ПРИМЕНЕНИЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ В ЗАДАЧЕ ТОПОЛОГИЧЕСКОЙ ОПТИМИЗАЦИИ УПРУГОЙ ПЛАСТИНЫ

Аннотация


В качестве альтернативы традиционным методам топологической оптимизации де- формируемых твердых тел предложен подход к топологической оптимизации на основе методов машинного обучения. Предложенный подход существенно уменьшает время, затрачиваемое на получение оптимального решения, и позволяет избежать использования ресурсоемких конечно-элементных вычислений на стадии получения оптимального реше- ния. Все ресурсоемкие вычисления выполняются на стадии тренировки сети. Приводится обзор мировой литературы по теме применения методов машинного обучения в задаче топологической оптимизации упругого тела. Далее в качестве примера рассматривается квадратная упругая пластина, жестко закрепленная с одной стороны и нагруженная силой с другой. Для данной пластины с помощью метода скользящих асимптот решается серия задач топологической оптимизации (максимизации жесткости при ограничении на объём) для построения тренировочного набора данных. Проводится сравнительное исследова- ние нейронной сети с одним пользовательским нелинейным слоем, созданным исходя из особенностей оптимальной топологии, и трехслойной нейронной сети, построенной с по- мощью стандартных функций библиотеки PyTorch. Входным параметром нейронной сети является точка приложения силы, выходным – оптимальная топология пластины. Обуче- ние сети происходит с помощью метода обратного распространения ошибки. Квадратич- ная норма вектора отклонений предсказанных значений проектных переменных от значе- ний, полученных на последнем шаге оптимизации, минимизируется в процессе обучения нейронной сети. Рассмотренный пример демонстрирует возможность применения подхода к другим задачам, отличающимся геометрией, граничными условиями и т.д. Также обсуж- даются результаты и нерешенные проблемы метода.

Полный текст

Один из наиболее часто используемых сегодня ме- тодов численной оптимизации в механике деформируе- мого твердого тела – это метод топологической оптими- зации. В классической постановке топологическая оп- тимизация – задача нахождения оптимального с точки зрения жесткости распределения материи в заданной области при определенных нагрузках и граничных ус- ловиях. Одним из наиболее быстро развивающихся на- правлений в области топологической оптимизации яв- ляется использование методов машинного обучения. Литературный обзор источников позволяет выделить основные цели применения существующих методов машинного обучения в задаче топологической оптими- зации: ускорение итерационной процедуры, безытера- ционная оптимизация, метамоделирование, уменьшение размерности пространства проектирования, усовершен- ствование оптимизатора, генеративный дизайн и по- стобработка. В топологической оптимизации, как и в других классических итерационных методах, с увеличением итераций изменение переменных проектирования начи- нает происходить медленнее. По мере сходимости ме- тода на последних итерациях отклонение переменных проектирования может быть пренебрежительно мало, а время, затрачиваемое на этом этапе, велико. Поэтому часть исследований посвящены использованию нейрон- ных сетей для ускорения итерационной процедуры с помощью предсказания оптимального решения на основе промежуточного, ещё не сошедшегося реше- ния [1–6]. В классическом подходе к топологической оптими- зации на каждой итерации вычисление целевой функ- ции, ограничений и их производных по переменным проектирования осуществляется с помощью метода ко- нечных элементов (МКЭ). Метамоделирование предпо- лагает вычисление этих величин с помощью нейронной сети. С помощью сверточной нейронной сети вычисля- ются податливость, жесткость, объемная доля [7–12]. При этом входными данными для нейронной сети явля- ется распределение фиктивной плотности на текущей итерации. При увеличении размерности модели и ее конечно- элементного разбиения значительно увеличивается время оптимизации за счет большого количество пере- менных проектирования. В работах [13–24] предлага- ются подходы к использованию нейронных сетей для уменьшения количества варьируемых параметров. В частности, в [20; 21] предлагается подход, который использует расширенный вариационный автоэнкодер (VAE) для кодирования 2D-топологий в скрытое про- странство параметров меньшего размера и для декоди- рования выборок из этого пространства обратно в 2D- топологии. Топологическая оптимизация выполняется в скрытом пространстве, а не в пространстве изображе- ний. Другим возможным способом уменьшения количе- ства переменных проектирования является отказ от па- раметризации с помощью конечно-элементного разбие- ния и использование геометрических параметров в качестве проектных переменных. Данный подход также демонстрирует высокую эффективность [22–24]. Оптимизированные структуры зачастую имеют низкое качество, поэтому цель многих исследований стоит в том, чтобы повысить его. Нейронные сети в этом случае используются на этапе постобработки результатов оптимизации. Например, в [26–28] генери- руется оптимальная структура на грубом КЭ-разбиении и нейронная сеть для повышения качества изображения. В работах [29–30] исследования посвящены постобра- ботке границ сгенерированных изображений с оттенка- ми серого или с нечеткими границами. Наконец, последняя проблема, которой в последнее время уделяют большое внимание ученые, это полно- стью безытеративная оптимизация. Данный подход по начальной форме, граничным условиям и нагрузкам дает возможность получить оптимальную топологию конструкции с помощью нейронной сети без проведе- ния оптимизации. Для этого используются сверточные [31–39], генеративно-состязательные [32] и условные генеративно-состязательные сети [33]. В некоторых работах авторы для обобщения этого подхода на различные граничные условия дополняют входной массив полем перемещений [34], деформаций [35] или главными напряжениями [36]. В работе [37] предложена условная генеративно-состязательная сеть (cGAN-type), на вход которой дополнительно передает- ся плотность энергии деформации и эквивалентные по Мизесу напряжения, полученные из МКЭ. В настоящей работе предлагается подход по ис- пользованию нейронной сети именно для безытераци- онной топологической оптимизации. Основным его от- личием от предложенных ранее и описанных в литера- туре подходов является использование не стандартных общепринятых слоев нейронной сети, а разработка соб- ственной высокоэффективной структуры нейронной сети, основанной на наблюдениях за характером пове- дения параметров проектирования в зависимости от входных параметров.

Об авторах

Д. В. Авдонюшкин

Санкт-Петербургский политехнический университет Петра Великого

А. И. Матвеева

Санкт-Петербургский политехнический университет Петра Великого

А. Д. Новокшенов

Санкт-Петербургский политехнический университет Петра Великого

Список литературы

  1. Sosnovik I, Oseledets I. Neural networks for topology optimization // Russian Journal of Numerical Analysis and Mathematical Modelling. – 2019. – Vol. 34(4). – P. 215–223.
  2. Saurabh Banga, Harsh Gehani, Sanket Bhilare, Sagar Patel, and Levent Kara. 3D Topology Optimization using Convolutional Neural Networks. – Preprint, 8 2018.
  3. An efficient data generation method for ANN-Based surrogate models / R. Kai, T. Chao, Q. Michael, W. Wenjing // Struct Multidiscip. Optim. – 2022. – Vol 65. – P. 90. doi: 10.1007/s00158-022-03180-6
  4. Kallioras N.A., Kazakis G., Lagaros N.D. Accelerated topology optimization by means of deep learning // Structural and Multidisciplinary Optimization. – 2020. – Vol. 62(3). – P. 1185–1212.
  5. Acceleration Design for Continuum Topology Optimization by Using Pix2pix Neural Network / Hong-Ling Ye, Ji-Cheng Li, Bo-Shuai Yuan, Nan Wei, Yun-Kang Sui // International Journal of Applied Mechanics. – 2021. – Vol. 13(04), no. 5. – P. 2150042. doi: 10.1142/S1758825121500423
  6. Younghwan Joo, Yonggyun Yu, In Gwun Jang. Unit Module- Based Convergence Acceleration for Topology Optimization Using the Spatiotemporal Deep Neural Network // IEEE Access. – 2021. – Vol. 9. – P. 149766–149779. doi: 10.1109/ACCESS.2021.3125014
  7. CNN-based image recognition for topology optimization / S. Lee, H. Kim, Q.X. Lieu, J. Lee // Knowledge-Based Systems. – 2020. – Vol. 198. – P. 105887.
  8. Kim C., Lee J., Yoo J. Machine learning-combined topology optimization for functionary graded composite structure design // Computer Methods in Applied Mechanics and Engineering. – 2021. – Vol. 387. – P. 114158.
  9. Multiscale topology optimization using neural network surrogate models / D.A. White, W.J. Arrighi, J. Kudo, S.E. Watts // Computer Methods in Applied Mechanics and Engineering. – 2019. – Vol. 346. – P. 1118–1135
  10. Takahashi Y., Suzuki Y., Todoroki A. Convolutional neural network-based topology optimization (cnn-to) by estimating sensitivity of compliance from material distribution // arXiv preprint arXiv. – 2001. – P. 00635.
  11. Qian C., Ye W. Accelerating gradient-based topology optimization design with dual-model artificial neural networks // Structural and Multidisciplinary Optimization. – 2021. – No. 63(4). – P. 1687–1707.
  12. Cheng Qiu, Shanyi Du, Jinglei Yang. A deep learning approach for efficient topology optimization based on the element removal strategy // Materials Design. – 2021. – Vol. 212. – P. 110179.
  13. Hoyer S., Sohl-Dickstein J., Greydanus S. Neural reparameterization improves structural optimization // arXiv preprint arXiv. – 2019. – Vol. 1909. – P. 04240.
  14. TONR: An exploration for a novel way combining neural network with topology optimization / Zeyu Zhang, Yu Li, Weien Zhou, Xiaoqian Chen, Wen Yao, Yong Zhao // Computer Methods in Applied Mechanics and Engineering. – 2021. – Vol. 386. – P. 114083.
  15. Liang Chen, Mo-How Herman Shen. A New Topology Optimization Approach by Physics-Informed Deep Learning Process // Advances in Science, Technology and Engineering Systems Journal. – 2021. – No. 6(4). – P. 233–240.
  16. Chandrasekhar A., Suresh K. TOuNN: topology optimization using neural networks // Structural and Multidisciplinary Optimization. – 2021. – No. 63(3). – P. 1135–1149.
  17. Halle A., Campanile L.F., Hasse A. An Artificial Intelligence– Assisted Design Method for Topology Optimization without Pre-Optimized Training Data // Applied Sciences. – 2021. – No. 11(19). – P. 9041.
  18. Jonas Zehnder, Yue Li, Stelian Coros, and Bernhard Thomaszewski. NTopo: Mesh-free Topology Optimization using Implicit Neural Representations. Preprint. – 2021
  19. Deng H., To A.C. Topology optimization based on deep representation learning (DRL) for compliance and stressconstrained design // Computational Mechanics. – 2020. – Vol. 66. – P. 449–469.
  20. An Indirect Design Representation for Topology Optimization Using Variational Autoencoder and Style Transfer / Tinghao Guo, Danny J. Lohan, Ruijin Cang, Max Yi Ren, James T. Allison // 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. – Reston, Virginia, 1 2018. American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2018-0804
  21. Greminger M. Generative Adversarial Networks With Synthetic Training Data for Enforcing Manufacturing Constraints on Topology Optimization // Volume 11A: 46th Design Automation Conference (DAC). Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference., American Society of Mechanical Engineers, 8 2020. doi: 10.1115/DETC2020-22399
  22. Machine learning-driven real-time topology optimization under moving morphable component-based framework / X. Lei, C. Liu, Z. Du, W. Zhang, X. Guo // Journal of Applied Mechanics. – 2019. – Vol. 86(1). – P. 011004.
  23. Data-driven geometry-based topology optimization / Van-Nam Hoang, Ngoc-Linh Nguyen, Dat Q. Tran, Quang-Viet Vu, H. Nguyen-Xuan // Structural and Multidisciplinary Optimization. – 2022. – Vol. 65(2). – P. 69. doi: 10.1007/s00158-022-03170-8
  24. Machine Learning based parameter tuning strategy for MMC based topology optimization / X. Jiang, H. Wang, Y. Li, K. Mo // Advances in Engineering Software. – 2020. – Vol. 149. – P. 102841.
  25. Lynch M.E., Sarkar S., Maute K. Machine learning to aid tuning of numerical parameters in topology optimization // Journal of Mechanical Design. – 2019. – Vol. 141(11).
  26. An artificial neural network approach for generating high-resolution designs from low-resolution input in topology optimization / N. Napier, S.A. Sriraman, H.T. Tran, K.A. James // Journal of mechanical design. – 2020. – Vol. 142(1).
  27. Deep super-resolution neural network for structural topology optimization / C. Wang, S. Yao, Z. Wang, J. Hu // Engineering Optimization. – 2021. – Vol. 53(12). – P. 2108–2121.
  28. Efficient, high-resolution topology optimization method based on convolutional neural networks / L. Xue, J. Liu, G. Wen, H. Wang // Frontiers of Mechanical Engineering. – 2020. – Vol. 16(1). – P. 80–96.
  29. Strömberg N. Efficient detailed design optimization of topology optimization concepts by using support vector machines and metamodels // Engineering Optimization. – 2020. – Vol. 52(7). – P. 1136–1148.
  30. Image-Based Multiresolution Topology Optimization Using Deep Disjunctive Normal Shape Model / V. Keshavarzzadeh, M. Alirezaei, T. Tasdizen, R.M. Kirby // Computer-Aided Design. – 2020. – Vol. 130. – P. 102947.
  31. Abueidda D.W., Koric S., Sobh N.A. Topology optimization of 2D structures with nonlinearities using deep learning // Computers Structures. – 2020. – Vol. 237. – P. 106283.
  32. Sharpe C., Seepersad C.C. Topology design with conditional generative adversarial networks. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference // American Society of Mechanical Engineers. – 2019. – Vol. 59186. – P. V02AT03A062.
  33. Yang X., Bao D.W., Yan X. OptiGAN: Topological Optimization in Design Form-Finding with Conditional GANs // Proceedings of the 27th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) 2022. – Sydney, Australia, 9–15 April 2022.
  34. A deep convolutional neural network for topology optimization with strong generalization ability / Y. Zhang, B. Peng, X. Zhou, C. Xiang, D. Wang // arXiv preprint arXiv. – 1901.07761
  35. Accelerated topology optimization design of 3D structures based on deep learning / C. Xiang, D. Wang, Y. Pan [et al.] // Struct Multidisc Optim. – 2022. – Vol. 65. – P. 99.
  36. Deep learning driven real time topology optimisation based on initial stress learning / Jun Yan, Qi Zhang, Qi Xu, Zhirui Fan, Haijiang Li, Wei Sun, Guangyuan Wang // Advanced Engineering Informatics. – 2022. – Vol. 51. – P. 101472.
  37. Topologygan: Topology optimization using generative adversarial networks based on physical fields over the initial domain / Z. Nie, T. Lin, H. Jiang, L.B. Kara // Journal of Mechanical Design. – 2021. – Vol. 143(3).
  38. Baki Harish, Kandula Eswara Sai Kumar, Balaji Srinivasan. Topology Optimization Using Convolutional Neural Network // Lecture Notes in Mechanical Engineering. – Springer, 2020. – P. 301–307.
  39. Ruijin Cang, Hope Yao, Yi Ren. One-shot generation of near-optimal topology through theory-driven machine learning // Computer-Aided Design. – 2019. – Vol. 109. – P.12–21.

Статистика

Просмотры

Аннотация - 1368

PDF (Russian) - 252

Cited-By


PlumX

Комментарии к статье

Комментарии к статье

Посмотреть все комментарии

© Авдонюшкин Д.В., Матвеева А.И., Новокшенов А.Д., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах