РАСЧЕТ ФОРМЫ ИНСТРУМЕНТА ДЛЯ РАЗДАЧИ СРЕДНЕЙ ЧАСТИ ТРУБЫ ПО ЖЕСТКОЙ МАТРИЦЕ

Аннотация


В современном машиностроении в целом и в авиастроении в частности большое количество деталей получают листовой штамповкой. Для изготовления элементов гидрогазовых систем летательных аппаратов часто применяются формообразующие операции, в которых жидкости и резиноподобные материалы служат рабочей средой, передающей усилие прессования деформируемой заготовке. В настоящей работе рассматривается процесс раздачи средней части трубчатой заготовки из титанового сплава ОТ4-1. Внутреннее давление на трубчатую заготовку определяется действием рабочего тела при сжатии. Одним из значительных недостатков холодной листовой штамповки является пружинение материала после извлечения из оснастки. Поэтому форма матрицы, используемой для технологического процесса раздачи, должна задавать упреждающую форму трубчатой заготовки, обеспечивающую требуемую остаточную форму после разгрузки. Для определения такой формы матрицы формулируется и решается обратная задача. Реализация метода решения обратной задачи выполнена в системе MSC.Marc. Для осесимметричной формы детали используется двумерная постановка задачи. В случае тонкостенных конструкций моделирование процесса формообразования выполняется в условиях пластичности с учетом малых деформаций, но больших перемещений и поворотов (общая Лагранжева формулировка). Решение обратной контактной задачи формообразования находится итерационным методом, который построен на основе квазистатического вариационного принципа. Данный алго-ритм решения обобщается на трехмерные задачи, когда деталь имеет неосесим-метричную форму, в частности эллипсоидальную, тройник и т.д. В результате решения обратной контактной задачи формообразования трубча-той заготовки итерационным методом была определена требуемая геометрия жест-кой матрицы. Сравнение численных результатов с проведенным натурным экспе-риментом показало удовлетворительное совпадение. Таким образом, представ-ленный метод и его реализация в CAE-системе дает возможность проектировать оснастку на стадии подготовки производства.

Полный текст

Разработка и внедрение новых прогрессивных ме-тодов заготовительно-штамповочного производства, которые приводят к повышению размерно-геометри-ческой точности изделий, являются актуальными зада-чами. Необходимо внедрять новые теоретические мето-ды исследования процессов штамповки с целью сокра-щения сроков технологической подготовки производ-ства при внедрении новых деталей на промышленных предприятиях. Теоретическим и практическим вопросам формооб-разования деталей из тонкостенных трубчатых загото-вок посвящено большое количество работ [1–27]. В настоящей работе представлен способ расчета формы инструмента для раздачи средней части трубы по жесткой матрице, который основан на методе решения обратных задач упругопластичности по расчёту фор-мы оснастки, обеспечивающей теоретический контур тонкостенной детали с учетом пружинения материала заготовки.

Об авторах

К. С. Бормотин

Комсомольский-на-Амуре государственный университет

Д. А. Потянихин

Комсомольский-на-Амуре государственный университет

Мин Ко Хлайнг

Комсомольский-на-Амуре государственный университет

А. А. Синельщиков

Комсомольский-на-Амуре государственный университет

Список литературы

  1. Афанасьев А.Е., Каргин В.Р., Каргин Б.В. Компьютер-ный анализ процесса раздачи труб прессованием // Интернет-журнал Науковедение. – 2016. – Т. 8, № 2(33). – С. 97.
  2. Высокоэффективные технологические процессы изго-товления элементов трубопроводных и топливных систем лета-тельных аппаратов / В.А. Барвинок, А.Н. Кирилин, А.Д. Комаров, В.К. Моисеев, В.П. Самохвалов, Ю.В. Федо-тов. – М.: Наука и технологии, 2002. – 393 с.
  3. Веселов А.А. Определение размеров концов труб после раздачи методом пластического деформирования // Морской вестник. – 2012. – № 1(41). – С. 15–16.
  4. Громова Е.Г., Еськина Е.В., Шаров А.А. Исследование процесса стесненного изгиба листовых деталей с использовани-ем полиуретана методом конечно-элементного моделирования // Проблемы машиностроения и автоматизации. – 2011. – № 3. – С. 86–90.
  5. Каргин В.Р., Афанасьев А.Е., Каргин Б.В. Влияние про-тиводавления при прямом прессовании труб с раздачей // Ин-тернет-журнал Науковедение. – 2016. – Т. 8. – № 6(37). – С. 9.
  6. Кондратенко Л.А., Миронова Л.И. Образование оста-точных напряжений при раздаче стальных труб // Проблемы машиностроения и автоматизации. – 2019. – № 1. – С. 58–63.
  7. Кузнецов С.В. Влияние поперечных сил на качество де-талей, получаемых методами листовой штамповки // Труды НГТУ им. Р.Е. Алексеева. – 2014. – № 5(107). – С. 438–442.
  8. Стесненный изгиб в холодной листовой штамповке эла-стомером / В.Г. Кулаков, В.К. Моисеев, А.А. Шаров, О.В. Ломовский, А.Н. Плотников // Известия Самарского науч-ного центра Российской академии наук. – 2013. – Т. 15, № 6-4. – С. 855–860.
  9. Марьин С.Б. Изготовление деталей из труб давлением эластичных и сыпучих сред для гидрогазовых систем летатель-ных аппаратов // Известия Самарского научного центра Россий-ской академии наук. – 2011. – Т. 13, № 4-2. – С. 416–419.
  10. Непершин Р.И. Раздача тонкостенной трубы пуансоном с криволинейным профилем // Проблемы машиностроения и надежности машин. – 2010. – № 1. – С. 80–88.
  11. Орлов Г.А., Котов В.В., Орлов А.Г. Компьютерное мо-делирование поведения разностенных труб под внутренним давлением // Металлург. – 2017. – № 2. – С. 18–21.
  12. Моделирование операции раздачи трубных заготовок / Е.Н. Сосенушкин, Е.А. Яновская, Д.В. Хачатрян, И.Е. Смоло-вич, В.Ю. Киндеров // Известия Тульского государственного университета. Технические науки. – 2013. – № 3. – С. 618–631.
  13. Феоктистов С.И., Чжо З.С. Определение предельного коэффициента раздачи по FLD-диаграммам // Кузнечно-штамповочное производство. Обработка материалов давлени-ем. – 2019. – № 9. – С. 3–7.
  14. Феоктистов С.И., Чжо З.С. Определение технологиче-ских возможностей титановых и алюминиевых сплавов при раздаче // Ученые записки Комсомольского-на-Амуре государ-ственного технического университета. – 2019. – Т. 1, № 1(37). – С. 4–9.
  15. Ahmad Omar, Asim Tewari, Narasimhan K. Effect of bulge ratio on the deformation behavior and fracture location during weld-ed steel tube hydroforming process // Results in Materials. – 2020. – Vol. 6. – 100096.
  16. Tube hydroforming: current research, applications and need for training / M. Ahmetoglu, K. Sutter, X.J. Li, T. Altan // Journal of Materials Processing Technology. – 2000. – Vol. 98. – P. 224–231.
  17. Expansion and reduction of thin-walled tubes using a die: Experimental and theoretical investigation / B.P.P. Almeida, M.L. Alves, P.A.R. Rosa, A.G. Brito, P.A.F. Martins // International Journal of Machine Tools Manufacture. – 2006. – Vol. 46, iss. 12–13. – P. 1643–1652.
  18. Alves L.M., Martins P.A.F. Cold expansion and reduction of thin-walled PVC tubes using a die // Journal of Materials Pro-cessing Technology. – 2009. – Vol. 209. – P. 4229–4236.
  19. Alves L.M., Leitao P.M.F., Martins P.A.F. Elastomer-assisted compression beading of tubes // Proc IMechE Part B: J Engineering Manufacture. – 2014. – Vol. 228(7). – P. 744–756.
  20. Anisotropic effects in the compression beading of aluminum thin-walled tubes with rubber / L. Belhassen, S. Koubaa, M. Wali, F. Dammak // Thin-Walled Structures. – 2017. – Vol. 119. – P. 902–910.
  21. Bulge hydroforming of tube by rubber mandrel without axi-al feed: experiment and numerical simulation / Faisal Qayyum, Masood Shah, Saad Ali, Umar Ali // Proceedings of the First Inter-national Symposium on Automotive and Manufacturing Engineer-ing. – 2015. – Vol. 1. – P. 19–26.
  22. Nosrati G.H., Gerdooei M., Naghibi F.M. Experimental and numerical study on formability in tube bulging: A comparison be-tween hydroforming and rubber pad forming // Materials and Manufacturing Processes. – 2017. – Vol. 32, iss. 12. – P. 1353–1359.
  23. Girard A.C., Grenier Y.J., Mac Donald B.J. Numerical sim-ulation of axisymmetric tube bulging using a urethane rod // Journal of Materials Processing Technology. – 2006. – Vol. 172. – P. 346–355.
  24. Pipan J., Kosel F. Numerical simulation of rotational sym-metric tube bulging with inside pressure and axial compression // Int. J. of Mechanical Sciences. – 2002. – Vol. 44, iss. 3. – P. 645–664.
  25. Kim S., Kim Y. Analytical study of tube hydroforming // Journal of Materials Processing Technology. – 2002. – Vol. 128, iss. 1–3. – P. 232–239.
  26. The forming of axisymmetric and asymmetric components from tube / M.E. Limb, J. Chakrabarty, S. Garber, P.B. Mellor // Proceedings of the Fourteenth International MTDR Conference. – 1974. – P. 799–805.
  27. Thiruvarudchelvan S., Travis F.W. Tube Bulging with a ure-thane rod // Journal of Materials Processing Technology. – 1990. – Vol. 23. – P. 195–209.
  28. Потянихин Д.А., Синельщиков А.А., Мин Ко Хлайнг. Моделирование напряжённо-деформированного состояния трубчатой заготовки при раздаче средней части по жёсткой мат-рице // Морские интеллектуальные технологии. – 2021. – № 2-2 (52). – С. 105–110.
  29. Maryin S.B., Aung P.W. Working body for deformation of thin-walled pipe billets // Materials Science Forum. – 2019. – Vol. 945. – P. 628–633.
  30. Метод решения обратной задачи раздачи средней части трубы для расчёта формы штампа / К.С. Бормотин, Д.А. Потя-нихин, А.А. Синельщиков, Мин Ко Хлайнг, И.Н. Журбина // Ученые записки Комсомольского-на-Амуре государственного технического университета. – 2022. – № 5(61). – С. 40–45.
  31. Исследование процесса раздачи средней части трубной заготовки с подпором / С.Б. Марьин, Г.А. Щербатюк, В.Д. Кириллин, М.И. Пак // Учёные записки Комсомольского-на-Амуре государственного технического университета. Науки о природе и технике. – 2021. – № 7 (55). – С. 73–78.
  32. Феоктистов С.И., Андрианов И.К., Лин Х. Моделиро-вание напряжённо-деформированного состояния толстостенных цилиндрических оболочек с учётом физической нелинейности материала // Учёные записки Комсомольского-на-Амуре госу-дарственного технического университета. Науки о природе и технике. – 2022. – № 3 (59). – С. 12–20.
  33. Феоктистов С.И., Андрианов И.К., Лин Х. Определение напряжённо-деформированного состояния при формоизмене-нии цилиндрических труб с использованием конической оснаст-ки // Учёные записки Комсомольского-на-Амуре государствен-ного технического университета. Науки о природе и технике. – 2022. – № 3 (59). – С. 4–11.
  34. Бормотин К.С., Вин Аунг. Метод решения обратной за-дачи в процессе обтяжки панели // Вестник Чувашского госу-дарственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния. – 2018. – № 3 (37). – С. 47–57.
  35. Бормотин К.С. Метод решения обратных задач неупру-гого деформирования тонкостенных панелей // Вычислитель-ные методы и программирование. – 2017. – Т. 18. – C. 359–370.
  36. Коробейников C.H. Нелинейное деформирование твёр-дых тел. – Новосибирск: Изд-во СО РАН, 2000. – 262 с.
  37. Wriggers P. Computational contact mechanics. – Heidel-berg: Springer, 2006.
  38. Бормотин К.С., Белых С.В., Вин А. Математическое моделирование обратных задач многоточечного формообразо-вания в режиме ползучести с помощью реконфигурируемого устройства // Вычислительные методы и программирование. – 2016. – Т. 17, № 3. – С. 258–267.
  39. Marc 2021, Vol A: Theory and User Information, MSC.Software Corporation [Электронный ресурс]. – URL: http://www.mscsoftware.com/product/marc (дата обращения: 10.03.2023).

Статистика

Просмотры

Аннотация - 43

PDF (Russian) - 54

Cited-By


PlumX


© Бормотин К.С., Потянихин Д.А., Хлайнг М.К., Синельщиков А.А., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах