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OPTIMIZATION OF LAYERED SHELL STRENGTH
AND GEOMETRICAL PARAMETERS, ASSESSING
MECHANICAL PROPERTIES OF THE MATERIALS

ONTUMU3ALUNA TEOMETPUYECKUX NMAPAMETPOB
U MPOYHOCTN CNNOUCTON OBOJIOYKU C YYETOM
MEXAHUYECKUX CBOMNCTB MATEPUAIIOB

In the design stage of layered construction it is important to find the optimal geometrical parame-
ters and to choose materials. This article used the Lagrange method to calculate the reduced stress
limit under a complex stress state and estimated the optimal thickness of construction. The calculations
were performed for glass plastic, carbon plastic and layered shell constructions. An efficient selection of
geometrical parameters is presented in this article.

Keywords: cylindrical shell, limit stress, optimal thickness, fiberglass composite, carbon fiber
composite, layered metal construction.

B cTagum npoekTMpoBaHWsi CIOUCTOW KOHCTPYKLUM BaXXHO HalTW ONTUManbHbIE reoMeTpudeckune
napameTpbl U BbIGpaTbh Matepuarnsl. Micnonb3oBaH MeTog JlarpaHxka ans pacyeta peaykUMOHHOro npe-
0EenbHOro HanpshKEHUst MPU CROXHOM HamnpsbkeHHOM COCTOSIHUM M ONTUMaribHOW TOSLUHE KOHCTPYK-
unn. PacyeTbl NpoBeAeHbl AN CTEKNonnacTuka, yrnennactuka, 060MoUHbIX CROUCTBIX KOHCTPYKLWNA.
MpeacTaeneH achheKTUBHLIN NOAGOP reoMeTpUYECKUX NapaMeTpoB.

KnioueBble cnoBa: umnuHgpunyeckas obonouka, npenenbHOE HanpshxeHue, CTEKMNOBOIOKOHHbIN
KOMNO3UT, yrnennacTtuk, CIIoOUCTbie MeTannmnyeckne KOHCTpPyKUnn.

Introduction. Constructions made of laminated materials are lighter than
those made of alloys or steel. In addition, there is a greater possibility to optimize
the construction and make rationa choices of the layered material. During the op-
timization, the layer structure of the layered materials must be taken into account
during an analysis and assessment of the strength criteria that define the behavior
of layered materials considering anisotropy and combined load. Because of that it
isimportant to evaluate the mechanical properties of the materials in the cases uni-
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axia and biaxial tensile stress test in order to determine the optimization para-
meters.

Recently numeric methods have been widely used in solving optimization
tasks [1, 2]. These methods help to get the results quickly and also allow evalua-
tion of parameters that are not possible to asses using other methods. However
evaluation of mechanical properties rests on oversimplified strength and deforma-
tion criteria[2, 3]. Thisis related to the fact that different laboratories have differ-
ent equipment used to determine the mechanical properties of materials [4-6]. The
von Mizes criteria used do not represent the mechanical properties of the materias
rather showing the properties of a complex tension state. The best assessment of
mechanical characteristics of materialsis represented by Tsai — Wu strength crite-
ria[7] but it requires measuring up to six mechanical characteristics. It is therefore
appropriate to look for the strength criteria that is both accurate and requires fewer
measurements.

In this research we use classical Lagrange optimization method [8-10], and
for evaluating the strength we use our proposed strength criteria designed for com-
posite materials. The validity of criteria is backed up by experimental research [11].
The advantage of the criteriais that it requires less experimental research and they
are done easier in laboratories.

1. Optimization of geometric dimensions for a pressure loaded cylindrical
element in assessing a complex stress state. The forces and stresses on a cylinder,
which isunder an internal pressure of p can be written as
N.=pR, N =%pR; 6,20, o0,#0

X

N,, N, —axid forces; o,, ¢, —normal stressin direction of axis

X!

and o, =£G ;
2
xandy.
Stresses o, and o, are the principal stresses, and o,, ©,, acting at any an-

gle ¢, refersto fiber directions 1 and 2 — t,, shear stresses (fig. 1).
In thisway, forces for the unit element width will be calculated [9]:

k ) k . Kk ) k )
N, =Y oVh =Y ol)h cos?; +> o sin?¢, - > 21 sing, cosoyh,
i=1 i=1 =1 i=1

@
[ k Kk
N, => o\ => "ol sin?¢, +> o4'h cos o, + D 2t) coso; sing,
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k
i=1 i=1

18



A. Ziliukas, J. Januténiené

Fig. 1. Stress state of the layered element

here
o)) = Ee} = E(e, cos¢, +¢, 89, ),
ob) = Eel) = E(sxsinzq)i +sycoszq)i),
T, =0y, = 2G(z~:X —sy)sinq)i COS;.
1 E? (1-v5 )+ EZ(1-v5,)

=——— | 2EE, + ,
2( E+ Ez) ’ 1-vivy

E+E
E
2(1+v)

In the calculation of the allowable height, we note that it is composed of sev-
era layers, i.e.

Applying the Lagrange method and the multiplier A, we will find the mini-
mization function, L. Before that, the complex stress state is turned into a reduced

stress stete, i.e. inplaceof o,, ©,, 0,4 Will act.
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Thereduced o, is calculated based on the strength theory [11]:

MG; + M0 = Oeq,
here o; —stressintensity factor; 6, —average stress.
Stress intensity

1 2 2 2 2 2
) =$\/(0x—0y) +0%+0’ =,|65-0,0,+0> (2)

o,+0
Go = x3 L, (3)
m = Gy,;, TOu,u ’ @)
27,

m, = 21, _(GUt,12+GU,t1). ®)

Ty

Then, o;, 6, and m, m, were determined from the four tests: tension
Oy u» Ou, double force tension (when o, =26,) Go1p and torsion 1, we get
Oreq [11]

Ore = Eelgy = E (e, C08° ¢, +£, 5in%0, ). (6)

The further minimization procedure will be the following [10]:
k kKo
L :Zh +)\’X[NX _chl,r)edh COSZ(I)i]-l-
i=1 i=1

+ky[NY -3 oh sinzq)i]+zk:)\i [ci - E(axcoszq)i +e,sin’ g, )}
i=1 i=1

Then
a_L — 0’ a_L — O’ (7)
oh 99;
oL _ oL _dL _,
o, axy o\, '

Differentiating the formula (7) we get
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olh (1, cos0, +1,sin? ;) =1, ®)

hole| (1, —4,)sin20, | =EA [, —e, Jsin2g,.

Solving the equation (8) we get

)\’XzEEX%' )\,y:EEy%.
hcred hored
From that follows
}”i _ )‘x _ }"y _i (9)
hol. Ee, Ee, &

here c is constant.
According to equations (8) and (6)

(o) =c%

We get cEie)d =*c.
Summing the first two (1) equations and inserting the constant ¢ we get

(N+N,).

So, we get the minimum value h when ¢ is equa to the tensile strength

Gred,U :

h=1

o (N +Ny). (10)

In assessing formula (1) and eliminating 6, from formula (10), we get

k

D h(N,sin®¢, —N, cos’ ¢} =0, (11)

i=1

k
> [(N)(+Ny)sinq)i cosq)i]:O. (12)
i=1
So there, 2k must aso comply with the h and ¢, values of the three equa-
tions (10)—(12).
All potential optimal layered structures have the same overall thickness h,
equation (9).
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The optimal layered structure will be when we get the same stresses and
strainsin all of the layers.
The angle does not change under load.
As aresult, when we introduce the new variables
= h N 1

h:_’ n :_yl )“= ’
h YN, 1+n,

then Zk:ﬁ =1
i=1

According to equations (10)—(12) and the structural parameters, we can write
the optimal thickness of the layered structure in the following form

Under biaxial tension
N,=N,=N, n =1 A=0,5
and

k
h=_2N , =h cos2¢, = 0. (13)
=1

Gred,u i

In acylinder, when NxzépR, N,=pR, h, =2, }»zé

he 3pR
20red,u

. (14)

The formula (13) shows that in the case of a continuous material, when

h= p_R1 the layered cylinder thicknessis 1,5 times higher than continuous.
Gred
However, the layered structure is much lighter than cylinders made of con-

tinuous materias.

22



A. Ziliukas, J. Januténiené

2. Experiments. A glass plastic and carbon plastic experimental investigation
was carried out first. It used tension machine 1253Y-2 and the test specimens
shown infig. 2.

Fig. 2. Specimens and directions of stress: a— o, — 6y,;, b—06, — 0y,

¢ —biaxiad tension 6, =26, — 0y, 1,, d= My, =1,

After this, steel pipes were tested which were manufactured by hot and cold
stamping techniques.

They were tested under the same loads as glass plastic and carbon plastic
specimens.

In calculation by the formulas (2)—5), we get values for the glass plastic of
6, =390 MPa, 6,=260 MPa, m =2,3, m,=2,62, and for the carbon plastic —
6, =749 MPa, 6,=570 MPa, m =198, m,=-197.

Strength parameters are shown in table.

Strength parameters of materials

Materids Ouw1 MPa| oy, MPa | 6y, MPa| 1,, MPa
Glass plastic 400 380 270 145
Carbon plastic 860 850 530 350
Steel Ch18N10T (hot stamping) 820 820 380 410
Steel Ch18N10T (cold stamping,
with longitudinal welding) 560 610 320 330
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Then we get values for the glass plastic of 6,4, =216 MPa; carbon plastic —
Ofequ =360 MPa

Steel Ch18N10T (pipe without welding) — o; =820 MPa, o, =546 MPa,
m=2 m=-2 G, =548 MPa

Steel (pipe with longitudinal welding) — o, =586 MPa, o,=390 MPa,
m =133, m,=-0,66, 0,4,=522 MPa

We compare the calculated thickness for these materials. According to the
formula (14) for glass plastic

h =R _69.107p,,R,
2csred
and for carbon plastic
h, = 3CI:R =4,2:107p;,R,
red

there p,,, —pressure limit.

We get h,/h, =16 i.e, the composite of carbon plastic is 1,6 times thinner
than that made from glass plastic at the same pressure, steel Ch18N10T (hot
stamping without welding) h, =27-10°p;, R, h =29-10"°p, R (cold stamping
with welding).

Thus, the steel cylinder is thinner than the glass plastic by 4 times and for
carbon plastic 2,47 times. The welded pipe is 1,074 thicker than the smooth pipe.

It is known that the glass plastic density is 2,4 g/m®, carbon plastic — 3,5 g/m®,
and steel — 7,8 g/m>. Then, with the same pressure limit and diameter, the unit of
cylinder mass

m, =16,56-10°p, .R,
m, =14,7-10°p; R,
m, =21,26-10°p, R,
m, =22,8-10°p, R
So, the lightest structure can be obtained by producing it from carbon plastic
material.
Conclusions. In using the Lagrange method for optimal design, the thickness
minimization function is expressed by the reduced stressin acylindrical shell.

The minimum shell thickness was determined, when the stress does not ex-
ceed the limit values.
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The stress limit was determined in the experiments using glass plastic, carbon
plastic and layered steel materials for the shell constructions.

The stress limit was determined by axia stress applied in different directions
and in the cases of double tension and turning.

The experiments results show that a cylindrical construction made from
acomposite of carbon plastic is 1,6 times thinner than that made from glass plastic,
steel Ch18N10T is thinner than glass plastic by 4 times, and for carbon plastic,
2,47 times. The lightest structure can be obtained by producing it from carbon
plastic material.
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