Деформирование и разрушение тканевого углепластика при ультрамалоцикловом растяжении вдоль основы

  • Авторы: Сапожников С.Б1, Лешков Е.В1, Лобанов Д.С2, Чеботарёва Е.А2
  • Учреждения:
    1. Южно-Уральский государственный университет (НИУ), Челябинск, Российская Федерация
    2. Пермский национальный исследовательский политехнический университет, Пермь, Российская Федерация
  • Выпуск: № 5 (2024)
  • Страницы: 82-90
  • Раздел: Статьи
  • URL: https://ered.pstu.ru/index.php/mechanics/article/view/4434
  • DOI: https://doi.org/10.15593/perm.mech/2024.5.07
  • Цитировать

Аннотация


В работе представлены результаты экспериментальных исследований деформирования, акустической эмиссии и накопления микроповреждений в тканевом углепластике полотняного переплетения при циклическом растяжении вдоль нитей основы. Измерения деформаций проведены с помощью оптического экстензометра, обеспечивающего точное позиционирование образца вдоль направления нагружения. Программа нагружения предусматривала до 100 циклов растяжения с коэффициентом асимметрии R=0,1 с последующим дорывом. Все образцы выдержали программу предварительного циклического нагружения. Максимальные значения напряжений в циклах соответствовали 25…90% от статического предела прочности. Выявлено, что в процессе циклического растяжения происходит одностороннее накопление деформаций (циклическая ползучесть). Накопленная деформация немонотонно зависит от максимального напряжения в цикле, возрастая до 600 МПа и снижаясь при больших напряжениях. Анализ кинетики деформирования в циклах выявил рост касательного модуля, что связано, очевидно, с распрямлением волокон. При дорыве отмечено повышение на 5-10% остаточной прочности в сравнении с пределом прочности при однократном нагружении. Явления акустической эмиссии происходят как в полуциклах растяжения, так и в полуциклах разгрузки, эффект Кайзера не наблюдается. Циклические испытания при температуре 80С показали резкое снижение числа акустических событий и исчезновение событий в средних диапазонах частот. Это связано с тем, что нагрев приводит к снижению остаточных технологических напряжений в элементах мезоструктуры тканевого композита, вызывая изменения в процессе возникновения микроповреждений поперек волокон и на сдвиг в местах переплетения нитей основы и утка. Разрушение образцов во всех случаях происходит при достижении продольными деформациями величины 1,50±0,06%. Это может служить основой для прогнозирования прочности при других программах циклического нагружения.

Полный текст

Полимерные композиты с тканевым армированием нашли широкое применение ввиду высоких механических свойств, низкой плотности и технологичности [1,2]. При этом отмечается [3-5], что при многоцикловом нагружении прочность таких композитов снижается весьма существенно по сравнению со статической прочностью. Отмечается накопление микроповреждений и монотонное снижение жёсткости материала [6,7]. На этой основе разработаны расчётные методы оценки усталостной долговечности при многоцикловом нагружении, учитывающие различные темпы снижения жёсткости на разных этапах нагружения [5, 8-20]. В ряде работ в качестве параметра для оценки нагруженности в цикле предложено использовать не напряжения, а деформации, и по их развитию оценивать усталостную прочность [21,22]. Существенным дополнением традиционных усталостных испытаний являются циклические испытания с определением остаточной прочности (при дорыве) [23-27]. Область малоцикловой и, в особенности, ультрамалоцикловой (УМЦ) усталости композитов остаётся практически неизученной. При этом имеются области применения композитов (беспилотные летательные аппараты, возвращаемые ступени ракет), в которых количество циклов нагружения не превышает 50…100, где разработанные ранее расчётные методы неприменимы. Важно также отметить, что оборудование для УМЦ-исследований может быть использовано то же, что и при квазистатическом нагружении (навесные и оптические экстензометры, сенсоры акустической эмиссии и др.), позволяя выявить механизмы микроповреждения, ползучести, накопления деформаций. В связи с отмеченным выше, в данной работе проведены исследования нелинейного деформирования (циклической ползучести), развития микроповреждений и эффектов упрочнения тканевого углепластика при растяжении вплоть до разрушения при дорыве при ультрамалом числе циклов нагружения.

Об авторах

С. Б Сапожников

Южно-Уральский государственный университет (НИУ), Челябинск, Российская Федерация

Е. В Лешков

Южно-Уральский государственный университет (НИУ), Челябинск, Российская Федерация

Д. С Лобанов

Пермский национальный исследовательский политехнический университет, Пермь, Российская Федерация

Е. А Чеботарёва

Пермский национальный исследовательский политехнический университет, Пермь, Российская Федерация

Список литературы

  1. Daniel I. M., Ishai O. Engineering mechanics of composite materials. 2nd ed. ew York, Oxford University Press, 2006, 411 p
  2. Barbero E. J. Introduction to composite materials design. 2nd ed. New York, CRC Press, 2011, 520 p
  3. Carvelli V., Jain A., Lomov S.V. Fatigue of textile and short fiber reinforced composites. Wiley – ISTE, 2017, 212 p
  4. Goel A., Chawla K. K., Vaidya U. K., Chawla N., Koopman M. Characterization of fatigue behavior of long fiber reinforced thermoplastic (LFT) composites. Materials Characterization, 2009, vol. 60, no. 6, pp. 537-544. doi: 10.1016/j.matchar.2008.12.02
  5. Clay S. B., Knoth P. M. Experimental results of fatigue testing for calibration and validation of composite progressive damage analysis methods. Journal of Composite Materials, 2017, vol. 51, no. 15, pp. 2083-2100. doi: 10.1177/002199831667013
  6. Cai Y.J., Xie Z.H., Xiao S. H., Huang Z. R., Lin J.X., Guo Y.C., Zhuo K.X., Huang P.Y. An investigation of fatigue behavior and residual strength model of steel-GFRP composite bar// Composite Structures. – 2024. – V. 327. – art. no. 117685. doi: 10.1016/j.compstruct.2023.11768
  7. Qiao L., Zhou L., Zuo J., Ding X., Wu D., Li X., He X., Wu Q. Microstructure analysis of carbon-fiber-reinforced polymer laminates subjected to self-heating and fatigue strengthening under tension-tension fatigue loading// Journal of Reinforced Plastics and Composites. – 2024. doi: 10.1177/0731684424125910
  8. Nicholas T. High cycle fatigue. A mechanics of materials perspective. Elsevier Science, 2006, 641 p
  9. Bond I.P. Fatigue life prediction for GRP subjected to variable amplitude loading. Composites Part A, 1999, vol. 30, no. 8, pp. 961–970. doi: 10.1016/S1359-835X(99)00011-
  10. Caprino G., Giorleo G. Fatigue lifetime of glass fabric/epoxy composites. Composites Part A, 1999, vol. 30, no. 3, pp. 299–304. doi: 10.1016/S1359-835X(98)00124-9
  11. Hwang W., Han K.S. Fatigue of composites-fatigue modulus concept and life Prediction. Journal of Composite Materials, 1986, vol. 20, no. 2, pp. 154–165. doi: 10.1177/0021998386020002
  12. Shokrieh M.M., Taheri-Behrooz F. Progressive fatigue damage modeling of cross-ply laminates, I: modeling strategy. Journal of Composite Materials, 2010, vol. 44, no. 10, pp. 1217–1231. doi: 10.1177/002199830935160
  13. Van Paepegem W., Degrieck J. Experimental setup for and numerical modelling of bending fatigue experiments on plain-woven glass/epoxy composites. Composite Structures, 2001, vol. 51, no. 1, pp. 1–8. doi: 10.1016/S0263-8223(00)00092-
  14. Nikishkov Y., Makeev A., Seon G. Progressive fatigue damage simulation method for composites. International Journal of Fatigue, 2013, vol. 48, pp. 266–279. doi: 10.1016/j.ijfatigue.2012.11.00
  15. Vassilopoulos A.P. Fatigue behavior and life prediction of wind turbine blade composite materials// Advances in Wind Turbine Blade Design and Materials. – 2023. – pp. 287 – 340. doi: 10.1016/B978-0-08-103007-3.00005-
  16. Sun Y., Zhang Y., Yang C., Liu Y., Chen X., Yao L., Gao W. Prediction on fatigue properties of the plain weave composite under broadband random loading// Fatigue and Fracture of Engineering Materials and Structures. – 2021. – V. 44, No. 6. – pp. 1515 – 1532. doi: 10.1111/ffe.1344
  17. Liu S., Liu Z., Zhou K., Liu Y., Xiong X., Liao T., Ye N. An enhanced fatigue damage model based on strength degradation of composite materials// Fatigue and Fracture of Engineering Materials and Structures. – 2024. doi: 10.1111/ffe.1441
  18. Ma Q., Song J., Tang T., An Z. A model of strength degradation for glass fiber reinforced polymer composite laminates under fatigue loading// Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. – 2022. – V. 236, No. 14. – pp. 7953 – 7961. doi: 10.1177/0954406222107917
  19. Amraei J., Rogala T., Katunin A., Premanand A., Kokot G., Wachla D., Kuś W., Bilewicz M., Khatri B., Balle F. Thermomechanical fatigue behavior of CF/PEKK composite under low and ultrasonic frequencies// Composites Part B: Engineering. – 2024. – V. 281. – art. no. 111539 doi: 10.1016/j.compositesb.2024.11153
  20. Gao J., Zhu P., Yuan Y., Wu Z., Xu R. Strength and stiffness degradation modeling and fatigue life prediction of composite materials based on a unified fatigue damage model// Engineering Failure Analysis. – 2022. – 137. – art. no. 106290. doi: 10.1016/j.engfailanal.2022.10629
  21. Mirzaei A.H., Shokrieh M.M. Progressive fatigue damage modeling of laminated composites using strain-based failure criteria// Journal of Composite Materials. – 2024. – V. 58, No 4. – pp. 519 – 531. doi: 10.1177/0021998324122709
  22. Ganesan C., Joanna P.S., Singh D. Fatigue life modeling of FRP composites: A comprehensive review// Materials Today: Proceedings. – 2021. – V. 46. – pp. 555 – 561. doi: 10.1016/j.matpr.2020.11.11
  23. Pratim Das P., Elenchezhian M., Vadlamudi V., Raihan R. Artificial Intelligence Assisted Residual Strength and Life Prediction of Fiber Reinforced Polymer Composites// AIAA SciTech Forum and Exposition. – 2023 doi: 10.2514/6.2023-077
  24. Vanhari A.K., Fagan E., Goggins J. Modelling the residual strength degradation in composite materials without using residual strength tests// Journal of Composite Materials. – 2023. – V. 57, No 16. – pp. 2527 – 2542. doi: 10.1177/0021998323117597
  25. D'Amore A., Grassia L. A method to predict the fatigue life and the residual strength of composite materials subjected to variable amplitude (VA) loadings// Composite Structures. – 2019. – V. 228. – art. no. 111338. doi: 10.1016/j.compstruct.2019.11133
  26. Wil’deman V.E., Staroverov O.A., Lobanov D.S. Diagram and parameters of fatigue sensitivity for evaluating the residual strength of layered GFRP composites after preliminary cyclic loadings// Mechanics of Composite Materials. – 2018. – V. 54, No. 3. – pp. 313 - 320. doi: 10.1007/s11029-018-9741-
  27. Wildemann V.E., Staroverov O.A., Tretyakov M.P. Deformation and failure of polymer composite materials under preliminary cyclic and low-velocity impacts// IOP Conference Series: Materials Science and Engineering. – 2020. – V. 747, No 1. – art. no. 012034. doi: 10.1088/1757-899X/747/1/01203
  28. https://cp-vm.ru/production (Date of request 12.08.2024
  29. https://www.epsilontech.com/products/epsilon-one-advantages (Date of request 12.08.2024
  30. https://www.vallen.de (Date of request 12.08.2024)
  31. Arumugam V., Saravanakumar K., Santulli C. Damage characterization of stiffened glass-epoxy laminates under tensile loading with acoustic emission monitoring. Composites Part B: Engineering, 2018, vol. 147. pp. 22-32. doi: 10.1016/j.compositesb.2018.04.03
  32. Oskouei A.R., Heidary H., Ahmadi M., Farajpur M. Unsupervised acoustic emission data clustering for the analysis of damage mechanisms in glass/polyester composites. Materials Design, 2012, vol. 37, pp. 416-422. doi: 10.1016/j.matdes.2012.01.01
  33. Shkuratnik V. L., Filimonov Yu. L., Kuchurin S. V. Akustojemissionnyj jeffekt pamjati pri ciklicheskom odnoosnom nagruzhenii obraz-cov uglja [Acoustic emission memory effect under cyclic uniaxial loading of coal samples]. Prikladnaja mehanika i tehnicheskaja fizika (Applied Mechanics and Technical Physics). 2006, Vol. 47, No. 2, pp. 103-109
  34. Salita D. S., Polyakov V. V. Narushenie jeffekta Kajzera pri nagruzhenii jevtekticheskih splavov sictemy Pb−Sn [Violation of the Kaiser effect under loading of eutectic alloys of the Pb−Sn system]. Pis'ma v ZhTF (Letters to the Journal of Technical Physics). 2020, Vol. 46, issue 18, pp. 12-14. doi: 10.21883/PJTF.2020.18.49994.1827
  35. Panteleev I. A., Mubassarova V. A., Zaitsev A. V., Karev V. I., Kovalenko Yu. F., Ustinov K. B., Shevtsov N. I. Jeffekt kajzera pri mnogoosnom neproporcional'nom szhatii peschanika [Kaiser effect under multiaxial disproportionate compression of sandstone]. Doklady rossijskoj Akademii nauk. FIZIKA, TEHNIChESKIE NAUKI (Reports of the Russian Academy of Sciences. PHYSICS, TECHNICAL SCIENCES). 2020, Vol. 495, pp. 63–67. doi: 10.31857/S268674002006015
  36. Sapozhnikov S.B., Zhikharev M.V., Zubova E.M. Ultra-low cycle three-point bending fatigue of glass fabric reinforced plastic. Composite Structures, 2022, vol. 286, paper 115293. doi: 10.1016/j.compstruct.2022.1152

Статистика

Просмотры

Аннотация - 3

PDF (Russian) - 3

Cited-By


PlumX


© Сапожников С.Б., Лешков Е.В., Лобанов Д.С., Чеботарёва Е.А., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах