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 Based on the concept of the interactive layer (IL), the paper considers the deformation of a 
body with a thin deep notch in a linearly elastic formulation. The stress state in the interactive 
layer is determined on the basis of the constitutive relations of the Prandtl bonds type. The pro-
posed formulation of the task explicitly includes a linear parameter (LP). Based on the analytical 
solution of the task in the beam approximation, the dependence of the wedge force on the thick-
ness (IL) is obtained. The use of the classical strength criteria in this dependence leads to a zero 
critical force at zero thickness IL, which contradicts the Griffith-Irvin criterion. We use it as a uni-
versal criterion for the destruction of the energy product (EP), as a product of a linear size and an 
increase in the specific free energy of the layer is shown. A relationship is established between 
the dimensions of the sample and the critical force, which ensures independence with a given 
degree of accuracy of the critical force from the thickness IL. By comparing the solution obtained 
and the classical solution for the notch in the form of a mathematical cut, the assumptions under 
which EP criterion and the Griffith's criterion (GC) coincide are determined. By using the Neuber-
Novozhilov approach, the structural volume of the material with averaged characteristics of the 
stress-strain state (SSS) is identified. This volume is considered as a representative volume for 
determining the increment of еру average free energy that controls the state of pre-destruction. 
The product of the increment of the average free energy and LP determines the average EP. The 
expression for the average EP is determined on the basis of the obtained analytical solution. It is 
shown that the transition to the averaged value of the EP on a square Neuber cell does not lead 
to an increase in the margin of error in determining the critical force. It has been established that 
starting with a certain value of LP, which depends on the geometric characteristics of the dam-
aged body, the convergence of the average EP in the pre-destruction zone to the GC takes place 
with a specified degree of accuracy. 
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Introduction 

 

Nowadays, excisions in solid bodies are usually treated 

proceeding from model representations of V- and U-shaped 

configurations [1–13]. Singular solutions are true for classical 

V-notches, whereas in rounded U-notches respective measur-

able curvature radii are responsible for concentrated stresses. 

In works [7, 8] Neuber proposes to ensure the finiteness of 

stresses in sharp V-notches by considering an elementary cell 

in the tip region of a V-notch and treating one half of its 

width as the notch’s rounded radius. This radius was under-

stood as a material structure with a lengthwise dimension. 

Because of the introduced proposition, the solution of the 

stress concentration problem for V-notches contains no sin-

gularity; the given approach is further elaborated in works 

[10–13]. Essentially, the introduction of the virtual curvature 

radius involves averaging the stressed state of an elementary 

cell with an estimated size of 0.5 mm. In [14, 15] Novozhilov 

applied the respective approach to the opening mode crack 

problem, where the classical singular solution was explicitly 

averaged by the cell. The atomic spacing was chosen as the 

characteristic cell size. Neuber’s approach makes use of the 

solution for the concentrator with a virtual curvature radius, 

whereas Novozhilov’s approach makes use of the averaging 

based on the known singular solution. The works in this field 

are discussed in articles [16–20]. 

Works [21, 22] propose to consider for the slit-shaped 

defect the layer of interaction with the averaged stress state. 

In this case average stresses are found right from the prob-

lem’s solution [23, 24] and the solution derived for the de-

fect geometry set in advance is not averaged. In addition, 

the use of average stresses makes it possible not to set the 

defect ending geometry. 

In this paper we consider the critical state of a sample 

of finite thickness with a physical section loaded with bal-

anced forces. As a criterion for destruction, the product of 

the thickness of the IL for the change in the specific free 

energy, EP [22], is taken. Based on the analytical solution in 

the beam approximation, a condition, that determines the 

threshold value of the interaction layer thickness as a func-

tion of the geometric parameters of the sample, is obtained. 

The decrease in the IL thickness for the threshold value is 

insignificant, within the limits of the predetermined margin 

of error, affects the magnitude of the critical force. 

 

1. Problem Statement 

 

Let us consider the pre-failure state of the layer with 

a finite thickness when the stress state in this layer is uni-

form in thickness and determined only by one component of 

the stress tensor. For the model representation of the deep 

excision as a physical cut with thickness 
0

δ  and the interac-

tion layer with Prandtl links [25, 26] on its continuation see 

Fig. 1. 

It is supposed that Jung’s modulus E in bodies 1 and 2 

is identical to the stiffness of the Prandtl links in the interac-

tion layer. The physical cut banks are loaded at distance a 

from the origin of coordinates with symmetrical concentrat-

ed force P referred to the sample thickness. The rest of the 

external surface of the body is stress free. In addition, we 

assume that the plane passing through the points K K   is 

infinitely removed from the origin and is fixed. In this case 

the stress state in the layer is found as 

 
2

δ

1

11

0

Eu
  ,  (1) 

where  1 2u x  is the vertical displacement of the layer’s 

boundary O K  . Because of the problem’s symmetry, only 

body 1 will be considered. The console’s behavior will be 

described by correlations from the bending theory [27]. The 

bending equations for each of the console’s sections are 

recorded as 
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 (2) 

where 3 /12D Eh  is the stiffness of a strip with a unit 

thickness; P is force P projected onto the 0X1 axis. 

 

Fig. 1. Loading a sample with a fine notch 

The equation for the field of displacements is derived 

by integrating equations (2) and taking account of the atten-

uation of displacements in point K   and recorded as 
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where 4

0
2 δ

E
R

D
 .  

In point O  the displacement is 1 11 0ε δ / 2u   at wedg-

ing effort P . To determine integration constants 

1 2 1 2, , ,k k L L  and the wedging effort value, the conditions for 

uninterrupted displacement  1 2u x , turning angle  1 2u x , 
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bending torque  1 2Du x , and shearing force  1 2Du x  in 

point О will be recorded. When wedging effort P is 

reached, the displacement will reach u  in point О; the sys-

tem of five linear equations relative to 
1 2 1 2, , ,k k L L  and Р is 

derived from (3) and recorded as 
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Then system (4) is used to find constants 

1 ( 1)k R Ra u   , 
3 3

2

3 3
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and force value 

 
32

1

R D
P u

R a



. (5) 

The formula for the wedging force is derived by substi-

tuting equation (1) to (5) and recorded as 

 
 

3

11 0σ δ

1

R D
P

E Ra



.  (6) 

Now let us compare the value of Ra  with one. The 

equation derived from (2) and (3) is recorded as 

 4

0

6
δ

a h
Ra

h
 .  (7) 

It follows from representation (7) that one can always 

determine the range 0 0δ δk  at a given 
a

h
, in which the 

following condition will be met to a specified accuracy: 

 4

0

6 1
δ

a h

h
 and 1Ra Ra  .  (8) 

It is essential that 0δ , meeting condition (8), depends 

on scale factor 
a

h
. For example, if 10a h , the substitu-

tion of (8) at 2

0δ 10h    will lead to an inaccuracy of less 

than 2 %. 

When condition (8) is met, the wedging force-to-butt 

stress ratio will be recorded as 

 11 0σ δ
2 6

h
P h

a
 .  (9) 

Formula (9) can be used to find critical force values on 

the basis of various criteria of strength. It follows from 

Rankine’s criterion at 11 11σ σk  that 

 
11 0σ δ

2 6

k

k

h
P h

a

  .  (10) 

If to use specific available energy 
 

2

11σ
φ φ

2

k

k
E

   as 

the criterion of strength, the critical force is found as 

 φ

0φ δ
2 3

k k

h
P hE

a
 .  (11) 

The formula of finding the energy product (EP criteri-

on) proposed in works [21,22] for use as the critical condi-

tion is 

 0 02γ 2γ δ φ  .  (12) 

Taking account of (12), the critical force equation takes 

on the following form 

 
γ

02γ
2 3

k

h
P hE

a
 .  (13) 

Note that conditions (10), (11), and (13) suggest that the 

stress field in the excision butt region is finite. GC for the 

excision in the form of a mathematical cut is recorded as 

[28, 29] 

 
3 2

2 3
k IC

h
P K

a
 ,  (14) 

where ICK  is the mode-I fracture toughness. 

It is essential that the conditions for the start of the ex-

cision’s motion in forms (10) and (11) depend on thickness 

0δ  and condition (13) does not depend on the excision 

thickness given that 0δ  meets (8). 

If to make an experimental excision compliant with (8), 

it will be possible to find the critical force value and then 

the critical EP value from (13) as 

 
2

2

0 3

12
2γ k

a
P

Eh

 .  (15) 

Since the wedging effort value must not depend on the 

modeling representation, the EP criterion representation will 

be found by equaling the critical forces in (13) and (14) and 

considering the failure viscosity: 

 
2

02γ ICK

E
 .  (16)  

Note that equation (16) corresponds to GC of quasi-

brittle failure mechanics at 0γ  treated as specific surface 

energy. 

It follows from (16) that the EP criterion is determined 

by the material properties and does not depend on the inter-
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action layer’s thickness given that (8) holds. It follows from 

(13) that the critical force for geometrically similar samples 

const
a

h

 
 

 
 is proportionate to the square root of the con-

sole thickness. Therefore, the scaling effect holds. 

 

2. Finding Linear Dimension 

 

Works [30, 31] considered the representative volume 

for determining the average deformation energy controlling 

the state of pre-failure. If to consider the EP criterion in the 

element of the 0 0δ δ  interaction layer, the EP by virtue of 

Neuber’s – Novozhilov’s concept will be recorded as 

 
2

11
0

σ
2γ δ

2
k

E
 ,  (17) 

where  
0δ

11 11 2 2

0 0

1
σ σ

δ
x dx  . 

The average element stress is found by virtue of (1) via 

the distribution of displacements as 

  
0δ

11 1 2 2

0 0 00

2 1 2
σ

δ δ δ

E E
u x dx u  .  (18) 

The average element displacement is found from (3) 

within the limits of (8) as 
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.  

Taking account of the latter equation, (18) takes on the 

following form: 
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The equation derived from (17) and (19) is 

 
 0

2
δ

0

0

0
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The equation derived from (20) at 0δ 0  is 

  
2

0 02γ 2γ 1 δk R  .  (21) 

Assuming that accuracy 2γk  must be less than 2% of 

02γ , the estimate of the ratio of layer thickness 0δ  to con-

sole height h is found from (21) as 

 
 

1 3
4

0
0,01δ

0,001
6h

 
 
 
 

.  (22) 

At 10a h  estimate (22) restricts the LP-console 

height ratio and assumption (8) will hold to an accuracy of 

less than 1.2 %. 

The behavior of EP γk  in the layer’s butt zone (solution 

(20)) is shown at variously configured excisions in Fig. 2 on 

discrete element 
0 0δ δ  in relation to 

0γ  from the common 

logarithm of 
0δ , i.e., the ratio of 

0δ  to unit length for steel 

with Jung’s modulus 112.1 10E    Pa. Samples 1, 2, and 3 

were taken with 0.05h  , 0.1h  , and 0.2h   m. The 

wedging force application point was selected at a distance 

10a h . 

 

Fig. 2. Relation of the relative EP value  

to the linear parameter 

 

The plot number corresponds to the sample number. It 

follows from analyzing the plots in Fig. 2 that solution (20) 

restricts the reference value of 
0γ  from below. That said, it is 

possible to choose the range of small values of 0 0δ 0;δk   , 

where 
02γ 2γk   holds to a specified accuracy. 

In this respect, layers with thicknesses 0 0δ δk  are per-

missible for the proposed model, whereas the 0 0δ δ  butt 

element is the volume of pre-failure within the criterion

02γ 2γk  . Note that, the increasing console height increas-

es the value of 0δ
k  in Fig. 2 by virtue of estimate (22) and 

behavior of solution (20). 

 

Conclusion 

 

The statement of the problem with an explicitly introduced 

LP has shown the possibility of using the EP as the criterion of 

failure. This criterion allows finding to a specified accuracy the 

critical load compliant with GC. The finiteness of stresses for 

materials with pronounced elastoplastic properties, within the 

framework of known criteria, allows one to take into account 

the nucleation and development of plasticity zones in the state 

of pre-fracture. The follow-up studies will take account of the 

influence of all the components of the stress tensor in the inter-

action layer on the basis of the variation statement [21] with the 

explicitly introduction of the LP, including for non-

symmetrical loading and taking account of elastic plastic mate-

rial properties. 
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