Perm Polytech Style: Lolov D.S., Lilkova-Markova S.V. Green’s Function Method in the Investigation of Dynamic Stability
of a Fluid-Conveying Pipe. PNRPU Mechanics Bulletin, 2025, no. 2, pp. 84-90. DOI: 10.15593/perm.mech/2025.2.07

Jlonos, JI.C. Meron ¢ynkimu ['puHa B McciieJOBaHUH JMHAMUYECKOW YCTOWYNBOCTH TPyOOIPOBOIa, TPAHCIIOPTUPYIOIIETO JKHIKOCTD /
A.C. Jlonos, C.B. JlunkoBa-Mapkosa. — DOI: 10.15593/perm.mech/2025.2.07 // Bectauk [lepMckoro HamoHANBHOTO HCCIEAOBATEIBCKOTO
MOJUTEXHUYECKOro yHuBepcurera. Mexanuka. —2025. — Ne 2. — C. 84-90.

- BECTHHUK ITHUITY. MEXAHUKA
NepMCKum
Ne 2, 2025

nonntex
PNRPU MECHANICS BULLETIN
https://ered.pstu.ru/index.php/mechanics/index

Hayunas crates

DOI: 10.15593/perm.mech/2025.2.07
VK 539.3

GREEN’S FUNCTION METHOD IN THE INVESTIGATION
OF DYNAMIC STABILITY OF A FLUID-CONVEYING PIPE

D.S. Lolov, S.V. Lilkova-Markova

University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria

ARTICLE INFO ABSTRACT
Received: 05 August 2024 Fluid-conveying pipes represent a fundamental dynamic problem within the realm of fluid-
Approved: 23 April 2025 structure interaction. They find extensive applications in various industries, including petroleum,
Accepted for publication: nuclear engineering, aviation, aerospace, and nanostructures. This paper applies the Green’s
30 May 2025 function method to solve the stability problem of a fluid-conveying pipe, hinged at both ends and
supported by intermediate linear-elastic supports. The objective is to examine the influence of the
Keywords: number and rigidity of these supports on the critical fluid velocity, which is the velocity at which the
stability, Green’s function, pipe loses stability. A numerical solution was performed for a straight pipe conveying fluid with
fluid-conveying pipe, critical velocity. specified geometric and physical characteristics, where the number and rigidity of the elastic sup-

ports were considered as parameters. The numerical analysis presented herein includes graphs
illustrating the dependence of the critical fluid velocity on the number of elastic supports for varying
support rigidities. These results reveal that the elastic supports affect both the vibrational charac-
teristics and the critical velocity of the conveyed fluid. The solution results are compared with those
obtained using one of the most widely employed methods for analyzing the dynamic stability of
pipe systems (Transfer Matrix Method — TMM). A good agreement between the results is observed.
The paper aims at presenting a method for obtaining the exact solution to the differential equation
governing the lateral displacements of a pipe system. This paper discusses the authors' perceived
pros and cons of the Green's function method in comparison to the most popular methods for the
dynamic investigation of fluid-conveying pipes.

© Dimitar S. Lolov — PhD in Technical Sciences, Ass. Professor, Department of Technical Mechanics,
e-mail: dlolov@yahoo.com, '': 0000-0002-8138-0265
Svetlana V.Lilkova-Markova — PhD in Technical Sciences, Professor, e-mail: lilkova_fhe@uacg.bg, 1
: 0000-0003-0582-8176. EH‘I E

INonoB Aumutp C. — K. T. H., AoueHT, Kadeapa TexHnyeckon mexaHuku, e-mail: dlolov@yahoo.com,

: 0000-0002-8138-0265.
JNunkoBa-MapkoBa CBeTnaHa B. — k. T. H., npodeccop, Kadeapa TeXHN4ecKon MexaHuku, E
e-mail: lilkova_fhe@uacg.bg, '': 0000-0003-0582-8176.

Ota craThs JOCTYIIHA B COOTBETCTBUH C ycioBusmu jmnensuu Creative Commons Attribution-NonCommercial 4.0 International
_::’ @ @ License (CC BY-NC 4.0)
BY _NC This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)



Jlonos [1.C., Jlunkosa-Mapxosa C.B. / Becmuux IIHUTTY. Mexanuxa 2 (2025) 84-90

METO[ ®YHKLUUU NPUHA B UICCINEAOBAHUM AUHAMUYECKON
YCTONYMBOCTU TPYEONPOBOAA, TPAHCIMOPTUPYIOLLEIO XUOKOCTb

0.C. llonos., C.B. JlunkoBa-MapkoBa

YHuBepcuTeT apxXnTekTyphbl, CTpouTenscTea u reogesuun, Codus, Pecnybnvka bBonrapus

O CTATbE

AHHOTALNMA

Mony4yeHna: 05 aBrycta 2024 r.
OpobpeHa: 23 anpens 2025 .
MpuHaTa k nybnukaumm:

30 masa 2025 .

Knrouessle criosa:

yCTOMYMBOCTb, PyHKUMS puHa,
Tpy6a Ana TpaHCNopTMPOBKM

XNOKOCTU, KOPUTUHECKasa CKOPOCTb.

Tpy6bl ANSt TPAHCNOPTUPOBKY XUAKOCTY NpeAcTaBnaoT cobon dyHaameHTanbHylo AnHaMm-
Yyeckyto npobnemy B 06nacTv B3anMoAeNCTBUS XKNAKOCTU U KOHCTPYKUMU. OHU HaxogsaT LUMpoKoe
NpYMEHeHWe B pasnnYHbIX OTPACIAX NPOMbILLNIEHHOCTY, BKIOYas HeTSAHY0, SAEPHYI0, aBnauu-
OHHY'0, a3POKOCMUYECKYIO M HAHOCTPYKTYPHYt0. B AaHHOM nccneposaHum metod dpyHKumm MpuHa
NpUMeHsieTca ANSA peLueHns npobnembl yCTONYMBOCTM TPYObl ANs TPAHCMOPTUPOBKM XUAKOCTH,
LIAPHUPHO 3akpennieHHoW Ha 06OoMX KOHLAX U MoJAEepPKMBAEMON MPOMEXYTOYHBIMU FIMHENHO-
ynpyrumu onopamu. Lienb coctout B TOM, YTOBbI M3Y4nTb BIUSHWE KONMYECTBA U XKECTKOCTN 3TUX
Orop Ha KPUTUYECKYIO CKOPOCTb XWAKOCTU, ABMSAIOLLNECS CKOPOCTbIO, MPU KOTOpon Tpyba TepseT
YCTOMYMBOCTb. YncneHHoe pelueHve Bbino BbIMOMHEHO AN NPSIMON TPyObl, TPAHCNIOPTUPYIOLLE
XUOKOCTb C 3afjaHHbIMU rEOMETPUHECKUMMN U (DU3NYECKMMI XapaKTEPUCTUKaMW, rae KONMMYecTBO
W )XeCTKOCTb YNpYrnx ornop paccMaTpuBanucb kak napameTpsl. [NpeacTaBneHHbIN 34ecb YNCTeH-
HbI aHanM3 BKMOYaeT rpadouku, UMNIOCTPUPYIOLLNE 3aBUCUMOCTb KPUTUYECKOW CKOPOCTYU XNAKO-
CTW OT KONMMYECTBA YNPYrvx onop ANt pasfiMyHo )XeCTKOCTH ornop. T pe3ynbTaThl NOKa3bIBatoT,
YTO ynpyrve onopbl BAUAIOT Kak Ha BUOPaLIMOHHbIE XapaKTepUCTUKK, Tak U Ha KPUTUYECKYHO CKO-
POCTb TPAHCMOPTUPYEMOW XUAKOCTU. PesynbTaThl peLleHns CPaBHNBAIOTCS C AaHHBIMU, NOMYyYeH-
HbIMU C MOMOLLIbIO OAHOTO 13 Hanbornee LWMPOKO MCMONb3yeMblX METOAOB aHanM3a AMHaMn4YecKon
yCTOMYMBOCTU TpyBONPOBOAHbBIX cucTeM (MeTog MaTpuubl nepeHoca — TMM). Habniogaetcs xo-
pollee COOTBETCTBUE Mexay pesynbratamu. Llenbio ctatbu siBNseTca npefcraBneHve MeToaa
NoNy4YeHUs TOYHOTO peLleHns AnddepeHumanbHOro ypaBHeHNs, perynmpytoLlero 6okoBble cme-
LeHns TpybonposoaHou cuctembl. ObcyxaalTcs npeanonaraeMblie aBTopamu Miiochl U MUHYCbI
meToaa cpyHKUmMM 'prHa B cpaBHeHUW ¢ Hanbonee nonynspHbLIMU METOAaMMN AMHAMUYECKOrO UC-

cnegoBaHuA pr60|‘|pOBO,EIOB, TPAHCNOPTUPYHOLWNX XNOKOCTH.

Introduction

Fluid conveying pipes represent a fundamental challenge
in the field of fluid-structure interaction. The issue of dy-
namic stability of such structures has garnered significant at-
tention in both scientific research and industry. Given that
fluid-flowing pipes are integral components in numerous en-
gineering facilities and serve as a primary means of transport-
ing oil and gas, the stability of these pipes is of paramount
importance. The loss of stability in a pipe can result in dam-
ages that have far-reaching consequences on the economy,
the environment, and the well-being of the population.

M. P. Paidoussis is a distinguished scientist renowned for
numerous publications in the field of fluid-structure interac-
tion. His research, particularly focused on the interaction be-
tween flowing fluids and pipes, is extensively discussed in
[1] and [2].

In their works [3] and [4], R. Gregory and M. P. Paidous-
sis present numerical studies and results from experiments
conducted on the dynamic stability of cantilevered pipes with
flowing fluid.

In [5], an approach is presented for determining the cir-
cular frequencies and oscillations of a pipe conveying fluid.
The transverse displacements of the pipe axis are also calcu-
lated. Additionally, [6] explores the vibrations of a pipe with
a transverse linear elastic support.

A recent study on fluid-conveying pipes was conducted
in [44]. Using the Euler-Bernoulli model, the authors inves-
tigated the stability of a pipe resting on a two-parameter

elastic foundation, considering various boundary conditions.
The Differential Transform Method was employed in the
analysis. The results indicate that the elastic foundation has a
stabilizing effect on the system, and increasing the founda-
tion parameters leads to an increase in the system's critical
velocity.

In a further recent investigation [45], the dynamic stabil-
ity of a cantilevered pipe subjected to a lateral distributed
load was analyzed. The Differential Quadrature Method was
utilized in the analysis.

Ding and Ji [46] present a comprehensive review of the
latest research in the field of vibration control for fluid-con-
veying pipes.

The broad applicability of nanoscale tubes across various
scientific and industrial domains has sparked considerable re-
search, as demonstrated in [9—16] and more recently in [47—
49]. To overcome the complexities and expenses of na-
noscale experiments, fluid-structure interaction in carbon
nanotubes is frequently studied using continuum elastic mod-
els, such as Euler and Timoshenko beam theories.

Curved pipes represent another area of fluid-structure inter-
action. Research in this area has been conducted in [33-38].

Other aspects of the problem of fluid-conveying pipe dy-
namic stability include pipes under thermal loads [26; 27],
submerged pipe systems [19-21], and pipes made of viscoe-
lastic materials [23].

Common methods for dynamic analysis of fluid-convey-
ing pipes include the Finite Element Method (FEM), the
Transfer Matrix Method (TMM) [39], and the Generalized
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Differential Quadrature Method (GDQM). However, this pa-
per proposes a different approach by suggesting the use of the
Green’s Function Method to solve the stability problem. The
objective is to demonstrate that this method can be competitive
with the well-established techniques mentioned earlier in the
dynamic stability investigations of fluid-conveying pipes.

The study in this paper focuses on a fluid-conveying pipe
supported by linear elastic springs. The results obtained shed
light on the relationship between the critical fluid velocity
and the rigidity, as well as the number of elastic supports. The
critical fluid velocity is the speed at which the flowing fluid
leads to the loss of stability in the pipe.

The paper is structured as follows: first, we present the
model of the pipe, including its static scheme, and the gov-
erning differential equation for eigen lateral vibrations. Sec-
ond, we employ the Green’s function method to solve the
problem, demonstrating the derivation of the frequency equa-
tion of the system. Conclusions about the system's stability
can be drawn based on the roots of this equation. Finally, we
present the results obtained from the numerical solution and
summarize several key conclusions. To verify the results,
they are compared to numerical results obtained using the
Transverse Matrix Method for the same system. Further-
more, we offer our perspective on the key advantages and
disadvantages of the Green’s function method compared to
other methods for the dynamic investigation of pipe systems.

Problem formulation

The pipe depicted in figure 1 is presented for analysis. It
is hinged at it’s both ends and on intermediate linear elastic
supports. The differential equation below describes the lat-
eral vibration of the pipe.

4 2 2
E19 Y 4 (m, +m,)a Y om 9
dx rrot atax 1
. (1
v? =0.
+m/ a ( )

In equation (1), ¢ is the time and x is the axial coordi-
nate of a random cross-section of the pipe (Fig.1). w (x,¢)

denotes the function describing the transverse displacements
of the pipe’s axis. The remaining system characteristics in-
clude the velocity of the conveyed fluid V', the bending stift-
ness of the pipe EI, the mass of the fluid per unit length of
the pipe m £ the mass of the pipe per unit length m P and the

rigidity of the linear intermediate supports K j- 8 is the Di-

rac delta function.

Equation (1) is valid under the following assumptions
[1;2;8]:

a) Dissipation and damping effects are neglected,;

b) Transported fluid is heavy, unviscous, and
incompressible. This allows us to assume that the fluid
velocity is uniform across the cross-section;

¢) The Euler-Bernoulli hypothesis is valid. This implies
that plane cross sections, orthogonal to the axis of the pipe
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before deformation, remain plane and orthogonal to the
deformed axis of the pipe;

d) Length of the pipe is significantly greater than the
dimensions of the cross section;

e) The pipe is assumed axially inextensible;

f) The effects of rotary inertia are neglected;

g) The material of the pipe is linear elastic (The Hooke’s
law is valid);

Each term in equation (1) has the following physical in-
terpretation:

a) Coriolis force:

2m V=2
7 dtdx

b) Inertial force:

o*w

(mf +mp)at2 '

c¢) Centripetal force (arising due to the acceleration of
fluid through the deformed pipe):
82w

VZ
oot

a) The force in the j-th elastic support

0
=S
~+—p/\V\O

Fig. 1. Static scheme of the pipe

The dimensional equation (1) is converted into a non-di-
mensional form by introducing the following dimensionless
parameters.

X. m
e =L y=2 w=yn L p=—~t—;
L L EI m,+m,

K L3
= tz L; Q=orl / )
L o tm, L tm,

where p is the mass ratio, u represents the dimensionless

parameter associated with the fluid velocity, t is the dimen-
sionless parameter associated with the time, Q is the non-
dimensional parameter of the pipe’s circular frequency and &;
is the non-dimensional parameter of the rigidity of the elastic
supports.
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Following the mentioned transformation, equation (1)
takes the following form:

o'y 5, 9%y d’y 9y
2./ k8(e—e)=0.3

=

The solution of the differential equation (3) is sought in
the form:

y(&T) =W (&)™, “)

where i is the imaginary unit.
By substituting (4) in (3) the following equation is de-
rived:

W W 2 QW — QW+ k, 3(&-¢,)=0.(5)
=
The subsequent property of the Dirac delta function is
employed [7]:

y(g)S(é—éj)=y(<§j)8(§—§j). (©)

As aresult, equation (5) obtains the following form:
w 2i?wl o\ BuiQw! —Q*w = —Zn: kw(g)8(e-¢;) )

j=1

The solution of equation (7) can be expressed in this
manner:

W(E)=—>kW(E)G(EE)), ®)

Jj=1

where G(Z;;Z;_,.) is the Green function, which satisfies the

equation:
2'G 0°G . 0G
aé“ +u2 aéz +2 Bul Qa—a—QZG=6(§_§,) (9)

The Green’s function satisfies the same boundary condi-
tions as W (&) . For the pipe in Fig. 1, these conditions are:

G(O;&j.):G(l;&j.):O;
G"(0:¢,)=G" (1.€,)=0. (10)

In equation (8) is substituted £=§,, i =1,..., n, result-

ing in the following system of equations

W(E, )+ 2k W(E)G, =0. (11)
j=1
The system (11) has a nontrivial solution if:
le]] +1 k2G12 knGln
k1(:;21 k2G2:2 +1 kn:GZrl -0. (12)
lenl k2Gn2 kr/Gnn +1

Equation (12) is the frequency equation of the system.
From it, the circular frequencies ® ,...,®, could be obtained.

The solution of equation (9) is as follows [8]:

" (&-¢))

3 . +
4o; +2a,a+ib

G(&g,)=H(e-¢) 2

W (0)Y——°

%_{_
« 4o +20,a+ib

s ole%"
+ W (0)Y ————+
( );4af+2aia+ib
(3
+[ " (0)+aw" (0)+biw (0)]> ———
QR
e "
40} +20.a+ib

+[ 7" (0)+aw (0)]>

®;

(13)

In equation (13) a =u2, b=2puQ and c=02.
H (F;;F;J.) is the Heaviside function and the coefficients

a,,i =1,....,4 are obtained as roots of the equation [8]:
' +az’ +ibz—c=0. (14)

The subsequent function is defined
-

yE)=>-——

4o} +20,a+ib

(15)

Then, equation (15), for the pipe in figure 1, takes
the form

G(&g,)=H(E-¢,) w(e-¢,)+

&& 16)
+y" (&)W (0)+y (&) W™ (0)+aWw’ (0)].

The values for #'(0) and W" (0) are obtained from
the boundary conditions at the right end of the pipe.

w(1)=0 — G(L&,)=0; (17)
w'(1)=0 — G"(1¢,)=0. (18)
Equations (17) and (18) are transformed in the form:

0=y(1-¢,)+y" ()W’ (0)+

+y(1)[ " (0)+am’ (0)]; (4
0=y" (1=-¢,)+y" ()W’ (0)+ 0
+y" ()" (0)+aw" (0)].

To obtain the critical velocity of the flowing fluid V,

y
an iteration procedure is applied. The velocity of the fluid is

varied from 0 to the critical value V., which corresponds to

the zero value of the system’s first natural frequency.
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Numerical results

Numerical investigations were conducted for the fluid-
conveying pipe in Figure 1. Only the case with equal dis-
tances between the supports of the pipe has been considered.
The material and geometric properties of the system are:
modulus of elasticity of the material of the pipe
E=210GPa, density of the pipe’s material

p=7800kg / m’. The outer and the inner radii of the pipe’s
cross-section are R, =0.014m and R, =0.012m . Three
different fluids with the following densities were considered:
p=1000kg /m’; p=1100kg /m* and p =1200kg / m’.

Figure 2 depicts the dependence of the critical velocity
on the number of intermediate supports and their rigidity for
a fluid with density p =1000kg / m”.

Ve
[m/s] “

® K =100 kN/m

A K, =200 kN/m
40 /;
35 // /
30 e .//'
5 ) /‘ /‘

- number of
20 “’//i elastic supports
0 1 2 3 4 5

Fig. 2. Critical fluid velocity versus the number of intermediate
supports for a fluid with density p =1000kg / m’

Figures 3 and 4 show the dependence of the critical fluid
velocity on the number of intermediate supports for different
fluid densities.

¥ l » £=1000 kg'm’
[m/s] 4 p=1100 kg'm’
« p=1200 kg/m’
40
35 '//L
30 .//‘ /
2 .//'l//
20 "”JHV/'/*-//‘*/
Au———f“"_:_ﬂ/ number of
15— elastic supports
0 1 2 3 4 5

Fig. 3. Critical fluid velocity versus the number of intermediate
supports for three different fluids with rigidity of the elastic
supports K, =100kN / m

A comparison has been made between the results ob-
tained using the Green’s function method and the solution for
the same system using the Transfer Matrix Method (TMM).
When 10 eigenforms are used in the TMM solution, the re-
sults show an average difference of 5.4 % in the critical ve-
locities obtained. As expected, increasing the number of
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eigenforms to 15 reduces the difference in the results of both
methods to 3.3 %.

e l « p=1000 kgim'
[mis] & & p=1100 kg'm®
« p=1200 kgim®

40

) P

30 ,/w//.//

25 4 4 o
A_—~f“"’/ " number of

20 v_____ﬁr‘/ elastic supports
0 1 2 3 4 5

Fig. 4. Critical fluid velocity versus the number of intermediate
supports for three different fluids with rigidity of the elastic
supports K, =200kN /m

Conclusion

The utilization of the Green’s function method in this pa-
per offers an alternative avenue for exploring the dynamic
response of fluid-conveying pipes. The suggested approach
can be regarded as a viable competitor to other established
methods for dynamic investigation of fluid-conveying pipes,
such as the Transferred Matrix Method, Generalized Differ-
ential Quadrature Method (GDQM) and Finite Element
Method (FEM).

In the scientific literature, it has been shown that TTM
and GDQM have a significant advantage over FEM. The
FEM's application to pipelines with numerous spans results
in a substantial increase in computational time, attributed to
the expanding order of the system's property matrices. This
contrasts sharply with the TMM, where the overall transfer
matrix retains a fixed order, independent of the number of
spans. The GDQM efficiently approximates derivatives in
the pipe's lateral vibration equation by utilizing weighted
sums of function values at discrete points, resulting in rapid
convergence with a sparse grid.

Compared to the TMM, the Green’s function method has
the advantage of not requiring the solution of the free vibra-
tion problem to determine eigenvalues and eigenfunctions,
which are also essential in the classical Galerkin method.

Another significant advantage of the Green’s function
method is that the accuracy of the solution does not depend
on the number of finite elements (as in FEM) or the number
of eigenforms used in the Galerkin method and TMM, as the
method is regarded as equivalent to the exact analytical solu-
tion of equation (1) [8].

The suggested approach also has a significant drawback:
it requires the use of a complex mathematical framework,
which could make it less appealing for practical engineering
applications.

Several major conclusions can be drawn regarding the
numerical investigations presented in the article:
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1. The numerical results indicate that augmenting the num-
ber of intermediate supports enhances the system stability.

2. Another notable observation is that boosting the
rigidity of the elastic supports results in increased system
stability.
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