Тошков В.Ц., Симонов Ю.Н., Силина О.В. Термодинамический анализ процессов при газовом и ионно-плазменном азотировании. Механизм и кинетика азотирования в тлеющем разряде // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2020. – Т. 22, № 2. – С. 31–39. DOI: 10.15593/2224-9877/2020.2.04

Toshkov V., Simonov Yu.N., Silina O.V. Thermodynamic analysis of processes in gas and ion-plasma nitriding. Mechanism and kinetics of nitriding in a glow discharge. *Bulletin PNRPU. Mechanical engineering, materials science*, 2020, vol. 22, no. 2, pp. 31–39. DOI: 10.15593/2224-9877/2020.2.04

ВЕСТНИК ПНИПУ. Машиностроение, материаловедение T. 22, № 2, 2020 Bulletin PNRPU. Mechanical engineering, materials science http://vestnik.pstu.ru/mm/about/inf/

DOI: 10.15593/2224-9877/2020.2.04 УДК 621.785

В.Ц. Тошков¹, Ю.Н. Симонов², О.В. Силина²

¹Технический университет – София, Болгария ²Пермский национальный исследовательский политехнический университет, Пермь, Россия

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ПРОЦЕССОВ ПРИ ГАЗОВОМ И ИОННО-ПЛАЗМЕННОМ АЗОТИРОВАНИИ. МЕХАНИЗМ И КИНЕТИКА АЗОТИРОВАНИЯ В ТЛЕЮЩЕМ РАЗРЯДЕ

Исследования, касающиеся обновления термодинамических расчетов при газовом азотировании, а также термодинамического анализа механизма формирования и существования некоторых активных частиц в азотирующей плазме и связанных с ней процессов фазообразования в тлеющем разряде, являются актуальными. Посвящена обогащению представлений о кинетике и механизме формирования азотируемого слоя при насыщении в азотосодержащей плазме. Проведен термодинамический анализ процессов при газовом и ионноплазменном азотировании. Расчеты основных возможных реакций при газовом азотировании позволили заключить, что газовое азотирование с молекулярным азотом невозможно; атомами азота – возможно при наличии атомов азота в широком температурном интервале; в недиссоциированном аммиаке - возможно, но в реальных условиях маловероятно. Рассчитаны равновесные состояния при различных процессах, протекающих в азотосодержащей плазме и на границе металл-плазма. Проведены расчеты термодинамического потенциала всех наблюдаемых ионизированных атомов и групп в зависимости от температуры при постоянном давлении. Установлено, что азотирование в «азотной» плазме в целом возможно, но в кинетическом аспекте процесс происходит медленнее, а слои значительно тоньше по сравнению с азотированием в аммиачной или азотоводородной плазме. Показано, что при использовании аммиака в тлеющем разряде наиболее вероятно наличие ионизирующих групп NH3⁺ и N₂H⁺. Именно они характеризуются относительно низкой энергией образования. Установлена роль водорода в азотной среде как поставщика значительного количества электронов для облегченного протекания плазменных реакций и как компонента с сильным восстановительным действием в пограничных процессах газ-металл. При использовании азотоводородной смеси показано, что во всем исследованном температурном интервале термодинамически наиболее подходящими азотосодержащими группами являются NH2⁺ и H3⁺, так как их образование обеспечивается минимальным уровнем активизирующей (ионизирующей) энергии. Термодинамические расчеты показали, что энергетически наиболее выгодно получать нитриды трехвалентного железа в реакциях железа с атомным и молекулярным ионами азота, а также с группой N2H*, но при наличии и возможном участии водорода и электронов.

Ключевые слова: ионно-плазменное азотирование, тлеющий разряд, плазма, термодинамический анализ, кинетика насыщения, энергия Гиббса, изобарный потенциал, продукты диссоциации и ионизации, азотоводородная смесь, ионные группы.

V. Toshkov¹, Yu.N. Simonov², O.V. Silina²

¹Technical University of Sofia, Bulgaria ²Perm National Research Polytechnic University, Perm, Russian Federation

THERMODYNAMIC ANALYSIS OF PROCESSES IN GAS AND ION-PLASMA NITRIDING. MECHANISM AND KINETICS OF NITRIDING IN A GLOW DISCHARGE

Studies related to updating thermodynamic calculations during gas nitriding, as well as thermodynamic analyzes of the formation and existence of some active particles in a nitriding plasma and the associated processes of phase formation in a glow discharge, are relevant.

The work is devoted to enriching the concepts of kinetics and the mechanism of formation of a nitrided layer upon saturation in a nitrogencontaining plasma. A thermodynamic analysis of the processes during gas and ion-plazma nitriding was carried out. The calculations of main possible reactions with gas nitriding led to conclusions, that: gas nitriding with molecular nitrogen – impossible; with nitrogen atoms – possible if nitrogen atoms are present in a wide temperature range; in undissociated ammonia – possible but in real conditions is unlikely. The equilibrium states are calculated for various processes occurring in a nitrogen-containing plasma and at the metal-plasma interface. It was established that nitriding in the "nitrogen" plasma is generally possible, but in the kinetic aspect the process is slower and the layers are much thinner compared to nitriding in ammonium or nitrogen-hydrogen plasma. The thermodynamic potential of all observed ionized atoms and groups was calculated as a function of temperature at constant pressure. It is shown that when using ammonia in a glow discharge, ionizing groups NH₃⁺ and N₂H⁺ are most likely to be present. They are characterized by a relatively low energy of formation. The role of hydrogen in a nitrogen medium as a supplier of a significant number of electrons for the facilitated flow of plasma reactions and as a component with a strong reducing effect in gas-metal boundary processes has been established. When using a nitrogen-hydrogen mixture, it was shown that in the entire temperature range studied, the thermodynamically most suitable nitrogen-containing groups are NH_2^+ and H_3^+ , since their formation is ensured by the minimum level of activating (ionizing) energy. Thermodynamic calculations showed that it is energetically most beneficial to obtain ferric nitrides in reactions of iron with atomic and molecular nitrogen ions, as well as with the N₂H⁺ group, but with possible participation of hydrogen and electrons.

Keywords: ion-plasma nitriding, glow discharge, plasma, thermodynamic analysis, saturation kinetics, Gibbs energy, isobaric potential, dissociation and ionization products, nitrogen-hydrogen mixture, ion groups.

Введение

В настоящее время во всем мире интерес исследователей к системе железо–азот по-прежнему высок. Сегодня поверхностное обогащение стальных деталей и инструментов азотом в условиях ионно-плазменных процессов считается эффективным способом повышения их твердости, износостойкости и способности выдерживать высокие циклические нагрузки. За последние 60 лет по данной теме опубликовано большое количество научных трудов, свидетельствующих о серьезной научно-исследовательской работе по изучению как поведения и условий существования сильнотоковых тлеющих разрядов, так и возможности их использования при насыщении металлов и сплавов азотом [1–10].

В литературных источниках еще начала 70-х гг. прошлого века [11, 12] расчет энергии образования веществ проводили для стандартных условий, а в более поздних работах [13] должное внимание уделяли и ионизирующим газам, положительно или отрицательно заряженным ионам, а также возможности диссоциации химических соединений атомов, молекул и ионов атомов, а также электронов. Интерес к обновлению термодинамических расчетов при газовом азотировании, а также к термодинамическому анализу механизма формирования и существования некоторых активных частиц в азотирующей плазме и связанных с ним процессов фазообразования в тлеющем разряде актуален и сегодня. Целью данной работы является обогащение представлений о кинетике и механизме формирования азотируемого слоя при насыщении в азотосодержащей плазме.

Термодинамические аспекты газового азотирования

Первые работы по изучению кинетики процесса и условий растворения азота при газовом азотировании железа и его сплавов появились еще около 70 лет назад, на заре промышленного применения метода. В 1952 г. на основе термодинамического расчета реакций, которые происходят при азотировании, А.В. Смирнов предложил заменить часть аммиака инертными газами или продуктами его распада. Азотирование с разбавленным аммиаком получило широкое распространение в практике, потому что, с одной стороны, при классическом азотировании (100 % NH₃) только 0,64 мас. % азота от всего количества аммиака используется для формирования азотированного слоя, а с другой стороны, получается слой с меньшей хрупкостью [14]. Расчеты, опубликованные в работах [11,12, 15], охватывают широкий температурный интервал – от 500 до 1300 К (от 227 до 1027 °C) и девять реакций с участием атомов азота, молекул азота и аммиака.

Расчеты, выполненные нами на основе полученных данных (без участия γ-железа), представлены в табл. 1 и на рис. 1.

Изобарный потенциал, рассчитанный для реакций (1), (2) и (7), корректирует расчеты Ш.А. Андрачникова [12]. Подход, использованный им для расчета реакций (3), (4), (5) и (6), основан на законе Гесса и приводит к ошибкам, которые были проанализированы в работе [14]. Расчеты основных возможных реакций при газовом азотировании позволили заключить, что газовое азотирование с молекулярным азотом (реакции (3) и (4)) невозможно, поскольку с повышением температуры вероятность протекания этих реакций уменьшается. Теоретически такая возможность существует и для двух видов нитридов Fe₂N и Fe₄N при температуре от 0 до 200 К (от -273 до -73 °C). Однако очень низкие температуры исключают возможность диффузии. Показано, что газовое азотирование атомами азота возможно. Реакции (1), (2) и (7) с точки зрения

Рис. 1. Температурные зависимости изобарного потенциала реакций получения нитридов

Мо		ΔG , кДж/моль										
JN <u>9</u> ∏/⊡	Реакция	Температура, К										
11/11		298 К	300 K	400 K	500 K	600 K	700 K	800 K	900 K	1000 K		
1	$2Fe_{\alpha} + N = Fe_2N$	-444,72	-444,562	-433,923	-423,207	-412,375	-401,417	-390,271	-379,062	-367,639		
2	$4Fe_{\alpha} + N = Fe_4N$	-452,02	-451,826	-441,261	-430,588	-419,684	-408,496	-396,890	-385,083	-372,778		
3	$2Fe_{\alpha} + \frac{1}{2}N_2 = Fe_2N$	10,786	10,876	15,677	20,403	25,127	29,882	34,750	39,618	44,646		
4	$4Fe_{\alpha} + \frac{1}{2}N_2 = Fe_4N$	3,523	3,613	8,339	13,023	17,818	22,803	28,131	33,597	39,507		
5	$2Fe_{\alpha} + NH_3 = \frac{3}{2}H_2 + Fe_2N$	27,211	27,114	21,652	15,623	9,247	2,655	-4,013	-10,816	-17,159		
6	$4Fe_{\alpha} + NH_3 = \frac{3}{2}H_2 + Fe_4N$	19,947	19,851	14,313	8,242	1,937	-4,425	-10,631	-16,836	-22,296		
7	$Fe_4N + N = 2Fe_2N$	-437,49	-437,299	-426,584	-415,827	-405,065	-394,338	-383,652	-373,041	-362,502		

Изобарный потенциал реакции получения нитридов при различных температурах

термодинамики могут быть реализованы при наличии атомов азота в широком температурном интервале. Вопреки существующей теоретической вероятности образования нитридных фаз Fe₄N и Fe₂N даже при температурах ниже 600 К (327 °C) на практике такая вероятность стремится к нулю из-за крайне медленно протекающих диффузионных процессов при таких температурах [16–22].

Установлено, что газовое азотирование при использовании аммиака возможно при известной критической температуре, значение которой, рассчитанное для реакций (5) и (6), составляет 630,5 К для получения Fe₄N и соответственно 739,82 К (или 466,8 °C) для получения насыщенной азотом фазы Fe₂N.

При азотировании в аммиачной среде ограничивающим фактором является диффузия, а не термодинамическая вероятность образования соответствующей нитридной фазы. При определении температурного интервала азотирования решающее значение имеет химический состав материала (сталь, чугун) и требования по отношению к эксплуатационным качествам азотированного слоя. С другой стороны, при таких выбранных условиях азотирования степень диссоциации аммиака, хотя и отличается в конкретных условиях работы, является значительной и обеспечивает достаточное количество атомарного азота для энергетически более выгодных реакций (1), (2) и (7). Так что, хотя с точки зрения термодинамики это и возможно, при нормальных условиях газового азотирования непосредственное взаимодействие железа и недиссоциированного аммиака маловероятно.

Термодинамические аспекты ионного азотирования

Чтобы рассчитать равновесные состояния при различных процессах, протекающих в азотосодержащей плазме и на границе металл–плазма, требуется, чтобы были известны равновесные константы всех независимых и возможных для рассматриваемой системы реакций. Для этой цели необходимы достаточно полные исходные данные об энергии всех компонентов системы железо-тлеющая плазма.

Таблица 1

В табл. 2 приведены унифицированные данные энергии Гиббса для восьми предполагаемых компонентов низкотемпературной плазмы: молекул, атомов, заряженных атомных групп и электронов в температурном диапазоне от 298 до 1000 К (от 25 до 737 °C), которые являются участниками возможных реакций при ионном азотировании в аммиачной среде или азоте, а также в азотоводородной смеси.

Из рис. 2 следует термодинамическая обусловленность фактического существования молекулярного водорода, азота и аммиака во всем исследуемом температурном интервале. Термодинамические свойства электронного газа для такого температурного интервала были получены путем вычислений с использованием данных, приведенных в работе [12].

В табл. 3 и на рис. 3 представлены результаты расчета энергии Гиббса для реакций, которые можно было бы ожидать при поэтапной диссоциации и ионизации рабочего газа аммиака (реакции (8)–(12)) и азота (реакции (13)–(15)). Последние реакции (12) и (15) для двух возможных вариантов одинаковые.

Таким образом, из анализа данных, представленных в табл. 3 и на рис. 3, очевидно, что все реакции диссоциации и ионизации газов на молекулярном уровне (реакции (8)–(12) и (15)) требуют большого потребления энергии. Кроме того, эти энергетические затраты сравнимы по величине. Исключение составляют реакции (11) и (14). При диссоциации и ионизации одной молекулы аммиака образуется один положительный ион азота (N⁺)

	1			1 71									
№	Компонент	ΔG , кДж/моль											
п/п	Romioneni	298 К	300 K	400 K	500 K	600 K	700 K	800 K	900 K	1000 K			
1	Ν	427,006	426,722	411,078	394,906	378,321	361,380	344,134	326,653	308,925			
2	NH ₃	-103,462	-103,822	-123,658	-144,370	-166,000	-188,460	-211,564	-235,303	-259,646			
3	N ₂	-57,095	-57,446	-77,057	-97,404	-118,344	-139,792	-161,678	-183,956	-206,598			
4	H ₂	-38,927	-39,171	-52,681	-66,931	-81,768	-97,098	-112,847	-128,972	-145,423			
5	Н	183,828	183,615	171,829	159,515	146,787	133,708	120,332	106,692	92,826			
6	е	-6,222	-6,259	-8,673	-11,611	-14,966	-18,757	-22,673	-26,937	-31,434			
7	NH ₂	131,896	131,537	111,512	90,611	68,986	46,731	23,924	0.607	-23,175			
8	NH	284,880	284,545	265,977	246,672	226,773	206,382	182,565	164,368	142,829			

Энергия Гиббса для предполагаемых компонентов в низкотемпературной плазме

Рис. 2. Изменение энергии Гиббса азотировочных газов и продуктов их диссоциации и ионизации

Рис. 3. Энергия Гиббса для реакций поэтапной диссоциации и ионизации аммиака или азота

Таблица 3

Таблица 2

Энергия Гиббса для реакции поэтапной диссоциации и ионизации аммиака и азота

N⁰	Р еоглия*	ΔG , кДж/моль										
п/п	1 сакция	298 К	300 K	400 K	500 K	600 K	700 K	800 K	900 K	1000 K		
8	$\mathbf{NH}_3 = \mathbf{NH}_2 + \mathbf{H}^+ + \mathbf{e}$	1732,950	1732,691	1718,879	1704,101	1688,641	1672,596	1656,089	1639,191	1621,919		
9	$\mathbf{NH}_2 = \mathbf{NH} + \mathbf{H}^+ + \mathbf{e}$	1650,576	1650,341	1638,174	1625,097	1611,313	1596,970	1582,163	1566,958	1551,415		
10	$NH = NH^+ + e$	1262,941	1262,890	1259,773	1256,066	1251,907	1247,370	1242,472	1237,376	1231,996		
11	$NH^+ = N + H^+$	376,937	376,610	369,029	359,301	351,234	342,983	334,674	326,126	319,500		
12	$N = N^+ + e$	1401,302	1401,251	1398,170	1394,581	1390,556	1386,176	1381,511	1376,574	1371,408		
13	$N_2 = N_2^+ + e$	1501,484	1501,595	1498,412	1494,868	1490,897	1486,575	1481,956	1477,065	1471,942		
14	$N_2^{+} = N + N^{+}$	810,909	810,697	798,964	786,914	774,622	762,145	749,509	736,756	723,899		
15	$N = N^+ + e$	1401,302	1401,251	1398,180	1394,581	1390,556	1386,176	1381,511	1376,574	1371,408		

Примечание: * Номера реакций (8)-(15) являются продолжением. Начало (1)-(7) - в табл. 1.

и четыре электрона (электронный газ). При диссоциации и ионизации одной молекулы азота образуется два иона азота N⁺ и два электрона.

Следовательно, при использовании аммиака в качестве насыщающей среды при азотировании

водород обеспечивает в 2–3 раза больше электронов для процесса. Если высвобождаемый электронный газ оказывает влияние на создание связи между железом и азотом, этот эффект будет по меньшей мере в 2 раза выше в случае использования аммиака при неизменных прочих условиях азотирования. В отличие от газового азотирования в чистом азоте, которое на практике является невозможным, насыщение в «чистой азотной» плазме в целом возможно, но в кинетическом аспекте процесс происходит медленнее, а слои значительно тоньше по сравнению с азотированием в аммиачной или азотоводородной плазме. Этот факт, давно известный в теории и на практике, вновь напоминает о полезной роли водорода, присутствующего в «азотной атмосфере».

В соответствии с проведенными исследованиями состава газовой смеси в тлеющем разряде возникает необходимость расчета термодинамического потенциала всех наблюдаемых ионизированных атомов и групп в зависимости от температуры при постоянном давлении. В табл. 4 представлены для сравнения энергии Гиббса для 11 возможных компонентов светящейся плазмы. Некоторые из этих данных были опубликованы ранее в работе [15], а для четырех компонентов (NH₂⁺, NH₃⁺, N₃⁺ и N₂H⁺) были выполнены дополнительные расчеты.

Из табличных данных (см. табл. 4) видно, что самым легким с энергетической точки зрения является образование $\rm NH_3^+$. Из таблицы видно, что для линейной структурной модификации группы $\rm N_2H$ термодинамически выгодно ее существование при температуре более 500 К. Частица $\rm H_3^+$ является термодинамически наиболее вероятной водородосодержащей ионизированной группой (по сравнению, например, с $\rm H^+$ и $\rm H_2^+$). Однако здесь мы сталкиваемся со значительной проблемой, касающейся точности расчетных данных и данных, опубликованных в работе [12]. При расчете значений термодинамических параметров групп N_3^+ , NH_3^+ и NH_2^+ используются данные из работы [12] и реакции:

$$\mathrm{NH}_2 \longrightarrow \mathrm{NH}_2^+ + e; \qquad (1)$$

$$\mathrm{NH}_3 \longrightarrow \mathrm{NH}_3^+ + e; \qquad (2)$$

$$N_3 \longrightarrow N_3^+ + e.$$
 (3)

Для группы N₂H⁺ использованы уравнения (4)–(6) для коррекции термодинамических данных в зависимости от пространственной структуры молекулы дигидриддиазида и ионизированной атомной группы, полученной от нее:

$$N_2H_2 \longrightarrow N_2H^+ + H^+ + 2e; \qquad (4)$$

$$\text{транс-N}_2\text{H}_2 \longrightarrow \text{N}_2\text{H}^+_{\text{транс}} + \text{H}^+ + 2e; (5)$$

цис -N₂H₂
$$\longrightarrow$$
 N₂H⁺_{цис} + H⁺ + 2*e*. (6)

Вероятность образования этих частиц может быть определена и через расчет энергии Гиббса при следующих возможных реакциях:

$$N_2 + H^+ \longrightarrow N_2 H^+; \tag{7}$$

$$N_2 + H_3^+ \longrightarrow N_2 H^+ + H_2; \qquad (8)$$

$$N_2 + H_2 \longrightarrow N_2 H^+ + H^+ + 2e; \qquad (9)$$

$$N_2 + 2H_2 \longrightarrow N_2H^+ + H_3^+ + 2e;$$
 (10)

$$N_2^+ + H \longrightarrow N_2 H^+; \tag{11}$$

$$N_3^+ + H_2 \longrightarrow N_2 H^+ + NH.$$
(12)

Таблица 4

N₂	Компонент		ΔG , кДж/моль										
п/п	Romioneni	298 К	300 K	400 K	500 K	600 K	700 K	800 K	900 K	1000 K			
1	N^+	1834,521	1834,224	1817,923	1801,091	1783,832	1766,225	1748,322	1730,155	1711,758			
2	N_2^+	1450,609	1450,241	1430,280	1409,075	1387,519	1365,457	1342,951	1320,044	1296,776			
3	N_2H^+	39,484	39,133	18,89	-2,883	-25,949	-50,145	-62,789	-101,437	-128,386			
3'	транс- N_2H^+	30,812	30,966	39,154	47,267	55,413	63,660	72,065	80,638	89,413			
3"	цис-N ₂ H ⁺	-5,183	-5,029	3,176	11,322	19,464	27,782	36,217	44,815	53,602			
4	H^{+}	1503,813	1503,591	1492,382	1480,646	1468,492	1455,991	1443,195	1430,133	1416,840			
5	${\rm H_2}^+$	1452,258	1451,994	1437,307	1421,874	1405,841	1389,289	1372,285	1354,875	1337,102			
6	H_3^+	1063,514	1063,242	1049,996	1031,900	1015,130	997,788	979,935	961,609	942,885			
7	N_3^+	375,748	375,372	354,899	333,938	312,511	290,403	268,387	245,739	222,735			
8	$\mathrm{NH_3}^+$	-97,241	-97,563	-114,985	-132,863	-151,164	-170,121	-164,653	-208,451	-228,258			
9	$\mathrm{NH_4}^+$	589,455	589,111	569,953	548,694	528,786	506,988	484,386	461,046	437,002			
10	NH^+	1554,042	1553,695	1534,423	1514,348	1493,646	1472,425	1450,752	1428,681	1406,258			
11	$\mathrm{NH_2}^+$	138,118	137,796	120,185	102,219	83,952	65,403	46,597	27,543	-8,104			

Энергия Гиббса для ионизированных атомов и групп в плазме тлеющего разряда

Рис. 4. Температурная зависимость энергии Гиббса для образования группы $N_2 H^{\scriptscriptstyle +}$

На рис. 4 представлен расчет вероятности протекания реакций с (7) по (12) с образованием части-N₂H⁺. Оказывается, что, в соответствии ШЫ с реакцией (12), после 500 К термодинамически выгодным является образование частицы типа N₂H⁺, которая, вероятно, может сыграть определенную положительную роль в ионном азотировании в азотоводородной смеси. В табл. 5 показаны расчеты изобарного потенциала для вероятной реакции в плазме тлеющего разряда с участием ионных групп NH_{3}^{+} , $N_{2}H^{+}$ и H_{3}^{+} . При описании реакций с (1) по (6) наблюдается возможный вклад этих компонентов плазмы в формирование реакционноспособных атомарных или ионных состояний азота и водорода. Следует отметить, что, хотя они и не особенно близки по уровню энергии Гиббса, все эти реакции требуют большого расхода энергии, т.е. в целом они являются термодинамически не выгодными. Однако остается малая вероятность того, что это происходит в богатой энергией плазме тлеющего разряда.

В табл. 6 представлены изобарные потенциалы реакции получения нитрида железа с участием

Таблица 5

n	т	- <i>-</i> -									
Эне	nгия I	NODCA 1	три ве	nogtheix	пеакциях	R	ппазме	тлеюш	его	nasr	าสบล
0110		noocu	ipn be	pontition	решкциих	υ	1151u Shie	плетощ	U 1 U	pusp	лди

N₂	Деоктия	ΔG , кДж/моль										
п/п	1 сакция	298 К	300 K	400 K	500 K	600 K	700 K	800 K	900 K	1000 K		
1	$\mathrm{NH_3}^+ = \mathrm{N}^+ + 3\mathrm{H}$	2483,668	2482,622	2448,410	2412,515	2374,943	2337,224	2298,292	2258,699	2218,549		
2	$NH_3^+ = N + 2H + H^+$	2395,696	2395,110	2362,106	2327,450	2291,548	2254,657	2216,968	2178,626	2139,714		
3	$N_2H^+ = 2N + H^+$	2319,183	2318,635	2285,276	2250,369	2214,269	2177,228	2139,463	2101,096	2062,214		
4	$N_2H^+ = N + N^+ + H$	2406,737	2406,172	2371,583	2335,433	2298,083	2259,795	2220,788	2181,169	2141,049		
5	$N_2H^+ + H_3^+ = 2N + H_2 + 2H^+$	2720,546	2719,826	2676,994	2632,192	2585,913	2538,345	2481,853	2440,644	2390,604		
6	$N_2H^+ + H_3^+ = N + N^+ + 3H + H^+$	3214,697	3213,781	3159,656	3103,235	3045,040	2985,435	2924,704	2863,166	2800,678		

Таблица 6

Изобарный потенциал возможных реакций при получении нитридов в тлеющей плазме при различных температурах

№	Резиция		ΔG , кДж/моль										
п/п	1 сакция	298 К	300 K	400 K	500 K	600 K	700 K	800 K	900 K	1000 K			
1	$2\mathrm{Fe}\alpha + \mathrm{N}^{+} + e = \mathrm{Fe}_{2}\mathrm{N}$	-1846,060	-1845,813	-1832,102	-1817,785	-1802,927	-1787,593	-1771,828	-1753,724	-1739,042			
2	$4\mathrm{Fe}\alpha + \mathrm{N}^{+} + e = \mathrm{Fe}_{4}\mathrm{N}$	-1853,324	-1853,077	-1839,441	-1825,165	-1810,237	-1794,672	-1778,539	-1761,652	-1744,180			
3	$2Fe\alpha + N_2^+ = Fe_2N + N^+$	366,142	366,125	365,033	363,016	362,242	360,585	359,234	357,690	356,268			
4	$2Fe\alpha + N_2^+ + e = Fe_2N + N$	-1035,155	-1035,105	-1033,143	-1029,620	-1028,561	-1025,457	-1022,273	1018,879	-1015,143			
5	$4Fe\alpha + N_2^+ = Fe_4N + N^+$	358,878	358,862	357,694	356,322	354,933	353,640	352,615	351,669	351,130			
6	$4\mathrm{Fe}\alpha + \mathrm{N_2}^+ + e = \mathrm{Fe}_4\mathrm{N} + \mathrm{N}$	-1042,418	-1042,389	-1040,481	-1038,255	-1035,619	-1031,699	-1028,892	-1024,900	-1020,281			
7	$2Fe\alpha + NH_3^+ = Fe_2N + H_3^+$	1142,981	1142,943	1140,115	1136,450	1132,224	1127,610	1122,789	1117,651	1112,459			
8	$4Fe\alpha + NH_3^+ = Fe_4N + H_3^+$	1135,718	1135,676	1132,776	1129,069	1124,914	1120,530	1116,170	1111,630	1107,321			
9	$2Fe\alpha + N_2H^+ = Fe_2N + NH^+$	1497,675	1497,470	1482,337	1465,977	1448,748	1430,882	1412,815	1403,665	1374,942			
10	$4Fe\alpha + N_2H^+ = Fe_4N + NH^+$	1592,085	1491,412	1474,998	1458,386	1441,438	1423,807	1406,008	1387,929	1369,955			
11	$2Fe\alpha + N_2H^+ + H^+ + e =$ = Fe ₂ N + NH ₂ ⁺	-1415,820	-1415,761	-1415,610	-1415,188	-1414,477	-1413,460	-1412,046	-1410,350	-1408,318			
12	$4Fe\alpha + N_2H^+ + H^+ + e = = Fe_4N + NH_2^+$	-1423,375	-1423,104	-1422,907	-1422,568	-1421,786	-1420,539	-1418,163	-1416,368	-1413,460			

двух ионных компонентов (N⁺ и N₂⁺). Видно, что наиболее результативными являются реакции (1) и (2), после них идут реакции (11) и (12) с участием группы N₂H⁺, и только после этого имеют место реакции (4) и (6) с молекулярным ионом азота. Все остальные реакции являются термодинамически не выгодными. Полезная роль водорода в азотной среде, с одной стороны, могла бы быть косвенно выражена его функцией поставщика значительного количества электронов для облегченного протекания реакций в плазме тлеющего разряда и, с другой стороны, как компонента с сильным восстановительным действием, которое имеет большое значение в пограничных процессах газ-металл.

Термодинамические расчеты показали, что энергетически наиболее выгодно получать нитриды трехвалентного железа в реакциях железа с атомным и молекулярным ионами азота, а также с группой N_2H^+ , но при наличии и возможном участии водорода и электронов.

При интерпретации механизма ионного азотирования необходимо не только учитывать термодинамические данные отдельных реакций, ионизованных атомов, молекул и атомных групп, но также принимать во внимание различия в ионном составе атмосфер в однородно подаваемых газовых смесях в случае, если вместо стационарного используется импульсный тлеющий разряд.

Известно, что при не очень большой разнице потенциалов ионизации водорода (I_o (H) = = 1312,049 кДж/моль) и атома азота (I_o (N) = = 1402,327 кДж / моль) размеры ионизованных атомов очень разные:

$$\sigma(H) = 0,22 \cdot 10^{-16} \text{ см}^2$$
 и $\sigma(N) = 1,52 \cdot 10^{-16} \text{ см}^2$ [12].

Размер ионизированной группы атомов или молекулы ($\sigma(M)$) не может быть рассчитан аддитивно из размеров родительских атомов ($\sigma(A)$), и, согласно работе [12], используется следующая зависимость:

$$\sigma(M) = 0.75 \sum \sigma(A).$$
 (13)

Следовательно, помимо поправок на энергию Гиббса для ионизированных частиц, эти пространственные изменения должны наблюдаться в любом конкретном азотном режиме. Из вышесказанного также ясно, что в импульсном режиме работы можно ожидать, что газовая атмосфера будет обогащена ионизированными атомами и частицами меньшего размера.

Таким образом, механизмы преобразования электрической энергии тлеющего разряда в химическую исследованы недостаточно и чисто термодинамический подход к изучению процессов между металлами и заряженными газами в этих случаях не может дать однозначного ответа на ряд вопросов, связанных с осуществлением химикотермической обработки в низкотемпературной плазме.

Выводы

 Согласно проведенным термодинамическим расчетам, при использовании аммиака в тлеющем разряде наиболее вероятно наличие ионизирующих групп NH₃⁺ и N₂H⁺. Именно они характеризуются относительно низкой энергией образования.

2. Показана роль водорода в азотной среде как поставщика значительного количества электронов для облегченного протекания плазменных реакций и как компонента с сильным восстановительным действием в пограничных процессах газ-металл.

3. При использовании азотоводородной смеси показано, что во всем исследованном температурном интервале термодинамически наиболее подходящими азотосодержащими группами являются NH_2^+ и H_3^+ .

4. Термодинамические расчеты показали, что энергетически наиболее выгодно получать нитриды трехвалентного железа в реакциях железа с атомным и молекулярным ионами азота, а также с группой N_2H^+ , но при наличии и возможном участии водорода и электронов.

Список литературы

1. Бабад-Захряпин А.А., Кузнецов Г.Д. Химикотермическая обработка в тлеющем разряде. – М.: Атомиздат, 1975. – 175 с.

2. Бокштейн Б., Бокштейн С., Жуховицкий А. Термодинамика и кинетика диффузии в твердых телах. – М.: Металлургия, 1974. – 280 с.

3. Межонов А., Кольцов В. Термодинамическая модель процесса азотирования в тлеющем разряде // Методы поверхностного упрочнения деталей машин и интрумента: сб. науч. тр. МАДИ. – М., 1983. – С. 53–59.

4. Тошков В., Мартовицкая Н., Дрангажова И. Некоторые особенности нитридных слоев при азотировании сталей в тлеющем разряде // V световен конгрес по ТЕРМООБРАБОТКА, Будапеща, 20–24 октрября 1986. – Будапешт, 1986. – С. 111–118.

5. Арзамасов Б.Н. Химико-термическая обработка сплавов в активизированных газовых средах // Вестник машиностроения. – 1986. – № 9. – С. 49–53.

6. Теория и технология азотирования / Ю.М. Лахтин, Я.Д. Коган, Г-И. Шпис, З. Бемер. – М.: Металлургия, 1991. – 320 с.

7. Солонцев Г.С., Орлов А.И., Довженко В.А. О механизме установления функции распределения электронов по энергиям в плазме отрицательного свечения тлеющего разряда // Радиотехника и электроника. – 1970. – Кн. 9. – С. 1980–1982. 8. Бутенко О.И., Лахтин Ю.М. О механизме ускорения диффузии азота в железе при ионном азотировании // МиТОМ. – 1969. – Т. 6. – С. 21–24.

9. Босяков М.Н., Козлов А.А. Газодинамические характеристики тлеющего разряда при ионном азотировании // Наука и техника. – 2018. – Т. 17, № 5. – С. 368–376.

10. Берлин Е.В., Коваль Н.Н., Сейдман Л.А. Плазменная химико-термическая обработка поверхности стальных деталей. – М.: Техносфера, 2012. – 464 с.

11. Бучков Д., Тошков В. Йонно азотиране. – София: Техника, 1990. – 156 с.

12. Андрачников Ш.Л. Термохимический анализ процесса азотирования // Журнал физичесой химии. – 1973. – Т. XVII. – С. 2535–2537.

13. Глушко В.П. Термодинамические свойства индивидуальных веществ. – М.: Наука, 1978. – Т. I, кн. 1, 2. – 1166 с.

14. Control of ion carburizing process on the basis of analysis of optical emission spectra of glow-discharge plasma / B. Arzamasov, N. Ryzhov, A. Smirnov, A. Rodionov // Heat Treatment and Technology of Surface Coatings: Proceed. of the International Congress, Moscow, 10–14 October 1990. – Moscow, 1990. – P. 242–248.

15. Лахтин Ю.М., Коган Я.Д. Азотирование стали. – М.: Машиностроение, 1976. – 256 с.

16. Some observations on plasma nitriding austenitic stainless steel / P.A. Dearnley, A. Namvar, G.G.A. Hibberd, T. Bell // Proceed. of the First International Conference on Plasma Surface Engineering, Garmisch – Partenkirchen, 15–19 September 1988 (FRG). – Garmisch – Partenkirchen, 1988. – P. 219–226.

17. Sun Y., Li X., Bel T. Low temperature plasma carburising of austenitic stainless steels for improved wear and corrosion resistance // Surf. Eng. – 1999. – Vol. 15, no. I. – P. 49–54.

18. Conditions for the Formation of a Martensitic Single-Phase Compound Layer in ion-nitrided 316L austenitic stainless steel / K. Marchev, C.V. Cooper, J.T. Blucher, B.C. Giessen // Surf. and Coat. Techn. – 1998. – Vol. 99, iss. 3. – P. 225–228.

19. The metastabile m-phase layer on ion-mitrided austenitic stainless steels. Part 2. Crystal structure and observation of its two-directional orientational anisotropy / K. Marchev, R. Hidalgo, M. Landis, R. Vallerio, C.V. Cooper, B.C. Giessen // Surf. and Coat. Techn. – 1999. – Vol. 112, iss. 1–3. – P. 67–70.

20. The m-phase layer on ion-nitrided austenitic stainless steel (III): an epytaxial relationship between the m-phase and the γ parent phase and a review of structural identifications of this phase / K. Marchev, M. Landis, R. Vallerio, C.V. Cooper, B.C. Giessen // Surf. and Coat. Techn. – 1999. – Vol. 184–188. – P. 116–119.

21. On low temperature ion nitriding of austenitic stainless steel AISI 316 / V. Toshkov, R. Russev, T. Madjarov, E. Ruseva // J. of Achievements in Materials and Manuf. Eng. – 2007. – Vol. 25. – P. 71–74.

22. Microstructural characterisation of a plasma carburised low carbon Co–Cr alloy / C.X. Li, N. Habibi, T. Bell, H. Dong // Surf. Eng. – 2007. – Vol. 23. – P. 45–51.

References

1. Babad-Zakhriapin A.A., Kuznetsov G.D. Khimikotermicheskaia obrabotka v tleiushchem razriade [Chemical and thermal treatment in smoldering discharge]. Moscow: Atomizdat, 1975, 175 p.

2. Bokshtein B., Bokshtein S., Zhukhovitskii A. Termodinamika i kinetika diffuzii v tverdykh telakh [Thermodynamics and kinetics of diffusion in solids]. Moscow: Metallurgiia, 1974, 280 p.

3. Mezhonov A., Kol'tsov V. Termodinamicheskaia model' protsessa azotirovaniia v tleiushchem razriade [Thermodynamic model of nitriding process in glow discharge]. *Metody poverkhnostnogo uprochneniia detalei mashin i intrumenta: sbornik nauchnyh tr. MADI.* Moscow, 1983, pp. 53–59.

4. Toshkov V., Martovitskaia N., Drangazhova I. Nekotorye osobennosti nitridnykh sloev pri azotirovanii stalei v tleiushchem razriade [Some features of nitride layers during nitriding of steels in smoldering discharge]. *V svetoven kongres po TERMOOBRABOTKA, Budapeshcha, 20–24 oktriabria 1986.* Budapesht, 1986, pp. 111–118.

5. Arzamasov B.N. Khimiko-termicheskaia obrabotka splavov v aktivizirovannykh gazovykh sredakh [Chemical and thermal treatment of alloys in activated gas media]. *Vestnik mashinostroeniia*, 1986, no. 9, pp. 49–53.

6. Lakhtin Iu.M., Kogan Ia.D., Shpis G-I., Bemer Z. Teoriia i tekhnologiia azotirovaniia [Nitriding Theory and Technology]. Moscow: Metallurgiia, 1991, 320 p.

7. Solontsev G.S., Orlov A.I., Dovzhenko V.A. O mekhanizme ustanovleniia funktsii raspredeleniia elektronov po energiiam v plazme otritsatel'nogo svecheniia tleiushchego razriada [On the mechanism of establishing the function of distribution of electrons by energy in plasma of negative glow of smoldering discharge]. *Radiotekhnika i elektronika*, 1970, Kn. 9, pp. 1980–1982.

8. Butenko O.I., Lakhtin Iu.M. O mekhanizme uskoreniia diffuzii azota v zheleze pri ionnom azotirovanii [On the mechanism of acceleration of nitrogen diffusion in iron during ion nitriding]. MiTOM, 1969, vol. 6, pp. 21–24.

9. Bosiakov M.N., Kozlov A.A. Gazodinamicheskie kharakteristiki tleiushchego razriada pri ionnom azotirovanii [Gas-dynamic characteristics of smoldering discharge under ion nitriding]. *Nauka i tekhnika*, 2018, vol. 17, no. 5, pp. 368–376.

10. Berlin E.V., Koval' N.N., Seidman L.A. Plazmennaia khimiko-termicheskaia obrabotka poverkhnosti stal'nykh detalei [Plasma chemical and thermal surface treatment of steel parts]. Moscow: Tekhnosfera, 2012, 464 p.

11. Buchkov D., Toshkov V. Ionno azotirane [Ionno Nitrogen]. Sofiia: Tekhnika, 1990, 156 p.

12. Andrachnikov Sh.L. Termokhimicheskii analiz protsessa azotirovaniia [Thermochemical analysis of the nitriding process]. *Zhurnal fizichesoi khimii*, 1973, vol. KhVII, pp. 2535–2537.

13. Glushko V.P. Termodinamicheskie svoistva individual'nykh veshchestv [Thermodynamic properties of individual substances]. Moscow: Nauka, 1978, vol. I, kn. 1, 2, 1166 p.

14. Arzamasov B., Ryzhov N., Smirnov A., Rodionov A. Control of ion carburizing process on the basis of analysis of optical emission spectra of glow-discharge plasma. *Heat Treatment and Technology of Surface Coatings: Proceed. of the International Congress.* Moscow, 1990, pp. 242–248.

15. Lakhtin Iu.M., Kogan Ia.D. Azotirovanie stali [Steel nitriding]. Moscow: Mashinostroenie, 1976, 256 p.

16. Dearnley P.A., Namvar A., Hibberd G.G.A., Bell T. Some observations on plasma nitriding austenitic stainless steel. *Proceed. of the First International Conference on Plasma Surface Engineering, Garmisch – Partenkirchen (FRG).* Garmisch – Partenkirchen, 1988, pp. 219–226.

17. Sun Y., Li X., Bel T. Low temperature plasma carburising of austenitic stainless steels for improved wear and corrosion resistance. *Surf. Eng.*, 1999, vol. 15, no. I, pp. 49–54.

18. Marchev K., Cooper C.V., Blucher J.T., Giessen B.C. Conditions for the Formation of a Martensitic Single-Phase Compound Layer in ion-nitrided 316L austenitic stainless steel. *Surf. and Coat. Techn.*, 1998, vol. 99, iss. 3, pp. 225–228.

19. Marchev K., Hidalgo R., Landis M., Vallerio R., Cooper C.V., Giessen B.C. The metastabile m-phase layer on ion-mitrided austenitic stainless steels. Part 2. Crystal structure and observation of its two-directional orientational anisotropy. *Surf. and Coat. Techn.*, 1999, vol. 112, iss. 1–3, pp. 67–70.

20. Marchev K., Landis M., Vallerio R., Cooper C.V., Giessen B.C. The m-phase layer on ion-nitrided austenitic stainless steel (III): an epytaxial relationship between the m-phase and the γ parent phase and a review of structural identifica-tions of this phase. *Surf. and Coat. Techn.*, 1999, vol. 184–188, pp. 116–119.

21. Toshkov V., Russev R., Madjarov T., Ruseva E. On low temperature ion nitriding of austenitic stainless steel AISI 316. *Journal of Achievements in Materials and Manuf. Eng.*, 2007, vol. 25, pp. 71–74.

22. Li C.X., Habibi N., Bell T., Dong H. Microstructural characterisation of a plasma carbu-rised low carbon Co-Cr alloy. *Surf. Eng.*, 2007, vol. 23, pp. 45–51.

Получено 04.05.2020 Опубликовано 30.06.2020

Сведения об авторах

Тошков Венцеслав Цветанов (София, Болгария) – доктор технических наук, профессор кафедры материаловедения и технологии материалов Технического университета – София, руководитель научно-исследовательской лаборатории «ЕФТТОМ»; e-mail: vtoshkov@ tu-sofia.bg.

Симонов Юрий Николаевич (Пермь, Россия) – доктор технических наук, профессор, завкафедрой металловедения, термической и лазерной обработки металлов Пермского национального исследовательского политехнического университета; e-mail: simonov@pstu.ru.

Силина Ольга Валентиновна – кандидат технических наук, доцент кафедры металловедения, термической и лазерной обработки металлов, замдекана механико-технологического факультета по методической работе; e-mail: silina-olga@mail.ru.

About the authors

Venceslav Toshkov (Sofia, Bulgaria) – Doctor of Technical Sciences, Professor, Department of Materials Science and Materials Technology, Technical University of Sofia; e-mail: vtoshkov@tu-sofia.bg.

Yurii N. Simonov (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Head of Department of Metallurgy, Thermal and Laser Processing of Metals, Perm National Research Polytechnic University; e-mail: simonov@pstu.ru.

Orga V. Silina (Perm, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, Department of Metallurgy, Thermal and Laser Processing of Metals, Perm National Research Polytechnic University; e-mail: silinaolga@mail.ru.