Перспективы применения плазменной дуги обратной полярности для исправления литейных дефектов изделий из сплава АК7Ч
- Авторы: Белинин Д.С1, Щицын Ю.Д1, Никулин Р.Г1, Ольшанская Т.В1, Загребин Д.С2, Пичкалев М.В3
- Учреждения:
- Пермский национальный исследовательский политехнический университет
- Вятское машиностроительное предприятие «АВИТЕК»
- Пермский научно-исследовательский институт сельского хозяйства ПФИЦ Уральского отделения РАН
- Выпуск: Том 23, № 1 (2021)
- Страницы: 74-81
- Раздел: СТАТЬИ
- URL: https://ered.pstu.ru/index.php/mm/article/view/2935
- DOI: https://doi.org/10.15593/2224-9877/2021.1.10
- Цитировать
Аннотация
Полный текст
Малая плотность при сравнительно высокой прочности, хорошая обрабатываемость режущим инструментом, высокая коррозионная стойкость обусловливают широкое применение алюминиевых сплавов в авиационной, ракетной, космической и других отраслях промышленности [1]. В зависимости от условий эксплуатации используются различные по составу и механическим свойствам алюминиевые сплавы, а конструктивные решения зачастую связаны со сваркой [2]. Ряд факторов значительно усложняют сварку алюминиевых сплавов: 1) высокая теплопроводность; 2) повышенная жидкотекучесть алюминия при высоких температурах; 3) наличие тугоплавкой оксидной пленки на поверхности изделия; 4) высокое сродство расплавленного алюминия к газам. Все эти факторы диктуют применение специальных технологических мер, что снижает производительность процесса сварки и повышает себестоимость изготовления продукции [3]. Стоит отметить, что исправление литейных дефектов изделий из алюминиевых сплавов также представляет значительную трудность. Сложность при ремонте дефектов отливок обусловлена, помимо металлургических особенностей сплавов, наличием напряженного состояния у отливки. Это означает, что при использовании сварки для подварки дефектного участка литой детали формирование и кристаллизация металла сварного соединения будут протекать в условиях приложения к металлу шва реактивных напряжений, обусловленных конфигурацией отливки. Доброкачественная отливка должна удовлетворять следующим требованиям: мелкозернистая равномерная плотная структура, отсутствие раковин, неметаллических включений, пор, трещин или внутренних напряжений. В процессе изготовления отливок из алюминиевых сплавов отмечается образование следующих дефектов: поверхностные и сквозные незаливы, газовые раковины, участки со шлаковыми включениями, рыхлоты, спаи, трещины, а также дефекты, выявленные при механической обработке отливок. Дефекты, возникающие в процессе изготовления отливок, подразделяются на неисправимые (брак) и исправимые, как правило с применением сварки. Образование дефектов при литье алюминиевых сплавов определяется химическим составом сплава, способом разливки, сложностью отливки и условиями кристаллизации (затвердевания) сплава. Литейная микрорыхлота и вызванные ею участки нарушения герметичности отливки относятся к исправимым путем использования сварки дефектам. Кроме того, что микрорыхлота приводит к нарушению герметичности отливки, она может являться очагом зарождения трещины при механической обработке детали или в процессе ее эксплуатации. При затвердевании сплавов из-за растягивающих напряжений могут образовываться горячие трещины. Трещины проходят вдоль первично затвердевших кристаллов и могут принять сильно разветвленную форму. Образование трещин наиболее часто имеет место при изготовлении отливок сложной формы с наличием участков резкого изменения толщины детали. К таким отливкам относятся корпуса изделий спецназначения аэрокосмической отрасли. При этом трещины располагаются в зоне изменения жесткости детали, т.е. перехода от меньшей толщины отливки к большей. Анализ зон образования дефектов при изготовлении отливок сложной формы показывает, что дефектные участки чаще располагаются в местах резкого изменения толщины детали. На долю дефектов, расположенных на плоских участках отливок, приходится примерно 20-22 % от общего количества дефектных зон [4, 5]. При разработке технологии ремонта литых деталей (отливок) из алюминиевых сплавов необходимо учитывать, что далеко не все алюминиевые литейные сплавы обладают удовлетворительной свариваемостью в условиях сварки плавлением. Исследование свариваемости таких сплавов показало, что основные трудности их сварки заключаются в