Расчетно-экспериментальные исследования резонансных многослойных звукопоглощающих конструкций

Аннотация


Представлена математическая модель настройки многослойных звукопоглощающих конструкций (ЗПК) на заданные частоты поглощения на основе опытных данных частотных характеристик однослойных ЗПК. В качестве ЗПК рассматриваются ячеистые образцы, представляющие собой резонаторы Гельмгольца, имеющие резонансный характер звукопоглощения. На интерферометре определены резонансные частоты однослойных ЗПК ячеистого типа с различными геометрическими параметрами. Комбинирование между собой таких однослойных ЗПК и составление их в многослойную конструкцию приводит к увеличению ширины спектра звукопоглощения и увеличению коэффициента поглощения. Математическая модель акустической системы многослойных резонансных звукопоглощающих конструкций построена на основе акустомеханической аналогии с колебательной системой, где количество степеней свободы соответствует количеству слоев ЗПК. Модель позволяет найти параметры ЗПК, настроенные на заданное соотношение резонансных частот. На основе разработанной математической модели по резонансным частотам однослойных ячеистых ЗПК аналитически определены резонансные частоты многослойных ЗПК. Экспериментальная проверка результатов расчета показала, что отличие экспериментальных и расчетных резонансных частот ЗПК составляет не более 3%. Таким образом, предложена и экспериментально подтверждена расчетно-экспериментальная методика определения геометрических параметров резонансных ячеистых заполнителей для создания многослойных ячеистых ЗПК, используемых в конструкциях авиационных двигателей.

Об авторах

А Н Аношкин

Пермский национальный исследовательский политехнический университет

А Г Захаров

ОАО «Пермский завод „Машиностроитель“»

Н А Городкова

ОАО «Авиадвигатель»

В А Чурсин

ОАО «Авиадвигатель»

Список литературы

  1. Чигрин В.С., Белова С.Е. Конструкция форсажных камер и выходных устройств авиационных ГТД / Рыбинск. гос. авиац. техн. ун-т. - Рыбинск, 2004. - 38 с.
  2. Mao Q., Pietrzko S. Experimental study for control of sound transmission through double glazed window using optimally tuned Helmholtz resonators // Applied Acoustics. - 2010. - Vol. 71. - Р. 32-38.
  3. Ho J.H., Berkhoff A. Comparisons between various cavity and panel noise reduction control methods in double-panel structures // The Journal of the Acoustical Society of America. - 2012. - Vol. 131(4). - Р. 3501-3501.
  4. Jen-Hsuan Ho, Berkhoff A. Development of dynamic loudspeakers modified as incident pressure sources for noise reduction in a double panel structure // ICSV20. - Bangkok, Thailand. - July, 2013, Р. 7-11.
  5. Pan J., Guo J., Ayres C. Improvement of sound absorption of honeycomb panels. Proceedings of Acoustics // Busselton, Western Australian, Australia. - November 2005. - Р. 9-11.
  6. Jingnan Guo, Jie Pan Turning honeycomb panels into sound absorbers // ICSV20. - Bangkok, Thailand, July 2013. - Р. 15-21.
  7. Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field / K. Hirosawa [et al.] // Journal of the Acoustical Society of America. - 2009. - Vol. 126(6). - P. 3020-3027.
  8. Robinson P., Xiang N. On the subtraction method for in-situ reflection and diffusion coefficient measurements // Journal of the Acoustical Society of America. - 2010. - Vol. 127(3). - P. EL99-EL104.
  9. Recognition of layered structure using phase-frequency characteristics of reflected sound waves / Wang Shuozhong, Qian Zhenxing, Wang Luxian, Feng Guorui, Chen Yunfei, Wang Runtian // ICSV20. Bangkok, Thailand, July 2013. - Vol. 43-45.
  10. Acoustic transmission control using active panels: an experimental study of its limitations and possibilities / X. Yu, H. Zhu, R. Rajamani, K. Stelson // Smart Materials and Structures. - 2007. - Vol. 16.
  11. Excess Sound Absorption at Normal Incidence by Two Microperforated Panel Absorbers with Different Impedance / M. Yairi, K. Takebayashi, K. Sakagami, K. Takebayashi // Acoustic Science and Technology. - 2009. - Vol. 32. - P. 194-200.
  12. Liu J., Herrin D.W. Enhancing Micro-Perforated Panel Attenuation by Partitioning the Adjoining Cavity // Applied Acoustics. - 2010. - Vol. 71. - P. 120-127.
  13. Pilot Study on Wideband Sound Absorber Obtained by Combination for Two Different Micro-Perforated (MPP) Absorbers / K. Sakagami, Y. Nagayama, M. Morimoto, M. Yairi // Acoustic Science and Technology. - 2009. - Vol. 30. - P. 154-156.
  14. Jiao F.L., Liu K. Discussions on the Utmost Frequency Band of a Micro-Perforated Panel Absorber // Applied Acoustics. - 2001. - Vol. 6. - P. 36-40.
  15. Cervenka M., Bednaˇr´ık M. On the Optimization of an Acoustic Resonator Shape with Respectto Acoustic Pressure Amplitude // Acta Acust. United Ac. - 2013. - Vol. 99 (2). - P. 183-192.
  16. Measurements of macrosonic standing waves in oscillating closed cavities / Ch.C. Lawrenson, B. Lipkens, T.S. Lucas, D.K. Perkins, T.W. Van Dorenm // J. Acoust. Soc. Am. - 1998. - Vol. 104 (2). - P. 623-636.
  17. Nonlinear standing waves in an acoustical resonator / Yu.A. Ilinskii, B. Lipkens, T.S. Lucas, T.W. Van Doren, E.A. Zabolotskaya // J. Acoust. Soc. Am. - 1998. - Vol. 104 (5). - P. 2664-2674.
  18. ˇCervenka Milan, Bednaˇr´ık Michal Finite-amplitude standing waves in optimized acoustic resonators // ICSV20. - Bangkok, Thailand, July 2013. - P. 94-97.
  19. Ege K.T., Boncompagne B., Laulagnet J.L. Guyader, Experimental estimations of viscoelastic properties of multilayer damped plates in broad-band frequency range // Proceedings of InterNoise. - New York, USA. - 2012.
  20. Xie J., Ling S.F. A method of measuring acoustic absorption coefficient of a material specimen using a dynamic microphone // Journal of Mechanical Science and Technology. - 2012. - Vol. 26(3). - P. 741-748.
  21. Arenas J.P., Crocker M.J. Recent trends in porous sound absorbing materials for noise control // Sound and Vibration. - 2010. - Vol. 44 (7). - P. 12-17.
  22. Ren M., Jacobsen F. A method of measuring the dynamic flow resistance and reactance of porous materials // Applied Acoustics. - 1993. - Vol. 39. - P. 265-276.
  23. Bo Z., Tianning C. Calculation of sound absorption characteristics of porous sintered fiber metal // Appl. Acoust. - 2009. - Vol. 70 (2). - P. 337-346.
  24. Atalla Y., Panneton R. Inverse acoustical characterization of open cell porous media using impedance tube measurements // Canadian Acoustics. - 2005. - Vol. 33 (1). - P. 11-24.
  25. Allard J.F, Attalla N. Propagation of sound in porous media: modelling sound absorbing materials. - Chichester: John Wiley & Sons, 2009. - P. 16-106.
  26. Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity / C. Wang, L. Cheng, J. Pan, G. Yu // J. Acoust. Soc. Am. - 2010. - Vol. 127 (1). - P. 238-246.
  27. Hannink M. Acoustic resonator for the reduction of sound radiation and transmission: PhD Thesis / University of Twente, Enschede, The Netherlands. - May 2007.
  28. Selamet A., Lee I. Helmholtz resonator with extended neck // J. Acoust. Soc. Am. - 2003. - Vol. 113(4). - P. 1975-1985.
  29. A multiple degree of freedom electromechanical Helmholtz resonator / F. Liu, S. Horowitz, T. Nishida, L. Cattafesta, M. Sheplak // J. Acoust. Soc. Am. - 2007. - Vol. 122(1). - P. 291-301.
  30. Cox T.J., D’Antonio P. Acoustic Absorbers and Diffusers // Theory, Design and Application. - London: Spon Press, 2004.
  31. Iwan Yahya, Harjana New sound absorption improvement strategy for qrd element // ICSV20. - Bangkok, Thailand, July 2013. - P. 112-118.
  32. Bielak G.W., Premo J.W., Hersh A.S. Advanced turbofan duct liner concepts // NASA. - 1999. - CR-1999-209002.
  33. Khaletskiy Yu., Pochkin Ya., Igolkin A. Acoustic response of a fan duct liner including porous material // ICSV20. - Bangkok, Thailand, July 2013. - P. 141-145.
  34. Jones M.G., Watson W.R., Parrott T.L. Benchmark Data for Evaluation of Aeroacoustic Propagation Codes with Grazing Flow // AIAA. - 2005. - P. 2005-2853.
  35. Validation of an Inverse Analytical Technique to Educe Liner Impedance with Grazing Flow / T. Elnady, M. Musharrof, H. Bodйn, B. Elhadidi // AIAA. - 2006. - P. 2006-2639.
  36. Ch. V., Surya Narayana Reddi, Chandramouli Padmanabhan. Simplified impedance models for Helmholtz resonator with intrusions // ICSV20. - Bangkok, Thailand, July 2013. - P. 158-161.
  37. Mohammad H. Farshidianfar and Anooshiravan Farshidianfar. Mode count and modal density of acoustical cavities: bars, plates and cylindrical shells // ICSV20. - Bangkok, Thailand, July 2013. - P. 172-175.
  38. Desai Y.M., Ramtekkar G.S., Shah A.H. Dynamic analysis of laminated composite plates using a layerwise mixed finite element model // Composite Structures. - 2007. - Vol. 59 (2). - P. 237-249.
  39. Jorge P. Arenas, Luis Darmendrail. Measurement of material’s acoustic properties using a volume velocity source // ICSV19. - Vilnius, Lithuania, July 2012. - P. 8-12.
  40. Morfey C.L. Sound Transmission and Generation in Ducts with Flow // Journal of Sound and Vibration. - 1971. - Vol. 14. - P. 37-55.
  41. Tapken Ulf, Nagai Kenichiro Effects impairing the synthesis of acoustic duct modes with loudspeaker arrays // ICSV19. - Vilnius, Lithuania, July 2012. - P. 8-12.
  42. Tapken U., Enghardt L. Optimization of sensor arrays for radial mode analysis in flow ducts in 12th. // AIAA. - CEAS Aeroacoustic Conference, May 2006. - P. 8-10.
  43. Walker B. Sensitivity issues in active control of circular duct modes using axially spaced actuator arrays // Noise Control Engineering Journal. - 2001. - Vol. 49. - P. 6-14.
  44. Bodén Hans, Zhou Lin An experimental study of the effect of flow and high level acoustic excitation on the acoustic properties of perforates and orifices // ICSV20. - Bangkok, Thailand, July 2013. - P. 180-183.
  45. Evaluation of two alternative procedures for measuring airflow resistance of sound absorbing materials / Jorge P. Arenas, Romina del Rey, Jesus Alba, Jaime Ramis // ICSV20. - Bangkok, Thailand, July 2013. - P. 215-219.
  46. Bo Zhang, Jian Zhu Static and dynamic airflow resistance properties of porous metals // ICSV20. - Bangkok, Thailand, July 2013. - P. 233-238.
  47. Abom M., Bod´en H. Error analysis of two-microphone measurements in ducts with flow // The Journal of the Acoustical Society of America. - 1988. - Vol. 83.
  48. Antti Hynninen, Mats Abom. Estimating the high frequency in-duct sound power using sound pressures at the duct wall // ICSV20. - Bangkok, Thailand, July 2013. - P. 251-255.
  49. Ih J.G. The reactive attenuation of rectangular plenum chambers // Journal of Sound and Vibration. - 1992. - Vol. 157 (1). - P. 93-122.
  50. Бакланов В.С., Постнов С.С., Постнова Е.А. Расчет резонансных звукопоглощающих конструкций для современных авиационных двигателей // Математическое моделирование. - 2007. - T. 19, № 8. - C. 22-30.
  51. Ржевкин С.Н. Курс лекций по теории звука. - М.: Изд-во МГУ, 1960.
  52. Мунин А.Г., Квитка В.Е. Авиационная акустика. - М.: Машиностроение, 1973. - 448 с.
  53. Tony L. Parrott, Michael G. Jones. Parallel-element liner impedances for improved absorption of broadband sound in ducts // Noise Control Eng. J. - 1995. - Vol. 43 (6).
  54. Gaeta R.J., Ahuja K.K. A Tunable Acoustic Liner // Georgia Institute of Technology, Atlanta, AIAA. - Vol. 98.
  55. Городкова Н.А. Аналитическое определение резонансных частот многослойных звукопоглощающих конструкций // Защита населения от повышенного шумового воздействия. - СПб., 2011.
  56. Авиационная акустика: в 2 ч. / под ред. А.Г. Мунина. Ч. 1. Шум на местности дозвуковых пассажирских самолетов и вертолетов. - М.: Машиностроение, 1986. - 243 с.

Статистика

Просмотры

Аннотация - 189

PDF (Russian) - 122

Cited-By


PlumX


© Аношкин А.Н., Захаров А.Г., Городкова Н.А., Чурсин В.А., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах