалов. – 2004. – Т. 70, № 7. – С. 42–49.

7. Васин Р.А., Еникеев Ф.У., Мазурский М.И. О материалах с падающей диаграммой // Изв. РАН. Механика твердого тела. – 1995. – № 2. – С. 181–182.

8. Миронов В.И., Якушев А.В., Лукашук О.А. Нестандартные свойства конструкционного материала // Физическая мезомеханика. – 2004. – Т. 7, № S1-1. – С. 210–213.

9. Вильдеман В.Э. О решениях упругопластических задач с граничными условиями контактного типа для тел с зонами разупрочнения // ПММ. – 1998. – Т. 62. – Вып. 2. – С. 304–312.

10. Vildemann V.E., Tretyakov M.P. Analysis of the effect of loading system rigidity on postcritical material strain // Journal of Machinery Manufacture and Reliability. -2013. - Vol. 42io - Iss. 3. - P. 219-226.

11. Tretyakov M.P., Wildemann V.E., Lomakin E.V. Failure of materials on the postcritical deformation stage at different types of the stress-strain state // Proccedia Structural Integrity. – 2016. – Iss. 2. – P. 3721–3726.

12. Прошева В.И., Ильиных А.В. Напряженно-деформированное состояние наполненных композитов случайной структуры с элипсоидальными включениями // Аэрокосмическая техника, высокие технологии и инновации. – 2016. – Т. 1. – С. 327–329.

13. Ильиных А.В. Численное моделирование процессов структурного разрушения зернистых композитов с изотропными элементами структуры // Вестн. Самар. гос. техн. ун-та. Сер. Физико-математические науки. – 2011. – № 2 (23). – С. 101–106.

14. Bazant Z.P., Di Luizo G. Nonlocal microplane model with strain-softening yield limits // Intern. J. of Solids and Struct. – 2004. – Vol. 41. – P. 7209–7240.

15. Радченко В.П., Небогина Е.В., Басов М.В. Структурная модель закритического упругопластического деформирования материалов в условиях одноосного растяжения // Вестн. Самар. гос. техн. ун-та. Сер. Физико-математические науки. – 2000. – № 9. – С. 55–65.

16. Стружанов В.В., Бахарева Е.А. Математические методы в теории чистого изгиба прямоугольных балок из разупрочняющегося материала с симметричной диаграммой растяжения-сжатия // Вычислительная механика сплошных сред. – 2012. – Т. 5, № 2. – С. 158–167.

17. Гольдштейн Р.В., Перельмутер М.Н. Моделирование трещиностойкости композиционных материалов // Вычислительная механика сплошных сред. – 2009. – Т. 2, № 2. – С. 22–39.

18. Ахметзянов М.Х., Албаут Г.Н., Барышников В.Н. Исследование напряженно-деформированного состояния в шейке плоских металлических образцов при растяжении методом фотоупругих покрытий // Заводская лаборатория. Диагностика материалов. – 2004. – Т. 70, № 8. – С. 41–51.

19. Баженов В.Г., Жегалов Д.В., Павленкова Е.В. Численное и экспериментальное исследование упругопластических процессов растяжения-кручения осесимметричных тел при больших деформациях // Изв. РАН. МТТ. – 2011. – № 2. – С. 57–66.

20. Tretyakov M.P., Tretyakova T.V., Wildemann V.E. Regularities of mechanical behavior of steel 40Cr during the postcritical deformation of specimens in condition of necking effect at tension // Frattura ed Integrità Strutturale. – 2018. – Vol. 43. – P. 146–154.

21. Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. – Новосибирск: Наука, 2008. – 328 с.

22. Faleskog J., Barsoum I. Tension-torsion fracture experiments. Part I: Experiments and a procedure to evaluate the equivalent plastic strain // International Journal of Solids and Structures. – 2013. – Vol. 50. – No. 25–26. – P. 4241–4257.

23. Wildemann V.E., Lomakin E.V., Tretyakov M.P. Effect of vibration stabilization of the process of postcritical deformation // Doklady Physics. – 2016. – Vol. 61. – Iss. 3. – P. 147–151.

24. Lokoshchenko A.M. Vibrocreep of metals in uniaxial and complex stress states // Mechanics of Solids. -2014. - Vol. 49. - Iss. 4. - P. 453–460.

25. Радченко В.П., Кичаев П.Е. Энергетическая концепция ползучести и виброползучести металлов. – Самара: Изд-во СамГТУ, 2011. – 157 с.

26. Effect of ultrasonically-assisted drilling on carbon-fibrereinforced plastics / F. Makhdum, V.A. Phadni, A. Roy, V.V. Silberschmidt // Journal of Sound and Vibration. – Vol. 333. – Iss. 23. – P. 5939–5952.

27. Экспериментальные исследования закритического деформирования и разрушения конструкционных материалов: моногр. / В.Э. Вильдеман, Е.В. Ломакин, М.П. Третьяков, Т.В. Третьякова, Д.С. Лобанов. – Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2018. – 156 с.

28. Kodur V, Dwaikat M., Fike R. High-Temperature Properties of Steel for Fire Resistance Modeling of Structures // Journal of Materials in Civil Engineering. – Vol. 22. – Iss. 5. – P. 423–434.

29. Линдбром И. Ползучесть и структурная стабильность высокотемпературных материалов. Жаропрочные сплавы для газовых турбин. – М.: Металлургия, 1981. – 147 с.

30. Lokoshchenko A.M., Fomin L.V. Influence of the crosssectional shape of tensile bars on their creep rupture strength in a corrosive medium // Journal of Applied Mechanics and Technical Physics. – 2016. – T. 57, № 5. – C. 792–800.

31. Агеев Н.П., Каратушин С.И. Механические испытания металлов при высоких температурах и кратковременном нагружении. – М.: Металлургия, 1988. – 276 с.

32. Золоторевский В.С. Механические свойства металлов. – М.: Изд-во МИСИС, 1998. – 400 с.

33. Малушин Н.Н., Валуев Д.В. Обеспечение качества деталей металлургического оборудования на всех этапах их жизненного цикла путем применения плазменной наплавки теплостойкими сталями. – Томск: Изд-во Том. политехн. унта, 2013. – 358 с.

34. Кипелова А.Ю., Однобокова М.В., Дудзич И.В. Влияние температуры на механические свойста стали 10Х9В1М1ФБР // Научные ведомости. – 2010. – № 11. – С. 138–141. 35. Исследование малоцикловой усталости жаропрочных сплавов при «жестком» цикле нагружения / М.А. Горбовец, М.С. Беляев, И.А. Ходинев, М.И. Лукьянова // Цветные металлы. – 2017. – № 2. – С. 134–139.

References

1. Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A., Mechanics of inelastic deformation and fracture of composite materials, Moscow, Nauka; 1997. 288 p.

2. Bazant Z.P. Size effect on strength and lifetime probability distribution of quasibrittle structures // Sadhana-Academy Proceedings in Engineering Science. 2012. Vol. 37, Issue 1. P. 17–31.

3. Volkov S.D., Dubrovina G.I., Sokovnin Yu.P. Ustojchivost` soprotivleniya materiala v mexanike razrusheniya // Problemy` prochnosti. 1978. Vol. 6. pp. 65–69.

4. Struzhanov V.V., Mironov V.I. Strain softening of materials in the structural elements / UrO RAN. Ekaterinburg, 1995. – 208 p.

5. Radchenko V.P., Gorbunov S.V. Metod resheniya kraevoj uprugoplasticheskoj zadachi o rastyazhenii polosy` s koncentratorami napryazhenij s uchetom lokal`ny`x oblastej plasticheskogo razuprochneniya materiala // Vestn. Sam. gos. texn. un-ta. Ser. Fiz.-mat. nauki. 2014. Vol. 4 (37). pp. 98–110.

6. Chausov N.G. Polnaya diagramma deformirovaniya kak istochnik informacii o kinetike nakopleniya povrezhdenij i treshhinostojkosti materialov // Zavodskaya laboratoriya. Diagnostika materialov. 2004. Vol. 70, Issue 7. pp. 42–49.

7. Vasin R.A., Enikeev F.U., Mazurskij M.I. O materialax s padayushhej diagrammoj // Izvestiya RAN. Mexanika tverdogo tela. 1995. Issue 2. pp. 181–182.

8. Mironov V.I., Yakushev A.V., Lukashuk O.A. Nestandartny'e svojstva konstrukcionnogo materiala // Fizicheskaya mezomexanika. 2004. Vol. 7. Issue S1-1. pp. 210–213.

9. Wildemann, V.E. On the solutions of elastic-plastic problems with contact-type boundary conditions for solids with loss-of-strength zones, J. Appl. Maths Mechs. 1998. Vol. 62. Issue 2. P. 281.

10. Vildemann V.E., Tretyakov M.P. Analysis of the effect of loading system rigidity on postcritical material strain // Journal of Machinery Manufacture and Reliability. 2013. Vol. 42, Issue 3. pp. 219-226.

11. Tretyakov M.P., Wildemann V.E., Lomakin E.V. Failure of materials on the postcritical deformation stage at different types of the stress-strain state // Proccedia Structural Integrity. 2016. Issue 2. pp. 3721-3726.

12. Prosheva V.I., Ilinyh A.V. Napryazhenno-deformirovannoe sostoyanie napolnennyx kompozitov sluchajnoj struktury s elipsoidalnymi vklyucheniyami // Aerokosmicheskaya texnika, vysokie texnologii i innovacii. 2016. Vol. 1. pp. 327-329.

13. Ilinyh A.V. Chislennoe modelirovanie processov strukturnogo razrusheniya zernistyx kompozitov s izotropnymi elementami struktury // Vest. Sam. Gos. Tehn. Un-ta. Seriya: Fizikomatematicheskie nauki. 2011. Vol. 2 (23). pp. 101-106.

14. Bazant Z.P., Di Luizo G. Nonlocal microplane model with strain-softening yield limits // Intern. J. of Solids and Struct. 2004. V.41. P. 7209–7240.

15. Radchenko V.P., Nebogina E.V., Basov M.V. Strukturnaya model` zakriticheskogo uprugoplasticheskogo deformirovaniya materialov v usloviyax odnoosnogo rastyazheniya // Vest. Sam. Gos. Tehn. Un-ta. Seriya: Fiziko-matematicheskie nauki. 2000. Vol. 9. pp. 55–65.

16. Struzhanov V.V., Baxareva E.A. Matematicheskie metody v teorii chistogo izgiba pryamougolnyx balok iz razuprochnyayushhegosya materiala s simmetrichnoj diagrammoj rastyazheniya-szhatiya // Vychislitelnaya mexanika sploshnyx sred. 2012. Vol. 5. Issue 2. pp. 158–167. 36. Пачурин Г.В. Сопротивление усталости при различных температурах отожженной и упрочненной меди М1 // Междунар. журн. экспериментального образования. – 2014. – № 3 (ч. 2). – С. 81–88.

17. Goldshtejn R.V., Perelmuter M.N. Modelirovanie treshhinostojkosti kompozicionnyx materialov // Vychislitelnaya mexanika sploshnyx sred. 2009. Vol. 2, Issue 2. pp. 22–39.

18. Axmetzyanov M.X., Albaut G.N., Bary`shnikov V.N. Issledovanie napryazhenno-deformirovannogo sostoyaniya v shejke ploskix metallicheskix obrazczov pri rastyazhenii metodom fotouprugix pokry`tij / Zavodskaya laboratoriya. Diagnostika materialov. 2004. Vol. 70. Issue 8. pp. 41–51.

19. Bazhenov V.G., Zhegalov D.V., Pavlenkova E.V. Numerical and experimental study of elastoplastic tension-torsion processes in axisymmetric bodies under large deformations // Mechanics of Solids. 2011. Vol. 2. pp. 204–211.

20. Tretyakov M.P., Tretyakova T.V., Wildemann V.E. Regularities of mechanical behavior of steel 40Cr during the postcritical deformation of specimens in condition of necking effect at tension // Frattura ed Integrità Strutturale. 2018. Vol. 43. pp. 146-154.

21. Zuev L.B., Danilov V.I., Barannikova S.A. Fizika makrolokalizacii plasticheskogo techeniya. Novosibirsk: Nauka, 2008. 328 p.

22. Faleskog J., Barsoum I. Tension-torsion fracture experiments. Part I: Experiments and a procedure to evaluate the equivalent plastic strain // International Journal of Solids and Structures, 2013. Vol. 50, №. 25–26. pp. 4241–4257.

23. Wildemann V.E., Lomakin E.V., Tretyakov M.P. Effect of vibration stabilization of the process of postcritical deformation // Doklady Physics. 2016. Vol. 61, Issue 3. pp.147–151.

24. Lokoshchenko A.M. Vibrocreep of metals in uniaxial and complex stress states, Mechanics of Solids. 2014. Vol. 49, Issue 4. pp. 453–460.

25. Radchenko V.P., Kichaev P.E. Energeticheskaya koncepciya polzuchesti i vibropolzuchesti metallov. Samara: SamG-TU, 2011. 157 p.

26. Makhdum F., Phadni V.A., Roy A., Silberschmidt V.V. Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics // Journal of Sound and Vibration. Vol. 333, Issue 23, pp. 5939-5952.

27. Experimental investigation of the postcritical deformation and failure of structural materials. / V.E. Wildemann, E.V. Lomakin, M.P. Tretyakov, T.V. Tretyakova, D.S. Lobanov. – Perm: Perm National Research Polytechnic University, 2018. 156 p.

28. Kodur V, Dwaikat M., Fike R. High-Temperature Properties of Steel for Fire Resistance Modeling of Structures // Journal of Materials in Civil Engineering Vol. 22, Issue 5. pp. 423-434.

29. Lindbrom I. Polzuchest i strukrturnaya stabilnost vysokotemperaturnyx materialov. Zharoprochnye splavy dlya gazovyx turbin. M.: Metallurgiya. 1981. 147 p.

30. Lokoshchenko A.M., Fomin L.V. Influence of the crosssectional shape of tensile bars on their creep rupture strength in a corrosive medium // Journal of Applied Mechanics and Technical Physics. 2016. T. 57. № 5. C. 792-800.

31. Ageev N.P., Karatushin S.I. Mexanicheskie ispytaniya metallov pri vysokix temperaturax i kratkovremennom nagruzhenii. M.: Metallurgiya, 1988. 276 p.

32. Zolotorevskij V.S. Mexanicheskie svojstva metallov. M.: MISIS, 1998. 400 p.

33. Malushin N.N. Obespechenie kachestva detalej metallurgicheskogo oborudovaniya na vsex etapax ix zhiznennogo cikla putem primeneniya plazmennoj naplavki teplostojkimi stalyami / N.N. Malushin, D.V. Valuev — Tomsk: Izd-vo Tomskogo politexnicheskogo universiteta, 2013. 358 p. 34. Kipelova A.Yu., Odnobokova M.V., Dudzich I.V. Vliyanie temperatury na mexanicheskie svojsta stali 10X9V1M1FBR // Nauchnye vedomosti. 2010. Vol. 11. pp. 138-141.

35. Gorbovecz M.A., Belyaev M.S., Xodinev I.A., Lukyanova M.I. Issledovanie malociklovoj ustalosti zharoprochnyx splavov pri «zhestkom» cikle nagruzheniya // Czvetnye metally. 2017. Vol 2. pp. 134-139.

36. Pachurin G.V. Soprotivlenie ustalosti pri razlichnyx temperaturax otozhzhennoj i uprochnennoj medi M1 // Mezhdunarodnyj zhurnal eksperimental`nogo obrazovaniya. 2014. Vol. 3, (Part 2). pp. 81-88.