Исследование влияния параметров напряженного состояния фрагментов разломных зон на особенности их механического отклика при сдвиговом деформировании

Аннотация


Работа посвящена теоретическому исследованию влияния ряда параметров напряженного состояния фрагментов залеченных разломных зон на особенности их механического отклика при сдвиговом деформировании в условиях неравноосного сжатия. Исследование проводилось на основе компьютерного моделирования методом подвижных клеточных автоматов. В качестве основного параметра напряженного состояния среды в работе использован безразмерный параметр - степень неравноосности сжатия, характеризующий отношение бокового и нормального напряжений в плоскости деформирования. Основной целью работы являлся анализ зависимостей сдвиговой прочности, величины предельной сдвиговой деформации и изменения объема фрагмента среды (дилатансии) от степени неравноосности сжатия на начальной стадии активизации фрагмента разломной зоны. Показано, что важным фактором, влияющим на условия, при которых происходит активизация залеченной разломной зоны, является степень неравноосности сжатия среды. При этом величина сдвиговых напряжений, действующих во фрагменте среды, а также соответствующие ей уровни предельной сдвиговой деформации и дилатансии, при которых возможна активизация разломной зоны, существенно зависят от динамики изменения и соотношения локальных значений некоторых инвариантов тензора напряжений. Среди них можно выделить такие характеристики напряженного состояния, как давление и интенсивность напряжений. Это связано с тем, что данные параметры определяют возможность функционирования в геологической среде одного из ключевых деформационных механизмов, который связан с формированием и эволюцией повреждений на границах раздела структурных элементов в блочной среде. В частности, снижение во фрагменте среды уровня давления при относительно низких уровнях интенсивности напряжений может приводить к увеличению его предельной сдвиговой деформации и дилатансии в момент начала активизации разломной зоны. В то же время значительное увеличение интенсивности напряжений при одновременном снижении давления может приводить к значительному снижению сдвиговой прочности геосреды.

Об авторах

С В Астафуров

Институт физики прочности и материаловедения СО РАН

Email: svastafurov@gmail.com
634050, Томск, пр. Ленина, 36

Е В Шилько

Институт физики прочности и материаловедения СО РАН

Email: shilko@ispms.tsc.ru
634050, Томск, пр. Ленина, 36

С Г Псахье

Институт физики прочности и материаловедения СО РАН

Email: sp@ms.tsc.ru
634050, Томск, пр. Ленина, 36

Список литературы

  1. Кочарян Г.Г., Павлов Д.В. Нарушение и залечивание зон локализации деформаций в массиве горных пород // Физическая мезомеханика. - 2007. - Т. 10, №1. - С. 5-18.
  2. Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов горных пород. - М.: Академкнига, 2003. - 423 с.
  3. Гольдин С.В. Макро- и мезоструктуры очаговой области землетрясения // Физическая мезомеханика. - 2005. - Т. 8, № 1. - С. 5-14.
  4. Адушкин В.В., Цветков В.М. Напряженное состояние и его связь со структурой горного массива // Физические процессы в геосферах при сильных возмущениях. - М.: Изд-во РАН, 1996. - С. 111-116.
  5. Николаевский В.Н. Трещиноватость земной коры как ее генетический признак // Геология и геофизика. - 2006. - Т. 47, № 5. - С. 646-656.
  6. Астафуров С.В., Шилько Е.В., Псахье С.Г. Влияние стесненных условий на характер деформирования и разрушения блочных сред при сдвиговом нагружении // Физическая мезомеханика. - 2009. - Т. 12, № 6. - С. 23-32.
  7. Исследование влияния неравноосности сжатия на дилатансионные процессы в блочной среде в условиях сдвигового деформирования / С.В. Астафуров, Е.В. Шилько, А.В. Андреев, С.Г. Псахье // Физическая мезомеханика. - 2011. - Т. 14, № 2. - С. 47-55.
  8. Ребецкий Ю.Л. Напряженное состояние слоя при продольном горизонтальном сдвиге блоков его фундамента // Поля напряжений и деформаций в земной коре. - М.: Наука, 1987. - С. 41-57.
  9. Ревуженко А.Ф. Механика упругопластических сред и нестандартный анализ. - Новосибирск: Изд-во Новосиб. ун-та, 2000. - 428 с.
  10. Косых В.П. Исследование особенностей сдвигового деформирования сыпучих материалов в стесненных условиях // Физико-технические проблемы разработки полезных ископаемых. - 2006. - № 6. - С. 63-67.
  11. Бишоп А.У. Параметры прочности при сдвиге ненарушенных и перемятых образцов грунта // Определяющие законы механики грунтов / под ред. В.Н. Николаевского. - М.: Мир, 1975. - С. 7-75.
  12. Нелинейная механика геоматериалов и геосред / П.В. Макаров, И.Ю. Смолин, Ю.П. Стефанов [и др.]. - Новосибирск: Гео, 2007. - 235 с.
  13. Макаров П.В., Еремин М.О. Модель разрушения хрупких и квазихрупких материалов и геосред // Физическая мезомеханика. -2013. - Т. 16, № 1. - С. 5-26.
  14. Стефанов Ю.П., Бакеев Р.А., Смолин А.Ю. О закономерностях локализации деформации в горизонтальных слоях среды при разрывном сдвиговом смещении основания // Физическая мезомеханика. -2009. - Т. 12, № 1. - С. 83-88.
  15. Структура и стадии формирования разломной зоны в слое геосреды при разрывном горизонтальном сдвиге основания / Ю.П. Стефанов, Р.А. Бакеев, Ю.Л. Ребецкий, В.А. Конторович // Физическая мезомеханика. - 2013. - Т. 16, № 5. - С. 41-52.
  16. Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials / S. Psakhie, E. Shilko, A. Smolin, S. Astafurov // Fracture and Structural Integrity. - 2013. - No. 24. - Р. 26-59. doi: 10.3221/IGF-ESIS.24.04
  17. Развитие подхода к моделированию деформирования и разрушения иерархически организованных гетерогенных, в том числе контрастных, сред / С.Г. Псахье, Е.В. Шилько, А.Ю. Смолин [и др.] // Физическая мезомеханика. - 2011. - Т. 14, № 3. - С. 27-54.
  18. Работнов Ю.Н. Механика деформируемого твердого тела. - М.: Наука, 1988. - 712 с.
  19. Александров А.В., Потапов В.Д. Основы теории упругости и пластичности. - М.: Высш. шк., 2002. - 400 с.
  20. Ben-Zion Y., Sammis C.G. Characterization of fault zones // Pure and Applied Geophysics. - 2003. - Vol. 160. - No. 3-4. - P. 677-715. doi: 10.1007/PL00012554
  21. Шерман С.И. Тектонофизический анализ сейсмического процесса в зонах активных разломов литосферы и проблема среднесрочного прогноза землетрясений // Геофизический журнал. - 2005. - Т. 27, № 1. - С. 20-38.
  22. Wibberley C.A.J., Yielding G., Toro G. Recent advances in the understanding of fault zone internal structure: a review // The internal structure of fault zones: implications for mechanical and fluid-flow properties / eds. C.A.J. Wibberley, W. Kurz, J. Imber, R.E. Holdsworth, C. Collettini. - London, Geological Society, Special Publications, 2008. - P. 5-33. doi: 10.1144/SP299.2
  23. Bell F.G. Engineering properties of soils and rocks. 4th ed. - Wiley-Blackwell, 2000. - 482 p.
  24. Aadnoy B., Looyeh R. Petroleum rock mechanics: drilling operations and well design. - Oxford, Gulf Professional Publishing, 2011. - 376 p
  25. Kahraman S., Alber M. Triaxial strength of a fault breccia of weak rocks in a strong matrix // Bulletin of Engineering Geology and the Environment. - 2008. - Vol. 67. - No. 3. - P. 435-441. doi: 10.1007/s10064-008-0152-3
  26. Панин В.Е., Гриняев Ю.В., Псахье С.Г. Физическая мезомеханика: достижения за два десятилетия развития, проблемы и перспективы // Физическая мезомеханика. - 2004. - Т. 7. - Спец. вып. Ч 1. - С. I-25-I-40.
  27. Панин В.Е., Гриняев Ю.В., Егорушкин В.Е. Основы физической мезомеханики структурно-неоднородных сред // Известия РАН. Механика твердого тела. - 2010. - № 4. - С. 8-29.
  28. Thermo-mechanical model of the Dead Sea Transform / S.V. Sobolev, A. Petrunin, Z. Garfunkel, A.Y. Babeyko // Earth and Planetary Science Letters. - 2005. - Vol. 238. - P. 78-95. doi: 10.1016/j.epsl.2005.06.058
  29. Gerya T.V., Yuen D.A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems // Physics of the Earth and Planetary Interiors. - 2007. - Vol. 163. - P. 83-105. doi: 10.1016/j.pepi.2007.04.015
  30. Методы и измерительные приборы для моделирования и натурных исследований нелинейных деформационно-волновых процессов в блочных массивах горных пород / В.Н. Опарин, Б.Д. Аннин, Ю.В. Чугуй [и др.]. - Новосибирск: Изд-во СО РАН, 2007. - 320 с.
  31. Садовский М.А. О естественной кусковатости горных пород // Доклады АН СССР. - 1979. - Т. 247, № 4. - C. 829-831.
  32. Mas D., Chemenda A.I. Dilatancy factor constrained from the experimental data for rocks and rock-type material // International Journal of Rock Mechanics and Mining Sciences. - 2014. - Vol. 67. - P. 136-144. doi: 10.1016/j.ijrmms.2013.12.014.
  33. Ребецкий Ю.Л. Дилатансия, поровое давление флюида и новые данные о прочности горных массивов в естественном залегании // Флюид и геодинамика. - М.: Наука, 2006. - С. 120-146.
  34. Onasch C.M., Farver J.R., Dunne W.M. The role of dilation and cementation in the formation of cataclasite in low temperature deformation of well cemented quartz-rich rocks // Journal of Structural Geology. - 2010. - Vol. 32. - No. 12. - P. 1912-1922. doi: 10.1016/j.jsg.2010.04.013.
  35. Ребецкий Ю.Л. Тектонические напряжения и прочность природных массивов. - М.: Академкнига, 2007. - 406 с.
  36. Ребецкий Ю.Л., Кучай О.А., Маринин А.В. Напряженное состояние и деформации земной коры алтае-саянской горной области // Геология и геофизика. - 2013. - Т. 54, № 2. - С. 271-291.
  37. Schmitt D.R., Currie C.A., Zhang L. Crustal stress determination from boreholes and rock cores: Fundamental principles // Tectonophysics. - 2012 - Vol. 580. - P. 1-26. doi: 10.1016/j.tecto.2012.08.029.
  38. Zang A., Stephansson O. Stress Field of the Earth's Crust. - London: Springer, 2010. - 322 p.

Статистика

Просмотры

Аннотация - 166

PDF (Russian) - 78

Cited-By


PlumX


© Астафуров С.В., Шилько Е.В., Псахье С.Г., 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах