Никоненко Е.Л., Сизоненко Н.Р., Попова Н.А. Влияние больших пластических деформаций на фазовый состав и морфологию γ`-фазы жаропрочного сплава на базе Ni–A1 // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2021. – Т. 23, № 4. – С. 48–55. DOI: 10.15593/2224-9877/2021.4.06

Nikonenko E.L., Sizonenko N.R., Popova N.A. Influence of large plastic deformations on the phase composition and fine structure of a heat-resistant alloy based on Ni–Al. *Bulletin PNRPU. Mechanical engineering, materials science*, 2021, vol. 23, no. 4, pp. 48–55. DOI: 10.15593/2224-9877/2021.4.06

ВЕСТНИК ПНИПУ. Машиностроение, материаловедение T. 23, № 4, 2021 Bulletin PNRPU. Mechanical engineering, materials science

http://vestnik.pstu.ru/mm/about/inf/

DOI: 10.15593/2224-9877/2021.4.06 УДК 539.2

Е.Л. Никоненко, Н.Р. Сизоненко, Н.А. Попова

Томский государственный архитектурно-строительный университет, Томск, Россия

ВЛИЯНИЕ БОЛЬШИХ ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ НА ФАЗОВЫЙ СОСТАВ И МОРФОЛОГИЮ γ-ФАЗЫ ЖАРОПРОЧНОГО СПЛАВА НА БАЗЕ Ni–AI

Методами просвечивающей дифракционной и растровой электронной микроскопии проведено исследование фазового состава и структуры сплава на основе Ni–Al–Co в трех состояниях: 1) после направленной кристаллизации (HK) – исходное состояние; 2) HK + деформация при 1200 °C до 70 % сжатием и 3) HK + деформация при 1200 °C до 20 % + отжиг 1280 °C 1 ч + отжиг 950 °C 24 ч. Установлено, что основными фазами во всех состояниях являются γ и γ'-фазы. у-Фаза является твердым раствором на основе никеля. Она обладает ГЦК-кристаллической решеткой и ближним атомным порядком в расположении атомов. γ'-Фаза представляет собой упорядоченную L1₂-фазу. Как правило, эти фазы формируют основную структуру сплава практически во всех суперсплавах. В исследуемом сплаве они присутствуют в виде квазикубоидов γ'-фазы, разделенных прослойками γ-фазы. Выполненные в работе измерения позволили классифицировать частицы γ'-фазы на два масштабных уровня: γ'-фаза первого уровня (γ'₁) – крупные округлые частицы размером 25–35 мкм; второй масштабный уровень γ'-фаза в торого уровня (γ'₁) – частицы квазикубоидной формы размером от 0,25 до 0,6 мкм, находящиеся в двухфазной смеси γ + γ'₁, которая окружает крупные частицы γ'. Наряду с основными фазами обнаружены β-фаза (упорядоченная со сверхструктурой D2₄). Изучено влияние деформации и отжига на объемную долю фаз, а также на размер и форму квазикубоидов γ'-фазы. Установлено, что воздействие деформации на структуру иное, чем воздействие деформация и отжига, а именно: деформация и отжиг вызывают большее изменение морфологии квазикубоидов γ'-фазы, чем деформация без отжига.

Ключевые слова: направленная кристаллизация, деформация, отжиг, фаза, частица, прослойка, доля фаз, никель, алюминий, масштабный уровень.

E.L. Nikonenko, N.R. Sizonenko, N.A. Popova

Tomsk State University of Architecture and Building, Tomsk, Russian Federation

INFLUENCE OF LARGE PLASTIC DEFORMATIONS ON THE PHASE COMPOSITION AND FINE STRUCTURE OF A HEAT-RESISTANT ALLOY BASED ON NI-AL

The phase composition and structure of an alloy based on Ni–Al–Co in three states have been studied by transmission diffraction and scanning electron microscopy methods: 1) after directional crystallization (DC) – initial state; 2) DC + deformation at 1200°C to 70% compression and 3) DC + deformation at 1200°C to 20 % + annealing at 1280 °C for 1 hour + annealing at 950 °C for 24 hours. It was found that the main phases in all states are γ - and γ' - phases. The γ -phase is a nickel-based solid solution. It has an fcc lattice and short-range atomic order in the arrangement of atoms. The γ' -phase is an ordered L1₂ phase. As a rule, these phases form the basic structure of the alloy in almost all superalloys. In the alloy under study, they are present in the form of γ -phase quasi-cuboids separated by layers of the-phase. The measurements carried out in this work made it possible to classify particles of the γ -phase into two scale levels: γ -phase of the first level (γ'_{11}) – large rounded particles mixture $\gamma + \eta'_{11}$, which surrounds large particles γ'_{1} . Along with the main phases (ordered with D0₂₄ superstructure) have been found. The effect of deformation and annealing on the size and shape of the quasi-cuboids γ' -phase, has been studied. It was found that the effect of deformation on the structure is different from the effect of deformation and annealing, namely, deformation and annealing cause a greater change in the morphology of the γ -phase quasi-cuboids than deformation without annealing.

Keywords: directional crystallization, deformation, annealing, phase, fraction, interlayen, proportroh of phases, nickel, aluminum, scale level.

Введение

Одним из перспективных направлений в поиске металлических материалов, которые могут работать в экстремальных условиях, является создание сплавов, содержащих интерметаллидные фазы [1-6]. Примером являются суперсплавы на основе ($\gamma + \gamma$)-фаз, в которых γ -фаза представляет собой неупорядоченный ГЦК-твердый раствор, а √ – упорядоченная фаза со сверхструктурой L1₂ [1-6]. Такие сплавы создаются часто на основе Ni и Al, поскольку в системе Ni-Al возможно существование интерметаллических соединений, прежде всего Ni₃Al [3-12]. В сплавах, где присутствует у-фаза, эта фаза являлась упрочняющей. Суперсплавы используются в условиях достаточно высоких температур и должны обладать, в частности, значительным сопротивлением ползучести. Для повышения характеристик ползучести используется легирование различными элементами, такими как Cr, Co, Mo, W, Та и др. Фазовый состав таких суперсплавов и локализация фаз, образующихся с этими элементами, изучены недостаточно.

Целью настоящей работы явилось изучение фазового и структурного состояний многокомпонентного сплава на основе Ni–Al–Co, изготовленного методом направленной кристаллизации (НК), последующей деформации и подвергнутого отжигам.

Материал и методы исследования

Материалом исследования являлся сложнолегированный сплав. Основные элементы сплава: Ni – 48 ат. %, Al – 19 ат. % и Co – 27 ат. %. Основными легирующими элементами были Cr, Ti Mo и Nb в суммарном количестве около 4 ат. %.

Сплав исследовался в трех состояниях: 1) исходное состояние – после направленной кристаллизации (НК); 2) НК + деформация при 1200 °C до 70 % сжатием и 3) НК + деформация при 1200 °C до 20 % + отжиг 1280 °C 1 ч + отжиг 950 °C 24 ч.

Основными методами исследования являлись: просвечивающая электронная дифракционная микроскопия (ПЭМ) на тонких фольгах и растровая электронная микроскопия (РЭМ).

Резка образцов, подлежащих исследованию, была проведена на электроискровом станке в мягком режиме, который не вносил в материал искажений и дополнительных дефектов. При этом образцы вырезались в направлении, перпендикулярном направлению роста кристалла. Подготовка образцов для исследований включала электролитическую полировку в пересыщенном растворе хромового ангидрида в ортофосфорной кислоте. Электролитическое травление поверхности образцов для их исследования в сканирующем электронном микроскопе проводилось в пене указанного электролита при начальном напряжении 50 В. Изучение тонких фольг выполнялось на просвечивающем электронном микроскопе ЭМ-125 при ускоряющем напряжении 125 кВ и рабочем увеличении в колонне микроскопа 25 000 крат. Исследования поверхности после травления были проведены на сканирующем электронном микроскопе TESLA BS-301 при рабочем увеличении 50–10 000 крат.

Средние размеры структурных элементов и параметры тонкой структуры измерялись по соответствующим микрофотографиям методом секущей [13, 14]. Полученные данные обрабатывались статистически. Фазовый анализ проводился на основе данных, полученных в просвечивающем электронном микроскопе из расшифровки соответствующих микроэлектронограмм и наблюдений в светлых и темных полях высокого разрешения [15].

Результаты и их обсуждение

Методами просвечивающей дифракционной и растровой электронной микроскопии установлено, что основными фазами во всех состояниях являются γ - и γ -фазы. Как правило, эти фазы формируют основную структуру сплава практически во всех суперсплавах. В исследуемом сплаве они присутствуют в виде квазикубоидов γ -фазы, разделенных прослой-ками γ -фазы. Выполненные в работе измерения позволили классифицировать частицы γ -фазы на два масштабных уровня: γ -фаза первого уровня (γ_1) – крупные округлые частицы размером 25–35 мкм; второй масштабный уровень γ -фазы – γ -фаза второго уровня (γ_{II}) – частицы квазикубоидной формы размером от 0,25 до 0,6 мкм, находящиеся в двухфазной смеси ($\gamma + \gamma_{II}$), которая окружает крупные частицы γ_1 .

Количественный фазовый состав исследуемых сплавов представлен в табл. 1.

Рис. 1. Изображение структуры сплава после направленной кристаллизации, полученное методом РЭМ. Стрелками указаны крупные частицы γ'-фазы, *A* – область мелкодисперсной смеси (γ + γ')

Таблица 1

Объемные доли основных фаз в исследуемых образцах

N⁰	Состоянно онгоро	Объемные доли фаз, $\delta \pm 0.05$			
п/п	Состояние сплава		γ	β	ε
1	НК (исходное состояние)	0,78	0,15	0,05	0,02
2	НК + деформация при 1200 °C до 70 % сжатием	0,90	0,08	Нет	0,02
3	НК + деформация при 1200 °С до 20 % + отжиг 1280 °С 1 ч + 950° 24 ч	0,79	0,05	Нет	Нет

Таблица 2

Средние размеры частиц ү'-фазы разного уровня и их объемные доли в исследуемых сплавах

№ п/п	Состояние	Частицы ү'-фазы I уровня		Частицы ү'-фазы II уровня		
		Доля,	$\overline{d} \pm 0.5$ year	Доля,	$\overline{d} \pm 0.5$ year	
		$\delta \pm 0.05$	$a \pm 0,3$ MKM	$\delta \pm 0.05$	$u \perp 0,3$ MKM	
1	НК (исходное состояние)	0,22	31,8	0,71	0,26	
2	НК + деформация при 1200 °С до 70 % сжатием	0,14	26,2	0,76	0,95	
3	НК + деформация при 1200 °С до 20 % +	0,10	22,06	0,85	0,57	
	+ отжиг 1280 °С 1 ч + 950 °С 24 ч					

Рис. 2. Электронно-микроскопическое изображение γ'-частицы первого уровня в сплаве, полученном методом направленной кристаллизации: *a* – светлопольное изображение; *б* – микроэлектронограмма; *в* – ее индицированная схема

Структура сплава в исходном состоянии (состояние 1) представляет собой смесь относительно крупных частиц γ -фазы и мелкодисперсной смеси ($\gamma + \gamma$). Было установлено, что крупные частицы являются частицами γ -фазы первого уровня (γ_1). На рис. 1 эти частицы отмечены стрелками. Их средний размер составляет более 30 мкм (табл. 2). Установлено также, что в сплаве присутствует текстура типа <001> вдоль оси образца. В соответствии с текстурой на рис. 1 и расположены частицы γ -фазы первого уровня.

На рис. 2 представлено электронно-микроскопическое изображение структуры γ -фазы первого уровня после НК (исходное состояние). Хорошо видно, что в частицах γ_1 присутствуют большеугловые границы (см. рис. 2, *a*). Четко выраженные сверхструктурные рефлексы на микроэлектронограмме (см. рис. 2, *б*) свидетельствуют о высокой степени дальнего порядка в γ_1 . Кроме того, на рис. 2 в основном объеме γ_1 хорошо виден крапчатый контраст, который свидетельствует о неустойчивом состоянии твердого раствора. Исходя из этого, можно сделать вывод, что ү-частицы первого уровня находятся в состоянии предраспада.

Изображения тонкой структуры ($\gamma + \gamma'$)-смеси для сплава, полученного методом НК, т.е. в исходном состоянии, приведены на рис. 3. В смеси ($\gamma + \gamma'$) γ' -фаза присутствует в виде частиц второго уровня (квазикубоидов). На темнопольном изображении, полученном в основном рефлексе γ -фазы (см. рис. 3, δ), видны прослойки между квазикубоидами (отмечены стрелками). Квазикубоиды γ' -фазы имеют сверхструктуру L1₂, о чем свидетельствуют яркие сверхструктурные рефлексы на микроэлектронограмме.

Мелкодисперсная смесь ($\gamma + \gamma$) занимает большую часть объема сплава. Доля мелкодисперсной смеси равна 0,71. На границах γ' - и γ -фаз присутствуют дислокации, локальная скалярная плотность дислокаций – $4 \cdot 10^8$ см⁻². В отличие от двухфазной смеси ($\gamma + \gamma$) с низкой скалярной плотностью дислокаций, в частицах γ_1 скалярная плотность дислокаций

Рис. 3. Электронно-микроскопическое изображение тонкой структуры сплава, полученного методом направленной кристаллизации: *а* – светлопольное изображение; *б* – темнопольное изображение, полученное в основном рефлексе (γ+γ)-фазы $\boxed{220}$; *в* – индицированная микроэлектронограмма: плоскость фольги – (114) γ'-фазы (сверхструктура L1₂)

Рис. 4. Электронно-микроскопическое изображение тонкой структуры сплава, полученного методом НК: *a* – светлопольное изображение; *б* – темнопольное изображение в рефлексе [101] β-фазы;

в – микроэлектронограмма и г – ее индицированная схема

Рис. 5. Электронно-микроскопическое изображение структуры сплава, полученного методом НК: *a* – светлопольное изображение; *б* – темнопольное изображение в рефлексе [100] ε-фазы; *в* – соответствующая микроэлектронограмма и ее индицированная схема

высокая. Она составляет $1 \cdot 10^{10}$ см⁻². Есть еще одно основание утверждать, что γ -фаза первого уровня находится в неравновесном состоянии.

Наряду с основными фазами обнаружена третья фаза – β-фаза. Она наблюдается только в исходном состоянии (см. табл. 1). Эта фаза упорядочена и имеет сверхструктуру В2. Присутствие β-фазы обнаруживается только при исследовании в просвечивающем электронном микроскопе. На рис. 4 представлены светлопольное и темнопольное изображения β -фазы в сплаве. Она наблюдается в виде игл внутри крупных частиц γ_1 . На микроэлектронограммах хорошо видны сверхструктурные рефлексы. Сохранение дальнего порядка при мартенситном превращении $\gamma' \rightarrow \beta$ обусловлено механизмом превращения, не вносящем антифазные границы. Такой механизм был предсказан давно и иногда наблюдался [16–21]. В сплаве, полученном методом НК, обнаружена четвертая фаза – ε-фаза. Она обладает гексагональной плотноупакованной кристаллической решеткой с упорядоченным расположением атомов – сверхструктура D0₂₄. На рис. 5 представлено изображение этой фазы, полученное с использованием просвечивающего микроскопа. Выделения ε-фазы имеют пластинчатый вид.

є-Фаза также образуется из γ -фазы путем сдвигового превращения. Внутренне она двойникована. Двойникование обусловлено аккомодацией сосуществующих фаз и стремлением системы к минимуму упругой энергии [20–25]. Превращение $\gamma' \rightarrow \varepsilon$ частично сохраняет дальний порядок.

Пластическая деформация после НК значительно увеличивает объемную долю у'-фазы (состояние 2) (см. табл. 1). Это означает, что по фазовому составу пластическая деформация приближает исследуемый сплав к равновесию [16, 17]. Другое заметное изменение, вызванное пластической деформацией при температуре 1200 °С - уменьшение объемной доли частиц ү-фазы первого уровня (см. табл. 2). Эти процессы при деформации коррелируют с изменением структуры сплавов при отжигах [16, 17]. Изображение структуры сплавов НК, деформированных при температуре 1200 °С до 70 % сжатием, полученное в сканирующем микроскопе, представлено на рис. 6. Сплавы после деформации имеют поликристаллическую структуру, морфология которой далека от равновесия. Тем не менее по сравнению с исходным состоянием (НК) частицы γ_{I} сохранились, хотя их доли и размеры существенно уменьшились (см. табл. 2).

Из рис. 6 видно, что часть областей ($\gamma + \gamma'$) имеют крапчатый контраст. Электронно-микроскопические исследования показали, что этот контраст обусловлен наличием мелкодисперсной смеси ($\gamma + \gamma$) в сплаве (рис. 7).

Исследования показали, что объемная доля частиц γ' -фазы первого уровня уменьшается, в то же время возрастает объемная доля квазикубоидов второго уровня. Размер частиц γ' -фазы второго уровня в деформированном сплаве увеличился почти в 5 раз по сравнению с исходным состоянием сплава. Изменилась форма этих частиц, они стали более прямоугольными.

Помимо морфологии γ- и γ'-фаз пластическая деформация приводит к изменению фазового состава, а именно: в сплаве исчезла β-фаза, но сохранилась в небольшом объеме ε-фаза (см. табл. 1).

Структура сплава состояния 3 (НК после деформации и двух отжигов), наблюдаемая в сканирующем микроскопе, приведена на рис. 8.

Как и в сплаве состояния 2 (НК + деформация до 70 %), сплав в состоянии 3 представляет собой поликристаллический агрегат, также присутствуют

Рис. 6. Изображение структуры сплава НК, деформированного при температуре 1200 °С сжатием до 70 %, полученное в сканирующем микроскопе; стрелками указаны крупные частицы ү'-фазы, А – области мелкодисперсной смеси (ү + ү')

 γ -частицы первого уровня (γ_I). Однако, в отличие от состояния 2, внутри частиц У1 начался распад. Это хорошо видно на рис. 8 (отмечены стрелками). Средние размеры этих частиц и их доля также уменьшаются (см. табл. 2). Анализ фазового состава сплава после НК, деформированного с последующими отжигами (состояние 3), показывает, что фазовое равновесие соответствует температуре 800 °C [16]. В этом случае сплав попадает в двухфазную область $(\gamma + \gamma)$. Деформация и последующие отжиги уменьшают объемную долю частиц γ_{I} . Это свидетельствует о стремлении структуры к равновесию по морфологии. Перекристаллизованная доля ү-фазы, где сохранилась ү-фаза, представляет из себя кубоиды (рис. 9). Судя по данным табл. 2, именно в этой части объема материала происходят изменения.

Так же как и в состоянии после деформации, помимо морфологии γ- и γ'-фаз отжиг влияет на фазовый состав, а именно: в сплаве исчезла ε-фаза.

Заключение

Методами просвечивающей дифракционной и растровой электронной микроскопии установлено, что как пластическая деформация, так и пластическая деформация с последующими отжигами влияют на фазовый состав исследуемого сплава.

Установлено, что во всех исследованных образцах объемная доля модификации $\gamma'_{\rm I}$ изменяется, а это означает, что данная модификация неустойчива. Меньшая неустойчивость ее проявляется после деформации без последующего отжига, и самая неустойчивая модификация γ' -фазы оказывается $\gamma'_{\rm I}$ после предварительной деформации сплава с последующими отжигами. Основной преемницей фазы $\gamma'_{\rm I}$ по объемной доле материала является фаза $\gamma'_{\rm I}$. Эта модификация более устойчива, и ее объемная доля растет во всех состояниях. Быстрее всего объемную долю модификации $\gamma'_{\rm I}$ увеличивает отжиг после деформации.

Рис. 7. Электронно-микроскопическое изображение тонкой структуры сплава, полученного методом НК и деформированного при температуре 1200 °C сжатием до 70 %: *a* – светлопольное изображение; *б* – темнопольное изображение γ-фазы, полученное в основном рефлексе [11]; *в* – индицированная микроэлектронограмма

с соответствующего участка: плоскость фольги – (112) у-фазы (сверхструктура L12)

Рис. 9. Электронно-микроскопическое изображение тонкой структуры сплава, полученного методом направленной кристаллизации, деформированного при температуре 1200 °C до 20 % и затем отожженного при температурах 1280 °C 1 ч и 950 °C 24 ч: *a* – светлопольное изображение; *б* – темнопольное изображение, полученное в основном рефлексе [002] (γ + γ)-фаз; *в* – темнопольное изображение, полученное в сверхструктурном рефлексе [001] γ'-фазы; *г* – индицированная микроэлектронограмма с соответствующего участка фольги (плоскость фольги – (120) (γ + γ)-фазы, сверхструктура L1₂)

Поведение размеров частиц γ_1 подтверждает сказанное. Они быстро убывают со временем отжига. Таким образом, прямыми измерениями установлена неустойчивость структурной модификации γ_1 и устойчивость модификации γ_{II} .

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № FEMN-2020-0004).

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

1. Симс Ч.Т., Столофф Н.С., Хагель В.Ц. Суперсплавы II: Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. – М.: Металлургия, 1995. – Ч. 1. – 384 с.

2. Высокотемпературные жаропрочные никелевые сплавы для деталей газотурбинных двигателей / Б.С. Ломберг, С.В. Овсепян, М.М. Бакрадзе, И.С. Мазалов // Авиационные материалы и технологии. – 2012. – № S. – С. 52–57.

 Никелевые литейные сплавы нового поколения / Е.Н. Каблов, Н.В. Петрушин, И.Л. Светлов, И.М. Демонис // Авиационные материалы и технологии. – 2012. – № S. – С. 36–52.

4. Морфология фаз и фазовые превращения при термической обработке суперсплавов на основе Ni–Al–Cr и Ni–Al–Co. Масштабные и концентрационные эффекты / Э.В Козлов, А.Н. Смирнов, Е.Л. Никоненко [и др.]. – М.: Инновационное машиностроение, 2016. – 175 с.

Структура и свойства интерметаллидных материалов с нанофазным упрочнением / Ю.Р. Колобов, Е.Н. Каблов,
Э.В. Козлов [и др.]. – М.: Изд-во МИСиС, 2008. – 328 с.

6. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года // Авиационные материалы и технологии. – 2012. – № S. – С. 7–17.

7. Оспенникова О.Г. Стратегия развития жаропрочных сплавов и сталей специального назначения, защитных и теплозащитных покрытий // Авиационные материалы и технологии. – 2012. – № S. – С. 19–36.

8. Каблов Е.Н., Петрушин Н.В., Светлов И.Л. Современные литые никелевые жаропрочные сплавы // Научные идеи С.Т. Кишкина и современное материаловедение: тр. междунар. науч.-техн. конф., посвященной 100-летию со дня рождения С.Т. Кишкина, г. Москва, 26 апреля 2006 г. / ВИАМ. – М., 2006. – С. 39–55.

9. Особенности монокристаллических жаропрочных никелевых сплавов, легированных рением / Е.Н. Каблов, Н.В. Петрушин, М.Б. Бронфин, А.А. Алексеев // Металлы. – 2006. – № 5. – С. 47–57.

10. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. – 2015. – № 1. – С. 3–33.

11. Герасимов В.В., Петрушин Н.В., Висик Е.М. Усовершенствование состава и разработка технологии литья монокристаллических лопаток из жаропрочного интерметаллидного сплава // Труды ВИАМ. – 2015. – № 3. – С. 1.

12. Поварова К.Б., Банных О.А. Анализ принципов создания жаропрочных никелевых суперсплавов и сплавов на

основе интерметаллида Ni₃Al (γ-фаза) // Научные идеи С.Т. Кишкина и современное материаловедение: тр. междунар. науч.техн. конф., посвященной 100-летию со дня рождения С.Т. Кишкина, г. Москва, 26 апреля 2006 г. / ВИАМ. – М., 2006. – С. 11–21.

13. Салтыков С.А. Стереометрическая металлография. – М.: Металлургия, 1976. – 271 с.

14. Электронная микроскопия тонких кристаллов / П. Хирш, А. Хови, Р. Николсон [и др.]. – М.: Мир, 1968. – 574 с.

15. Эндрюс К., Дайсон Д., Киоун С. Электронограммы и их интерпретация. – М.: Мир, 1971. – 256 с.

16. Диаграммы состояния двойных металлических систем / под общ. ред. Н.П. Лякишева. – М.: Машиностроение, 1996. – Т. 1–3.

17. Диаграммы состояния металлических систем / под ред. Л.А. Петровой. – М.: Изд-во ВИНИТИ, 1955–1990. – Вып. I–ХХХV.

18. Попов Л.Е., Козлов Э.В. Механические свойства упорядоченных твердых растворов. – М.: Металлургия, 1970. – 214 с.

19. Монокристаллы никелевых жаропрочных сплавов / Р.Е. Шалин, И.Л. Светлов, Е.Б. Качанов [и др.]. – М.: Машиностроение, 1997. – 333 с.

20. Чащина В.Г., Кащенко М.П. Экспериментальные основания динамической теории мартенситных превращений: учеб. пособие / УГЛТУ. – Екатеринбург, 2020. – 46 с.

21. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения / УрО РАН. – Екатеринбург, 1998 – 367 с.

22. Панин В.Е., Лихачев В.А., Гриняев Ю.В. Структурные уровни деформации твердых тел. – Ново-сибирск: Наука, 1985. – 229 с.

23. Вонсовский С.В., Изюмов Ю.А., Курмаев Э.З. Сверхпроводимость переходных металлов, их сплавов и соединений. – М.: Наука, 1977 – 383 с.

24. Упругие и акустические свойства ионных, керамических диэлектриков и высокотемпературных сверхпроводников / В.Н. Беломестных, Ю.П. Похолков, В.Л. Ульянов, О.Л. Хасанов. – Томск: STT, 2001. – 226 с.

25. Лихачев В.А., Кузьмин С.Л., Каменцева З.П. Эффект памяти формы. – Л.: Изд-во ЛГУ, 1987. – 218 с.

References

 Sims Ch.T., Stoloff N.S., Khagel' V.Ts. Super-splavy II: Zharoprochnye materialy dlia aerokosmicheskikh i promyshlennykh energoustanovok [Superalloys II: Heat-resistant materials for aerospace and industrial power plants]. Moscow: Metallurgiia, 1995, part 1, 384 p.

2. Lomberg B.S., Ovsepian S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlia detalei gazoturbinnykh dvigatelei [High-temperature heat-resistant nickel alloys for gas turbine engine parts]. *Aviatsionnye materialy i tekhnologii*, 2012, no. S, pp. 52–57.

3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye liteinye splavy novogo pokoleniia [New-generation nickel casting alloys]. *Aviatsionnye materialy i tekhnologii*, 2012, no. S, pp. 36–52.

4. Kozlov E.V., Smirnov A.N., Nikonenko E.L. et al. Morfologiia faz i fazovye prevrashcheniia pri termicheskoi obrabotke supersplavov na osnove Ni–Al–Cr i Ni–Al–Co. Masshtabnye i kontsentratsionnye effekty [Phase morphology and phase transformations during heat treatment of Ni-Al-Cr and Ni-Al-Co based superalloys. Scale and concentration effects]. Moscow: Innovatsionnoe mashinostroenie, 2016, 175 p. 5. Kolobov Iu.R., Kablov E.N., Kozlov E.V. et al. Struktura i svoistva intermetallidnykh materialov s nanofaznym uprochneniem [Structure and properties of intermetallic materials with nanophase hardening]. Moscow: Izdatelstvo MISiS, 2008, 328 p.

6. Kablov E.N. Strategicheskie napravleniia raz-vitiia materialov i tekhnologii ikh pererabotki na period do 2030 goda [Strategic directions in the development of materials and processing technologies for the period up to 2030]. *Aviatsionnye materialy i tekhnologii*, 2012, no. S, pp. 7–17.

7. Ospennikova O.G. Strategiia razvitiia zharoprochnykh splavov i stalei spetsial'nogo naznacheniia, zashchitnykh i teplozashchitnykh pokrytii [Strategy for the Development of Special-Purpose Heat-Resistant Alloys and Steels, Protective and Heat-Protective Coatings]. *Aviatsionnye materialy i tekhnologii*, 2012, no. S, pp. 19–36.

8. Kablov E.H., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel heat-resistant alloys]. *Nauchnye idei S.T. Kishkina i* sovremennoe materialovedenie. VIAM. Moscow, 2006, pp. 39–55.

9. Osobennosti monokristallicheskikh zharo-prochnykh nikelevykh splavov, legirovannykh reniem [Features of single-crystal heat-proof nickel alloys alloyed with rhenium]. E.N. Kablov, N.V. Petrushin, M.B. Bronfin, A.A. Alekseev. *Metally*, 2006, no. 5, pp. 47–57.

10. Kablov E.N. Innovatsionnye razrabotki FGUP «VIAM» GNTs RF po realizatsii «Strategicheskikh napravlenii razvitiia materialov i tekhnologii ikh pererabotki na period do 2030 goda» [Innovative developments of FGUP VIAM SSC RF on the implementation of the "Strategic directions of development of materials and technologies of their processing for the period up to 2030"]. *Aviatsionnye materialy i tekhnologii*, 2015, no. 1, pp. 3–33.

11. Gerasimov V.V., Petrushin N.V., Visik E.M. Usovershenstvovanie sostava i razrabotka tekhnologii lit'ia monokristallicheskikh lopatok iz zharoprochnogo intermetallidnogo splava [Improvement of composition and development of casting technology of monocrystalline blades from heat-resistant intermetallic alloy]. *Trudy VIAM*, 2015, no. 3, p. 1.

12. Povarova K.B., Bannykh O.A. Analiz printsipov sozdaniia zharoprochnykh nikelevykh supersplavov i splavov na osnove intermetallida Ni3Al (γ -faza) [Analysis of principles for creating heat resistant nickel superalloys and alloys based on Ni3Al intermetallide (γ -phase)]. *Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie. VIAM.* Moscow, 2006, pp. 11–21.

13. Saltykov S.A. Stereometricheskaia metallografiia [Stereometric metallography]. Moscow: Metallurgiia, 1976, 271 p.

14. Khirsh P., Khovi A., Nikolson R. et al. Elektronnaia mikroskopiia tonkikh kristallov [Electron microscopy of thin crystals]. Moscow: Mir, 1968, 574 p.

15. Endrius K., Daison D., Kioun S. Elektrono-grammy i ikh interpretatsiia [Electronograms and their interpretation]. Moscow: Mir, 1971, 256 p.

 Diagrammy sostoianiia dvoinykh metallicheskikh sistem [State diagrams of double metallic systems]. Ed. N.P. Liakisheva. Moscow: Mashinostroenie, 1996, vol. 1–3.

17. Diagrammy sostoianiia metallicheskikh sistem [State diagrams of metal systems]. Ed. L.A. Petrovoi. Moscow: Izdatelstvo VINITI, 1955–1990, iss. I–KhKhKhV.

 Popov L.E., Kozlov E.V. Mekhanicheskie svoi-stva uporiadochennykh tverdykh rastvorov [Mechanical properties of ordered solid solutions]. Moscow: Metallurgiia, 1970, 214 p. 19. Shalin R.E., Svetlov I.L., Kachanov E.B. et al. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel heat-resistant alloys]. Moscow: Mashinostroenie, 1997, 333 p.

20. Chashchina V.G., Kashchenko M.P. Eksperimental'nye osnovaniia dinamicheskoi teorii martensitnykh prevrashchenii [Experimental foundations of the dynamic theory of martensitic transformations]. UGLTU. Ekaterinburg, 2020, 46 p.

21. Pushin V.G., Kondrat'ev V.V., Khachin V.N. Predperekhodnye iavleniia i martensitnye prevrashcheniia [Pretransition phenomena and martensitic transformations]. UrO RAN. Ekaterinburg, 1998, 367 p.

22. Panin V.E., Likhachev V.A., Griniaev Iu.V. Strukturnye urovni deformatsii tverdykh tel [Structural levels of deformation of solids]. Novosibirsk: Nauka, 1985, 229 p.

23. Vonsovskii S.V., Iziumov Iu.A., Kurmaev E.Z. Sverkhprovodimost' perekhodnykh metallov, ikh splavov i soedinenii [Superconductivity of transition metals, their alloys and compounds]. Moscow: Nauka, 1977, 383 p.

24. Belomestnykh V.N., Pokholkov Iu.P., Ul'ianov V.L., Khasanov O.L. Uprugie i akusticheskie svoistva ionnykh, keramicheskikh dielektrikov i vysokotemperaturnykh sverkhprovodnikov [Elastic and acoustic properties of ionic, ceramic dielectrics and high-temperature superconductors]. Tomsk: STT, 2001, 226 p.

25. Likhachev V.A., Kuz'min S.L., Kamentseva Z.P. Effekt pamiati formy [The shape memory effect]. Leningrad: Izdatelstvo LGU, 1987, 218 p.

Получено 18.08.2021 Принято 10.11.2021 Опубликовано 30.12.2021

Сведения об авторах

Никоненко Елена Леонидовна (Томск, Россия) – кандидат физико-математических наук, доцент кафедры физики, химии и теоретической механики Томского государственного архитектурно-строительного университета, e-mail: vilatomsk@mail.ru.

Попова Наталья Анатольевна (Томск, Россия) – кандидат технических наук, старший научный сотрудник кафедры физики, химии и теоретической механики Томского государственного архитектурно-строительного университета, e-mail: natalya-popova-44@mail.ru.

Сизоненко Нина Робертовна (Томск, Россия) – старший научный сотрудник кафедры физики, химии и теоретической механики Томского государственного архитектурно-строительного университета, e-mail: snr1952@mail.ru.

About the authors

Elena L. Nikonenko (Tomsk, Russian Federation) – Ph.D. in Physics and Mathematics, Associate Professor, Department of Physics, Chemistry, Theoretical Mechanics, Tomsk State University of Architecture and Building, e-mail: vilatomsk@mail.ru.

Natalya A. Popova (Tomsk, Russian Federation) – Ph.D. in Technical Sciences, Senior Researcher, Department of Physics, Chemistry, Theoretical Mechanics, Tomsk State University of Architecture and Building, e-mail: natalya-popova-44@mail.ru.

Nina R. Sisonenko (Tomsk, Russian Federation) – Senior Researcher, Department of Physics, Chemistry, Theoretical Mechanics, Tomsk State University of Architecture and Building, e-mail: snr1952@mail.ru.