следующем: 1) склонность сплавов к образованию кристаллизационных трещин; 2) наличие пор и оксидных включений; 3) образование крупнозернистой структуры в шве, рекристаллизация и оплавление зерен в околошовной зоне; 4) возникновение напряжений и деформаций. На сегодняшний день для ремонта изделий из алюминиевых сплавов широко используются сварочные технологии. Наибольшее применение получили дуговые способы сварки: аргонодуговая сварка плавящимся и неплавящимся электродами [6]. Однако использование дуговых технологий сопряжено с рядом проблем: низкая производительность при сварке повышенных толщин; дефектность сварных швов; неравнопрочность сварных соединений и основного металла; трудности при изготовлении габаритных конструкций с различными пространственными расположениями сварных швов; высокие требования к подготовке свариваемого металла; высокие требования к присадочному материалу; специальные требования к производственным условиям (температура, влажность, скорость движения воздуха и пр.) [7]. Кроме того, ряд трудностей возникает в монтажных условиях: при значениях толщины более 10-15 мм требуется предварительный прогрев зоны соединения; трудность качественной подготовки металла под сварку. Другой, принципиально отличный путь преодоления указанных трудностей - это применение высококонцентрированных источников нагрева, из которых наиболее перспективным выглядит применение плазменной дуги обратной полярности. Решить многие проблемы сварки алюминиевых сплавов позволяет плазменная сварка постоянным током обратной полярности [8]. Ряд преимуществ (высокий эффективный КПД нагрева, локальность нагрева, возможность активного управления мощностью дуги) обеспечивает повышение производительности процессов сварки в 2-3 раза; снижение затрат на механическую обработку при подготовке стыков под сварку и обработку швов после сварки в 3-5 раз; снижение расхода сварочных материалов в 3-5 раз; обеспечение возможности 100%-ной автоматизации процессов [9]. Кроме того, мощная катодная очистка металла в процессе плазменной сварки на обратной полярности обеспечивает хорошее смачивание и растекание жидкого металла без риска перегрева изделия в целом и как следствие - получение качественных сварных швов при снижении требований к подготовке металла под сварку [10-15]. При этом обеспечивается получение благоприятной структуры сварного шва без внутренних дефектов. Кроме того, сравнительная простота и невысокая стоимость оборудования для плазменной сварки позволяют легко встроиться в технологический процесс изготовления изделий из литейных алюминиевых сплавов и обеспечить повышение количества годных изделий, получаемых с помощью литья. Однако в настоящее время комплексного исследования особенностей плазменной сварки литейных алюминиевых сплавов как альтернативы дуговой сварке толком не проводилось. Из алюминиевых литейных сплавов изготавливают: корпуса компрессоров, блоки цилиндров двигателей внутреннего сгорания, другие детали сложной конфигурации. Силумины - основные литейные алюминиевые сплавы, некоторые марки которых следующие: АК12 (АЛ2), АК9ч (АЛ4), АК7ч (АЛ9) и др. Одним из основных легирующих элементов в этих сплавах является кремний. Наилучшими литейными свойствами обладают эвтектические сплавы, поэтому силумины обычно содержат от 5 до 14 % Si, т.е. на несколько процентов больше или меньше эвтектической концентрации [5]. Целью работы являлась разработка технологии исправления литейных дефектов изделия типа корпус (рис. 1) из сплава АК7Ч с помощью плазменной сварки на токе обратной полярности. Химический состав сплава представлен в табл. 1. Механические свойства приведены в табл. 2. Отливки из сплава АК7Ч являются сложными пространственными конструкциями значительных габаритов (см. рис. 1, а), цикл производства таких изделий занимает достаточно много времени, а дефекты могут проявиться на любой стадии процесса начиная с извлечения отливки из формы и заканчивая этапами термической и механической обработки. Исправление дефектных участков с помощью сварки производится на всех деталях в местах, доступных для сварки и контроля. Границу дефекта выявляют визуально (см. рис. 1, б) или с помощью рентгеноконтроля. Форму разделки дефектного участка отливки выбирают в зависимости от вида дефекта (рис. 2). С помощью сварки можно устранить поверхностные и внутренние дефекты металлургического характера, а также механические повреждения и дефекты, выявленные при механической обработке (см. рис. 1, в). Таблица 1 Химический состав сплава АК7ч по ГОСТ-1583-93, % Al Si Mn Fe Cu Pb Mg Be Zn Sn Основа 6-8 До 0,5 0,5 До 0,2 До 0,05 0,25-0,45 До 0,1 До 0,3 До 0,01 Таблица 2 Механические свойства сплава АК7ч по ГОСТ-1583-93, % Марка сплава Вид ТО σB, МПа Δ, % HB АК7Ч Т2 137 2 45 Т4 186 4 50 Примечание: σB - временное сопротивление разрыву, МПа; Δ - относительное удлинение, %; HB - твердость по Бриннелю; Т2 - отжиг; Т4 - закалка. а б в Рис. 1. Корпус направляющего аппарата из сплава АК7ч: а - внешний вид изделия; б - дефекты при переходе на различные по толщине части отливки; в - внешний вид исправленных с помощью плазменной сварки дефектов Рис. 2. Форма разделки для исправления дефектов в виде поверхностных незаливов, газовых раковин, шлаковых включений, рыхлот, спаев и трещин Участок детали, подлежащий сварке, необходимо зачистить от литейной корки, оксидов, черноты и других загрязнений на расстоянии не менее 30 мм от границ разделки. В случае сквозных дефектов зачистку проводят с двух сторон, не допуская уменьшения толщины стенок отливки. При этом необходимо руководствоваться следующими положениями: а) глубина разделки дефекта должна превышать на 2-3 мм глубину залегания дефекта и быть на 5 мм больше ширины дефекта; б) дефекты, расположенные друг от друга на расстоянии не менее 50 мм, необходимо подготавливать отдельно. При расстоянии менее 50 мм производится сплошная разделка; в) разделку дефектного места следует выполнять до получения плавных очертаний и переходов. Переход от поверхности к основанию разделки должен быть плавным, без острых углов и заусенцев (см. рис. 2); г) при сквозных дефектах разделку следует вести до притупления, равного 2-3 или 1,5-2 мм; д) при сквозных разделках или возможности провала оставшейся стенки (менее 8 мм) в процессе заварки следует использовать подкладные приспособления. Заварку дефектов выполняли с использованием оборудования для плазменной сварки цветных металлов, разработанного на кафедре СПМ и ТМ ПНИПУ. Плазмотрон обеспечивает устойчивую работу на токах прямой и обратной полярности в широком диапазоне изменения параметров процесса сварки (рис. 3) [16]. 1 3 2 Рис. 3. Плазменная горелка для сварки цветных металлов: 1 - плазмотрон; 2 - ручка; 3 - кнопка «Пуск» Были опробованы следующие варианты заварки дефектов: плазменная сварка на токе обратной полярности без предварительной подготовки поверхности; плазменная сварка на токе обратной полярности с использованием повышенной погонной энергии и предварительной подготовкой поверхности. Толщина металла в зоне расположения дефектов составляла 12 мм. Стоит отметить, что в обоих случаях предварительный подогрев изделия и последующая термообработка изделия не проводились. Основные технологические параметры процесса плазменной сварки приведены в табл. 3. Далее было проведено металлографическое исследование полученных образцов-свидетелей (рис. 4). При анализе макростурктуры установлено, что дефектов и несплавлений на образцах не присутствует. Исключение составляют лишь цепочки пор на границах сплавления основного и наплавленного металлов. Величина пор колеблется от 0,3 мм в случае с подготовкой поверхности (образец № 2) до 1 мм в случае с неподготовленной поверхностью (образец № 1). Стоить отметить, что величины пор в обоих случаях укладываются в требования ОСТа и, как следствие, являются допустимыми. В работах [17-19] рассматривается такой фактор свариваемости алюминиевых и магниевых сплавов, как пористость. Авторы отмечают, что в металле шва наблюдают по крайней мере два вида пористости: мелкую, расположенную произвольно по всему сечению шва, и крупную, расположенную по центру шва или по линии сплавления. Известен также главный виновник пористости - водород. Причинами появления пористости являются различная растворимость водорода в твердом и жидком металлах и высокая скорость затвердевания сварочной ванны. Для их предотвращения имеются следующие возможности: уменьшить поступление водорода в сварочную ванну, замедлить скорость кристаллизации металла. Эти возможности технолог может реализовать за счет тщательной очистки основного и присадочного металлов, осушки защитного газа, использования предварительного подогрева изделия. Таблица 3 Технологические параметры плазменной сварки Характеристика режима Ток дуги, А Расход защитного газа, л/мин Расход плазмо-образующего газа, л/мин Диаметр плазмообразуещего сопла, мм Диаметр защитного сопла, мм Сварка по неподготовленной поверхности 120 10 5 4 18 Сварка по подготовленной поверхности 160 7 5 5 18 Зона термического влияния Обр. 2 Обр. 1 Рис. 4. Макроструктура образцов-свидетелей из сплава АК7Ч 52,3 48,9 52 51,6 58,0 62,6 56,6 53,5 50,9 54,5 50,9 51,6 Обр. 2 45,2 Обр. 1 55,4 57,2 50,9 51,2 59,7 Рис. 5. Распределение микротвердости по сечению Рис. 6. Микроструктура зон наплавки (а, в) и околошовной зоны (б, г) образцов-свидетелей Трещин и других видимых дефектов наплавленного металла не обнаружено. Механические характеристики основных зон приведены в табл. 2. Установлено, что микротвердость основных зон имеет примерно равные значения (рис. 5) с небольшим расхождением в области зоны термовлияния, что позволяет говорить о равнопрочности места заварки с основным материалом. Далее был проведен анализ микроструктуры полученных образцов-свидетелей (рис. 6). На рис. 6 показана микроструктура заварки дефекта по неподготовленной (см. рис. 6, а) и подготовленной (см. рис. 6, в) поверхностям при увеличении ×200. В обоих случаях структура наплавленного металла имеет дендритное строение и соответствует структуре доэвтектических силуминов. Микроструктура состоит из слабо разветвленных дендритов α(Al)-твердого раствора кремния и других легирующих элементов в алюминии и тройной эвтектики (α(Al) + Si + Mg2Si), расположенной по границам дендритных ячеек. Таким образом, при заварке дефекта формируется микроструктура, идентичная структуре отливки. В околошовной зоне (см. рис. 6, б, г) структура имеет также дендритное строение с различной дисперсностью при переходе к основному металлу. Причем заварка дефекта на большем токе (образец № 2) способствует более плавному изменению дисперсности дендритов при переходе к основному металлу (см. рис. 6, г). Также в ходе анализа макроструктуры подтверждено наличие цепочки газовых пор в околошовной зоне, других дефектов не обнаружено. Таким образом, в обоих случаях структура места заварки представляет собой дендритную структуру различной дисперсности, подобную структуре основного литого материала АК7ч, и можно говорить о том, что в обоих случаях плазменная сварка обеспечивает качественное формирование сварного шва. На основании проведенных исследований можно сделать следующие выводы: 1. Показана возможность проведения ремонта литейных дефектов изделий из алюминиевых сплавов типа АК7ч с помощью плазменной сварки на токе обратной полярности. Причем заварку дефекта можно проводить как по неподготовленной, так и по полностью подготовленной поверхности. В обоих случаях структура наплавленного металла имеет дендритное строение, соответствует структуре доэвтектических силуминов и является идентичной структуре отливки. 2. Установлено, что при заварке дефектов на повышенном токе наблюдается уменьшение размера газовых пор, располагающихся в виде цепочки на границе сплавления. При этом в обоих случаях величина газовых пор находится в пределах допуска. 3. При технологии ремонта с использованием повышенной погонной энергии и подготовкой поверхности формируется более мелкодисперсная структура переходной зоны с более плавным переходом к основному металлу. Кроме того, использование повышеннной погонной энергии позволяет снизить риск общего перегрева изделия, что дает возможность использования данной технологии применительно к уже термообработанным деталям. 4. Проведенные исследования микротвердости основных зон позволяют говорить о получении равнопрочного и бездефектного сварного соединения в обоих случаях.Об авторах
Д. С Белинин
Пермский национальный исследовательский политехнический университет
Ю. Д Щицын
Пермский национальный исследовательский политехнический университет
Р. Г Никулин
Пермский национальный исследовательский политехнический университет
Т. В Ольшанская
Пермский национальный исследовательский политехнический университет
Д. С Загребин
Вятское машиностроительное предприятие «АВИТЕК»
М. В Пичкалев
Пермский научно-исследовательский институт сельского хозяйства ПФИЦ Уральского отделения РАН
Список литературы
- Рабкин Д.М., Игнатьев В.Г., Довбищенко И.В. Дуговая сварка алюминия и его сплавов. - М.: Машиностроение, 1982. - 95 с.
- Сидорец В.Н., Бушма А.И., Хаскин В.Ю. Лазерно-микроплазменная сварка алюминиевых сплавов // Збірник наукових праць наук. - 2012. - № 3-4. - С. 26-31.
- Сравнительный анализ качества тонкостенных сварных соединений из алюминиевых сплавов, выполненных ручной и полуавтоматической аргонодуговой сваркой / Ю.П. Аганаев, Б.Д. Лыгденов, Н.Г. Бильтриков, Д.Ж. Байдаев, Д.С. Фильчаков // Ползуновский альманах. - 2014. - № 2. - С. 63-67.
- Гуреева М.А., Овчинников В.В., Минаков И.Н. Металловедение: макро- и микроструктуры литейных алюминиевых сплавов. - М.: Юрайт, 2019. - 254 с.
- Гиннэ С.В., Наумов С.Б. Материаловедение: учеб. пособие / СибГУ им. М.Ф. Решетнева. - Красноярск, 2017. - 198 с.
- Гуревич С.М. Справочник по сварке цветных металлов / под ред. В.Н. Замкова. - 2-е изд., перераб. и доп. - Киев: Наукова думка, 1990. - 512 с.
- Щицын Ю.Д. Плазменная сварка алюминиевых сплавов // Вестник Пермского государственного технического университета. Сварка. - 2002. - С. 231-245.
- Николаев В.А., Фридляндер И.Н., Арбузов Ю.П. Свариваемые алюминиевые сплавы. - М.: Металлургия, 1990. - 296 с.
- Щицын Ю.Д., Косолапов О.А., Щицын В.Ю. Возможности плазменной обработки металлов током обратной полярности // Сварка и диагностика. - 2009. - № 2. - С. 42-45.
- Щицын Ю.Д. Плазменные технологии в сварочном производстве: учеб. пособие / Перм. гос. техн. ун-т. - Пермь, 2004. - Ч. 1. - 73 с.
- Плазменная сварка алюминиевых сплавов повышенных толщин / Ю.Д. Щицын, И.Л. Синани, Д.С. Белинин, П.С. Кучев, В.Ю. Щицын // Тяжелое машиностроение. - 2014. - № 1. - С. 27-31.
- Редчиц А.В., Овчинников В.В. Повышение энергетической эффективности плазменной сварки // Сварочное производство. - 2004. - № 8. - С. 21-23.
- Plasma welding of aluminium alloys / Yu.D. Shcitsin, V.Yu. Shcitsin, H. Herold, W. Weingart // Welding International. - 2003. - No. 17 (10). - P. 825-832.
- Щицын Ю.Д., Косолапов О.А., Щицын В.Ю. Возможности плазменной обработки металлов током обратной полярности // Сварка. Диагностика. - 2009. - № 2. - С. 42-45.
- Shitsyn Yu.D., Belinin D.S., Neulybin S.D. Plasma surfacing of high-alloy steel 10Cr18Ni8Ti on low-alloy steel 09Mg2Si // International Journal of Applied Engineering Research. - 2015. - Vol. 10, no. 20. - Р. 41103-41109.
- Плазменная поверхностная закалка стали 38х2н2ма на токах прямой и обратной полярности / Ю.Д. Щицын, Д.С. Белинин, С.Д. Неулыбин, И.Л. Синани, С.А. Терентьев, В.С. Верхорубов // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. - 2017. - Т. 19, № 3. - С. 100-113.
- Никифоров Г.Д. Металлургия сварки плавлением алюминиевых сплавов. - М.: Машиностроение, 1972. - 352 с.
- Никифоров Г.Д., Махортова А.Г. Условия возникновения пор при сварке алюминия и его сплавов // Сварочное производство. - 1961. - № 3. - С. 8-11.
- Перегуда В.Л., Рабкин М.Д. О некоторых причинах снижения качества сварных соединений алюминиевых сплавов // Автоматическая сварка. - 1983. - № 5. - С. 66-69.
Статистика
Просмотры
Аннотация - 68
PDF (Russian) - 38
Ссылки
- Ссылки не определены.