Теория неупругости без поверхности нагружения и ассоциированного закона течения

Аннотация


На основе анализа экспериментальной петли гистерезиса (циклической диаграммы) стали 40Х16Н9Г2С выделены три участка, характеризующие различное поведение напряжений, т.е. выделены три типа напряжений. Для каждого типа напряжений сформулированы соответствующие эволюционные уравнения, характеризующие анизотропное упрочнение. Для описания изотропного упрочнения вводится эволюционное уравнение для параметра насыщения напряжения второго типа. В случае дополнительного изотропного упрочнения при непропорциональном циклическом нагружении параметр насыщения напряжения второго типа принимается зависящим от меры непропорциональности (сложности) процесса нагружения. Для описания явления вышагивания (ratcheting) при несимметричных мягких циклических нагружениях параметр, входящий в эволюционное уравнение для напряжений первого типа, принимается зависящим от накопленной деформации. Девиатор напряжений определяется как сумма девиаторов напряжений трех типов. Для описания нелинейного процесса накопления повреждений вводится кинетическое уравнение, базирующееся на энергетическом принципе, где в качестве энергии, расходуемой на создание повреждений в материале, принимается энергия, равная работе напряжений второго типа на поле деформаций. При несимметричных мягких циклических нагружениях в случае вышагивания (ratcheting) петли гистерезиса вводится кинетическое уравнение для повреждения, обусловленного работой напряжений первого типа на поле деформаций. Выделяются материальные функции, замыкающие теорию, формулируется базовый эксперимент и метод идентификации материальных функций. Приводятся материальные функции стали 40Х16Н9Г2С и результаты верификации теории при пропорциональном (простом) жестком циклическом нагружении и непропорциональном (сложном) нагружении по траектории деформаций в виде концентрических окружностей с общим центром в начале координат. Рассматривается пять витков траектории, начиная с траектории большой кривизны до траектории средней кривизны. Наблюдается надежное соответствие результатов расчетов и экспериментов.

Об авторах

В С Бондарь

Московский государственный машиностроительный университет (МАМИ)

В В Даншин

Московский государственный машиностроительный университет (МАМИ)

Список литературы

  1. Бондарь В.С. Неупругость. Варианты теории. - М.: Физматлит, 2004. - 144 с.
  2. Бондарь В.С., Даншин В.В. Пластичность. Пропорциональные и непропорциональные нагружения. - М.: Физматлит, 2008. - 176 с.
  3. Bondar V.S. Inelasticity. Variants of the theory. - New York: Begell House, 2013. - 194 p.
  4. Волков И.А., Коротких Ю.Г. Уравнения состояния вязкоупругопластических сред с повреждениями. - М.: Физматлит, 2008. - 424 с.
  5. Bari S., Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation // International Journal of Plasticity. - 2002. - Vol. 18. - P. 873-894.
  6. Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel: Damage evolution and damage-coupled viscoplastic constitutive model / G. Kang, Y. Liu, J. Ding, Q. Gao // Int. J. of Plasticity. - 2009. - Vol. 25. - P. 838-860.
  7. Kan Q., Kang G. Constitutive model for uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy at room temperature // Int. J. of Plasticity. - 2009. doi: 10.1016/j.ijplas.2009.08.005.
  8. Chaboche J.-L. A review of some plasticity and viscoplasticity constitutive theories // Int. J. of Plasticity. - 2008. - Vol. 24. - P. 1642-1692.
  9. Rahman S.M., Hassan T., Corona E. Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure // Int. J. of Plasticity. - 2008. - Vol. 24. - P. 1756-1791.
  10. Abdel-Karim M. Modified kinematic hardening rules for simulations of ratchetting // Int. J. of Plasticity. - 2009. - Vol. 25. - P. 1560-1587.
  11. Abdel-Karim M. An evaluation for several kinematic hardening rules on prediction of multiaxial stress-controlled ratchetting // Int. J. of Plasticity. - 2010. - Vol. 26. - P. 711-730.
  12. Dafalias Y.F., Feigenbaum H.P. Biaxial ratchetting with novel variations of kinematic hardening // Int. J. of Plasticity. - 2011. - Vol. 27. - P. 479-491.
  13. Chaboche J.-L., Kanouté P., Azzouz F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions // Int. J. of Plasticity. - 2012. - Vol. 35. - P. 44-66.
  14. Бондарь В.С., Бурчаков С.В., Даншин В.В. Математическое моделирование процессов упругопластического деформирования и разрушения материалов при циклических нагружениях // Проблемы прочности и пластичности: межвуз. сб. Вып. 72. - Нижний Новгород: Изд-во Нижегород. гос. ун-та, 2010. - С. 18-27.
  15. Бондарь В.С., Даншин В.В., Макаров Д.А. Математическое моделирование процессов деформирования и накопления повреждений при циклических нагружениях // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2014. - № 2. - С. 125-152.
  16. Охлопков Н.Л. Закономерности процессов упругопластического деформирования металлов при сложном напряженном состоянии и нагружении: автореф. … дис. д-ра техн. наук / Твер. гос. техн. ун-т. - Тверь, 1997. - 35 с.
  17. Ишлинский А.Ю. Общая теория пластичности с линейным упрочнением // Укр. матем. журн. - 1954. - Т. 6. - Вып. 3. - С. 314-324.
  18. Prager W. The theory of plasticity: A. Survey of Recent Achievements // Proc. Inst. Mech. Engrs. London. 1955. - 169.41.
  19. Amstrong P.J., Frederick C.O. A mathematical represention of the multiaxial bauscinger effect // CEGB Report No. RD/B/N/ 731. - 1966.
  20. Кадашевич Ю.И. О различных тензорно-линейных соотношениях в теории пластичности // Исследования по упругости и пластичности. - Л.: Изд-во ЛГУ, 1967. - Вып.6. - С. 39-45.
  21. Ohno N., Wang J.-D. Kinematic hardening rules with critical state of dynamic recovery, part 1: formulations and basic features for ratcheting behavior // International Journal of Plasticity. - 1993. - Vol. 9. - P. 375-390.
  22. Новожилов В.В. О сложном нагружении и перспективах феноменологического подхода к исследованию микронапряжений // ПММ. - 1964. - Т. 28. - Вып. 3. - С. 393-400.
  23. Chaboche J.-L., Dang-Van K., Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel // Proceedings of the 5th International Conference on SMiRT. Div L. - Berlin. Paper No. L. 11/3 - 1979.
  24. Ильюшин А.А. Механика сплошной среды. - М.: Изд-во МГУ, 1990. - 310 с.

Статистика

Просмотры

Аннотация - 151

PDF (Russian) - 66

Cited-By


PlumX


© Бондарь В.С., Даншин В.В., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах