TWO-DIMENSIONAL (SHELL-TYPE) AND THREE-DIMENSIONAL MODELS FOR ELASTIC THIN-WALLED CYLINDER

Abstract


The variant of the classical theory of shells (CTS) built on the basis of Lagrange analytical me- chanics is under analysis. The direct approach to shells as material surfaces, the elements of which are material normals with five degrees of freedom - three translations and two rotations, is used. The sys- tem of equations and boundary conditions is derived from the principle of virtual work with direct tensor calculus. Such approach makes it possible to discard the problems and controversies characteristic of conventional concepts. This paper is aimed at comparing this theory of shells (CTS) with widely known variants, as well as with the solution of the spatial problem.Problems for the thin-walled infinite cylinder have been formulated and solved on the basis of three theories: CTS, the well-known theory of A.L. Goldenweiser and three-dimensional elasticity the- ory. For the shell-based models, we have linear algebraic systems, for the three-dimensional models - the ordinary differential equation (ODE) over the thickness. Exponential solutions of static problems with different variability are built analytically. Numerical solutions using computer mathematics have been found.In comparing exponents of solutions with the boundary load, it was found that for small values of the wave number and the shell thickness, both shell theories agree well with the three-dimensional the- ory. As the wavelength decreases relative to the shell thickness, their uncertainty increases, though the area of CTS applicability has turned to be somewhat wider than that in the theory of A.L. Goldenweiser.According to both theories, the detected displacements of the shell under the load rapidly changing by the coordinates are well coordinated with each other. The coordination with the three- dimensional theory is suitable for small values of wave numbers. The calculations have shown that, under external load having the axial and circumferential components, CTS predicts a normal displace- ment component with a greater accuracy.

About the authors

V V Yeliseyev

Saint-Petersburg State Polytechnic University

Email: yeliseyev@inbox.ru
29, Polytehnicheskaya str., 195251, Saint-Petersburg, Russian Federation

T V Zinovieva

Saint-Petersburg State Polytechnic University

Email: tatiana.zinovieva@gmail.com
29, Polytehnicheskaya str., 195251, Saint-Petersburg, Russian Federation

References

  1. Базаренко Н.А., Ворович И.И. Асимптотическое поведение решения задач теории упругости для полого цилиндра конечной длины при малой толщине // Прикладная математика и механика. - 1965. - Т. 29, вып. 6. - С. 1035-1062.
  2. Бидерман В.Л. Механика тонкостенных конструкций. - М.: Ма-шиностроение, 1977. - 485 с.
  3. Биргер И.А. Стержни, пластинки, оболочки. - М.: Наука, 1992. - 392 с.
  4. Гольденвейзер А.Л. Теория упругих тонких оболочек. - М.: Наука, 1976. - 512 c.
  5. Гольденвейзер А.Л., Лидский В.Б., Товстик П.Е. Свободные ко-лебания тонких упругих оболочек. - М.: Наука, 1979. - 383 c.
  6. Доннелл Л.Г. Балки, пластины и оболочки. - М.: Наука, 1982. - 568 с.
  7. Еремеев В.А., Зубов Л.М. Механика упругих оболочек. - М.: Наука, 2008. - 280 с.
  8. Новожилов В.В., Черных К.Ф., Михайловский Е.М. Линейная теория тонких оболочек. - Л.: Политехника, 1991. - 656 с.
  9. Петрашкевич В. Геометрически нелинейные теории тонких упругих оболочек // Успехи механики - 1989. - Т. 12 - С. 51-130.
  10. Чернина В.С. Статика тонкостенных оболочек вращения. - М.: Наука, 1968. - 456 c.
  11. Lewicka M., Pakzad M.R. The infinite hierarchy of elastic shell mod-els: some recent results and a conjecture // Infinite Dimensional Dy-namical Systems. Series: Fields Institute Communications. - Springer, 2013. - Vol. 64. - Р. 407-420. doi: 10.1007/978-1-4614-4523-4_16
  12. Steigmann D.J. Koiter’s Shell theory from the perspective of three-dimensional nonlinear elasticity // Journal of Elasticity. - 2013. - Vol. 111. - Iss. 1. - P. 91-107.
  13. Yaghoubshahi M., Asadi E., Fariborz S.J. A Higher-order shell model applied to shells with mixed boundary conditions // Journal of Mechanical Engineering Science. - 2011. - Vol. 225. - No. 2. - P. 292-303. doi: 10.1243/09544062JMES2050
  14. Елисеев В.В. Механика упругих тел. - СПб.: Изд-во С.-Пе¬терб. гос. политехн. ун-та, 2003. - 336 с.
  15. Елисеев В.В. К нелинейной теории упругих оболочек // Научно-технические ведомости Санкт-Петербургского государственного технического университета. - 2006. - № 3. - С. 35-39.
  16. Berdichevsky V.L. Variational principles of continuum mechanics. Vol. 2. Applications. - Springer-Verlag Berlin Heidelberg, 2009. - 1014 p.
  17. Eliseev V., Vetyukov Yu. Finite deformation of thin shells in the con-text of analytical mechanics of material surfaces // Acta Mechanica. - 2010. - Vol. 209. - Iss. 1-2. - P. 43-57. doi: 10.1007/s00707-009-0154-7
  18. Eliseev V., Vetyukov Yu. Theory of shells as a product of analytical technologies in elastic body mechanics // Shell Structures: Theory and Applications. - 2014. - Vol. 3. - P. 81-85.
  19. Зиновьева Т.В. Вычислительная механика упругих оболочек вращения в машиностроительных расчетах // Современное машиностроение. Наука и образование: материалы 2-й Междунар. науч.-практ. конф. - Санкт-Петербург, 2012. - C. 335-343.
  20. Бахвалов Н.С., Жидков Н.П., Кобельков Г.Г. Численные методы. - М.: Бином. Лаборатория знаний, 2011. - 640 с.
  21. Самарский А.А., Гулин А.В. Численные методы. - М.: Наука, 1989. - 432 с.
  22. Borwein J.M., Skerritt M.B. An introduction to modern mathematical computing: with Mathematica. - Springer, 2012. - Vol. XVI. - 224 p.

Statistics

Views

Abstract - 83

PDF (Russian) - 112

Cited-By


PlumX


Copyright (c) 2014 Yeliseyev V.V., Zinovieva T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies