ПОСЛЕДОВАТЕЛЬНОСТЬ ФАЗОВОСТРУКТУРНЫХ ПРЕВРАЩЕНИЙ ПРИ ПЛАВКЕ ФТОРФЛОГОПИТОВОЙ ШИХТЫ

  • Авторы: Юдин М.В1, Николаев М.М1, Игнатова А.М2, Игнатов М.Н2
  • Учреждения:
    1. ПАО Корпорация «ВСМПО-АВИСМА Титано-магниевый комбинат»
    2. Пермский национальный исследовательский политехнический университет
  • Выпуск: Том 20, № 1 (2018)
  • Страницы: 42-52
  • Раздел: СТАТЬИ
  • URL: https://ered.pstu.ru/index.php/mm/article/view/3066
  • DOI: https://doi.org/10.15593/2224-9877/2018.1.05
  • Цитировать

Аннотация


Процессы, протекающие в сырьевой композиции для получения фторфлогопита при нагревании, зависят от рода компонентов сырьевой композиции, их минерального и химического состава, структуры, размера частиц подготовленных дисперсных сырьевых материалов и ряда других специфических особенностей. Рассматриваются аналитические данные и результаты экспериментальных исследований по выявлению последовательности расплавления компонентов фторфлогопитовой шихты и происходящих при этом фазовых превращений при температуре от 100 °С до температуры полной гомогенизации (≈1400 °С). Экспериментальные результаты получены при использовании термического анализа и изучении последовательности расплавления образцов фторфлогопитовой шихты в печи сопротивления с силитовыми электродами. Подробно рассматривается последовательность процессов, предшествующих образованию расплава, их физическая суть и химизм. Аналитический обзор сведений о структурообразующих процессах позволил авторам установить, что количество фторсодержащего компонента шихты определяет количество фторфлогопита и качественный состав сопутствующих продуктов кристаллизации. Установлено, что граница раздела зерен шихты является зоной протекания реакций, а величина площади их поверхности определяет скорость процессов и реакций в этой зоне. Авторы обращают внимание на перспективу внедрения нанотехнологического подхода в модернизации технологии получения фторфлогопита, а также указывают на принципы использования механохимической обработки шихтовых компонентов и высококонцентрированной электроимпульсной энергии наносекундных электромагнитных импульсов для повышения эксплуатационных свойств изделий из фторфлогопита. Проведенными исследованиями установлена следующая последовательность процессов при нагреве и плавлении основных компонентов шихты для получения фторфлогопита: дегидратация → твердофазные реакции → термическое разложение компонентов → вторичные реакции и спекание → образование жидкой фазы → плавление → гомогенизация расплава. Полная гомогенизация расплава наступает при температуре 1380-1400 °С.

Полный текст

При разработке технологии получения литых фторфлогопитовых изделий неизбежно возникает вопрос о фазовых и структурных изменениях в исходном материале в процессе его плавления. В целом процессы, протекающие во фторфлогопитовой шихте при нагревании, зависят от рода компонентов шихты, их минералого-химического состава, структуры, дисперсности и ряда других специфических особенностей. В настоящей работе представлены результаты экспериментальных исследований по выявлению последовательности расплавления компонентов фторфлогопитовой шихты и происходящих при этом фазовых превращений при температуре от 100 °С до температуры полной гомогенизации (≈1400 °С). В качестве исходного материала использовалась шихта для получения фторфлогопита, химический и компонентный состав которой указан в таблице. Химический и компонентный состав шихтовой композиции для получения фторфлогопита Состав, мас. % Химический SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 S ппп 43,06 0,15 11,28 0,35 0,05 26,35 1,07 0,17 9,20 0,11 0,03 1,66 Компонентный Кварцевый песок Периклазовый порошок Глинозем Кремнефтористый калий ГОСТ 22551-77 ГОСТ 10360-85 ГОСТ 30559-98 ТУ 6-09-1650-88 33,5 29,5 11,5 25,2 Первоначально анализ проб материала брикетов фторфлогопитовой шихты проводили в лаборатории петрофизики КамНИИКИГС на установке синхронного термического анализа STA-409PC-LUXX фирмы NETZSCH (Германия). Образцы брикетов измельчались на электроистирателе до порошкообразного состояния (размер частиц не более 100 мкм) и квартовались для достижения однородности пробы. Нагрев проб проводился в диапазоне значений температуры от 20 до 1400 °С в закрытых корундовых тиглях. Для ускорения исследования (с учетом незначительного изменения массы в процессе нагрева) измерения проводились без базовой линии. Термическая картина при нагреве образцов анализировалась по кривым ДСК (дифференциальная сканирующая калориметрия - метод, позволяющий регистрировать энергию, для выравнивания температуры исследуемого вещества и эталона в зависимости от температуры и времени). Характер кривых ДСК пригоден для анализа по справочным атласам. Нагрев проб проводился со скоростью 30 °С/мин на участках до 500 и 20 °С/мин от 500 до 1400 °С. Нагрев проб проводился в динамической газовой атмосфере со скоростью продувки инертного газа (азот) 20 мл/мин через камеру нагрева при нормальных атмосферных условиях. Тигли корундовые предварительно прогревались до 1400 °С. Навеска для анализа составляла 20-40 мг. Термопара (Pt/Pt Rd) на уровне центра тиглей. Результаты проведенных измерений регистрировались, и оценка экспериментальных данных проводилась с помощью программного обеспечения фирмы NETZSCH. На термограммах регистрировались кривые ДСК и d ДСК для анализа термических эффектов, а также кривая ТГ для фиксирования весовых изменений. Для анализа термограмм использовались только кривые ДСК. Результаты анализа приведены в виде термограммы (рис. 1), интерпретация в виде цифровых значений. Рис. 1. Кривая ДСК при нагреве шихты фторфлогопита до 1400 °С Перед обсуждением результатов термического анализа шихты фторфлогопита следует отметить, что с точки зрения физической химии фторфлогопит (KMg3[Si3AlО10]F2) как синтетический материал и флогопит (KMg3[Si3AlО10](OH)2) как естественный материал - природная слюда относятся к системам из девяти независимых оксидных компонентов. Важнейшая особенность оксидных компонентов этой системы заключается в том, что основные из них, а именно SiО2 и Аl2O3, являются комплексообразователями, а остальные простыми ионами. В зависимости от степени насыщенности кремнезема и глинозема остальными компонентами в процессе нагрева в расплавляющейся шихте образуются «вторичные» оксидные системы, которые в зависимости от термодинамических условий формирования образуют разные фазы. Следовательно, фазовый состав фторфлогопита является поливариантным. Фазы могут соответствовать продуктам «вторичных» оксидных систем, а могут быть образованы их сочетаниями (ассоциациями), как это происходит при формировании флогопита в природе: KAlSiО4 + KAlSi2О6 + 3Mg2SiО4 + 2H2О = 2KMg3[Si3AlО10](OH)2 Соответственно, диаграммой состояния, наиболее близко опиисывающей фазообразование во фторфлогопите, является система KAlSiО4(калиофиллит)-Mg2SiО4(форстерит)-SiО2(кварц)-H2О в проекции низких значений давления (рис. 2). а б Рис. 2. Система KAlSiО4(калиофиллит)-Mg2SiО4(форстерит)-SiО2(кварц)-H2О при 1 атм: а - подтетраэдры системы, показывающие вариации «вторичных» систем; б - проекция элементов фазовой диаграммы при 1 атм Рис. 3. Система калиофиллит (kp)-лейцит (lc)-форстерит (fo)-H2О Этой проекции соответствует четвертная система калиофиллит (kp)-лейцит (lc)-форстерит (fo)-H2О (рис. 3). При недостатке воды и высоком содержании SiO2 продуктами кристаллизации системы являются флогопит и ассоциация состава калиофиллит + энстатит + + кварц. Форстерит переходит в энстатит (En), для того чтобы компенсировать избыток SiO2, возникающий в процессе формирования флогопита (phl). Более подробно химические процессы в такой системе были представлены в работах [1-3]. Авторы отмечают, что если за исходный состав взять оксидную систему без воды и вводить ее в систему в разном количестве, то с увеличением содержания воды меняется состав и соотношение продуктов реакции, повышается содержание флогопита и изменяется содержание и качественный состав конечных продуктов кристаллизации: 5KAlSi3О8 + 4KAlSi2О6 + 6Mg2SiО4 + 3H2О = = 3KMg3[Si3AlO10](OH)2 + 6KAlSi3О8 + Mg2SiО4 + MgSiО3; 5KAlSi3О8 + 4KAlSi2О6 + 6Mg2SiО4 + 3,5H2О = = 3,5KMg3[Si3AlO10](OH)2 + 5,5KAlSi3О8 + 1,5MgSiО3 + 0,5SiO2; 5KAlSi3О8 + 4KAlSi2О6 + 6Mg2SiО4 + 5H2О = = 4KMg3[Si3AlO10](OH)2 + 5KAlSi3О8 + 2SiО2 + H2О. Проводя параллель с фторфлогопитом, можно предположить, что при отсутствии воды с увеличением фторсодержащего компонента также будет изменяться количество фторфлогопита и качественный состав сопутствующих продуктов кристаллизации. Известно [4], что в синтетических тройных силикатных и алюмосиликатных системах с фторидами (Са,Mg)F2-Al2O3-SiO2 присутствует купол ликвации, указывающий на расслоение расплава после линии ликвидуса на две жидкие фазы. Состав одной жидкой фазы, очевидно, определяет состав флогопита, а другой - сопутствующей ассоциации. Номенклатуру акцессорных фаз, а также этапы фазообразования представляется возможным установить методом термического анализа, подробности проведения которого указаны в тексте ранее. В ходе исследования зафиксировано изменение массы, сопровождающее эндотермический эффект при 968,5 °С, изменение хода кривой при 1125 °С и плавление образца при 1375,8 °С. Четко выраженный эндоэффект при температуре 968,5 °С принадлежит как силикатным цепочным структурам (датолит), так и слюдистым минералам (биотит). Максимальная температура эндоэффекта 1375,8 °С соответствует процессу плавления флогопита. Эндотермический эффект указывает на дегидратацию шихты с сопутствующим разложением фтористого компонента шихты K2SiF6 с образованием фторидов (Si, Ca, Mg)F2 и выделением газовой фазы HF. Изменение хода кривой при 1125 °С без выраженного эффекта указывает на образование новых фаз без потери массы. Фториды снижают температуру плавления, и, поскольку вода в системе отсутствует, на место ОН-группы встают ионы F. Они являются мостиковыми, при этом связь с ионами фтора сильнее, чем с ОН-группами [5]. Первым расплавляется KAlSi3О8, что приводит к широкому интервалу плавления. В результате аналитического и экспериментального изучения системы фторфлогопита можно сказать, что фазообразование в нем реализуется в зависимости от количества фторсодержащего компонента и соотношения комплексообразующих и остальных компонентов. При расслоении, которое следует после ликвидуса, состав ликвационных фаз указывает на номенклатуру акцессорных продуктов кристаллизации, количество фтора определяет количество фторфлогопита. При изучении последовательности расплавления нами использовалась следующая методика: образцы фторфлогопитовой шихты в виде прессованных брикетов (кубиков размером 30´30´30 мм) нагревались в печи сопротивления с силитовыми электродами (СНОЛ 12/16) и выдерживались в течение 1 ч при соответствующей температуре от 100 до 1500 °С через каждые 100 или 50 °С. Далее термообработанные таким образом образцы подвергались быстрому охлаждению в воде. После этого их структура была изучена методом микроскопии (оптический поляризационный микроскоп Nikon Eclipse E 600 POL) [6] и рентгенофазовым анализом (дифрактометр XRD-6000) [7]. Газовая фаза была зафиксирована индикаторными трубками. В общем виде процессы, протекающие во фторфлогопитовой шихте при нагревании, можно представить следующим образом. Первый процесс, определяющий фазо- и структурообразование, происходит в шихте при значениях температуры 100-400 °С. В этом температурном интервале происходит удаление гигроскопической и кристаллизационной воды в виде пара. В процессе высвобождения воды брикеты рассыпаются, что приводит к увеличению реакционной поверхности. Пары воды выполняют механическую функцию перемещения частиц, что приводит к значительному увеличению скорости диффузии [8]. При такой температуре пары воды выполняют также функцию минерализации, что ведет к увеличению скорости твердофазных реакций. В результате твердофазных реакций при температуре 400-450 °С образуются HF, KF, KAlF4. Взаимодействие паров воды с кремнефтористым калием вызывает его пирогидролиз: K2SiF6(т) + 2,5H2O → 0,5K2Si2O5(т) + KF(г) + 5HF(г). Один из продуктов твердофазных реакций НF реагирует с компонентами шихты с образованием фторидов и оксифторидов. Взаимодействие кремнезема с НF при температуре 250-400 °С приводит к высвобождению воды, что опять же увеличивает скорость минерализации: SiO2(т) + 4HF(г) → SiF4(г) + 2H2O(г). Взаимодействие диоксида кремния c кремнефтористым калием является началом его термического разложения: 2K2SiF6(т) + SiO2(т) → 2K2SiOF4(т) + SiF4(г), которое заканчивается при 550-600 °С. В результате каталитического воздействия водяного пара и летучих фторидов HF происходит ускорение твердофазных реакций и диффузии компонентов шихты за счет сольватационных процессов. При этом возрастает адсорбционная способность глинозема и кварцевого песка. С повышением температуры до 500-600 °С кремнефтористый калий разлагается полностью: K2SiF6(т) → K3SiF7(т) + KF(г) + SiF4(г), выделяя в газовую фазу летучие фториды (SiF4) и образовывая промежуточные соединения (K3SiF7, KF). Взаимодействие этих соединений с компонентами шихты (Al2O3, SiO2, MgO) приводит к образованию легкоплавких эвтектик (KА1F4, K3АlF6, KMgF3). При 560 °С происходит образование конгруэнтно плавящегося соединения: AlF3(т) + KF(г) + SiF4(г) → 2K2SiF6 ∙ 3AlF3(т). Интенсивному протеканию твердофазных реакций способствует также процесс полиморфного превращения кварца b → a (573 °С), который сопровождается увеличением объема зерен кварцевого песка (ΔV = +2,4 %), образованием трещин и их разрыхлением. Вследствие разрыхления кристаллической структуры происходит ослабление сил связи атомов в структуре β-кварца, что существенно увеличивает скорость твердофазной реакции и диффузии. Пирогидролиз, полиморфные превращения и воздействие паров воды и летучих компонентов способствуют появлению жидкой фазы в зонах контакта зерен шихты и увеличению степени спекания с образованием слабоспекшейся массы. С появлением расплава ускоряется химическое взаимодействие на пограничной поверхности фаз. При одновременном участии в процессе газовой (пары воды и летучие фториды) и жидкой фаз интенсивность массопередачи увеличивается на несколько порядков. Возрастает каталитическая активность взаимодействия зерен периклаза и кварцевого песка, количество жидкой фазы увеличивается за счет плавления легкоплавких эвтектик: 3KF(г) + А1F3 (т)→ K3А1F6(т). При реализации этих процессов кремнефтористый калий полностью разлагается, а глинозем в полном объеме вступает в реакции. Повышение температуры до 700-800 °С приводит к увеличению количества криолита (K3AlF6), продолжаются твердофазные реакции на границах зерен периклаза и кварцевого песка, начинается образование форстерита и других соединений: 2МgО(т)+ SiO2(т) → Мg2SiO4(т); (1) KF(г) + МgF2(г) → KMgF3(т). Установлено [9], что при твердофазной реакции между периклазом и кварцевым песком первым образуется форстерит (Mg2SiO4) (1), после чего в результате взаимодействия его с кремнеземом происходит образование клиноэнстатита (MgSiO3): Мg2SiO4(т) + SiO2(т) → 2МgSiO3(т). При 800 °С отмечено образование небольшого количества четырехкремниевой слюды (K2Мg5Si8O2F4) и калиевого фторфлогопита (KMg3[Si3AlO10]F2). Возникшие силикаты и непрореагировавшие компоненты вместе с жидкой фазой образуют плотную спекшуюся массу. Спек с повышением температуры до 900-1000 °С плавится, количество жидкой фазы увеличивается, она становится преобладающей. Выше 900 °С происходят изменения кристаллической решетки кремнезема в результате полиморфных превращений (a-кварц → a-тридимит, 870 °С, ΔV = +11,6 %). Завершаются реакции силикатообразования, простые и сложные алюмосиликаты калия и магния с участием фторидов (KF, МgF2, SiF4 и др.) образуют шпинель, лейцит, калиофиллит и другие соединения, подробно о которых было сказано в начале статьи: MgO (т) + Al2O3 (т) → MgO∙Al2O3 (т); Мg2SiO4(т) + МgF2(т) → Мg2SiO4∙МgF2 (т). Поскольку калиевый фторфлогопит по своей природе является комплексным соединением переменного состава, синтез его осуществляется через образование ряда промежуточных соединений: 9SiO2(т) + 2МgF2(г) + Мg2SiO4 ∙ МgF2(т) + KMgF3(т) → → K2Mg6Si8O22F4 (т) + 2SiF4(г). Процесс образования расплава завершается при 1150-1200 °С, жидкая фаза при этом является неоднородной из-за большого числа свилей и пузырей. Гомогенизация расплава происходит при более высокой температуре 1300-1400 °С, чему способствует низкая вязкость фторфлогопитового расплава (0,85-0,4 Па∙с) [10] и повышение скорости диффузии и массообмена. Скорость и полнота протекания этих процессов плавления зависят от физико-химических свойств компонентов шихты, температурного режима и интенсивности массо- и теплообмена, а производительность плавильного агрегата определяется временем, затраченным на завершение самой медленной стадии [11]. В плавильной печи при появлении жидкой фазы тепло, необходимое для нагрева и расплавления оставшейся массы шихты, передается от расплава через нижнюю поверхность слоя шихты и от газов, проходящих через этот слой. Газы, образовавшиеся в процессе плавки (СО, СO2 и др.) и летучие соединения (Н2О, НF, KF, SiF4 и др.), выделившиеся из шихты и расплава, проходя через слой шихты, отдают ей свое тепло, повышая ее температуру на 150-200 °С. Летучие соединения при прохождении слоя шихты абсорбируются и конденсируются на частицах шихты, способствуя и ускоряя прохождение твердофазных реакций, что значительно уменьшает тепловые затраты на их реализацию. Шихта, находящаяся на поверхности расплава, является теплоизолятором. Гранулометрический состав шихты на 1/3 состоит из мелкодисперсного порошка глинозема (средний размер частиц 50-70 мкм) и калия кремнефтористого (средний размер частиц 440-200 мкм), а большая часть шихты (2/3) - из кварцевых зерен со средним размером 0,5-1,2 мм и зерен периклаза со средним размером 1-3 мм. Размер зерен имеет значение для процессов плавления, поскольку основные реакции силикатообразования идут на поверхности периклазовых и кварцевых зерен. Растворение основной массы зерен кварцевого песка начинается у поверхности трещин, образовавшихся в результате полиморфных превращений и термического удара, чего не наблюдается у периклаза [12]. Низкое поверхностное натяжение и низкая вязкость фторфлогопитового расплава, облегчающие его проникание в трещины зерен, благоприятствуют скорости процесса растворения. Вокруг каждого зерна периклаза и кварцевого песка возникает сферическая зона растворения, состоящая из расплава силикатов переменного состава. После завершения реакций силикатообразования следует растворение в силикатном расплаве остатка непрореагировавших зерен периклаза и кварца. В силу ряда причин (различия в размерах зерен, замедленности диффузионных процессов, высокой вязкости расплава в зоне растворения) образуются зоны-ячейки, ограничивающие реакционную область исчезнувшего зерна периклаза или кварца, со своей границей раздела, созданной несколько отличным от соседних ячеек поверхностным натяжением. В некоторых исследованиях подобный эффект в неметаллических расплавах связывают с явлением «ячеек Бенара» [13]. На этапе гомогенизации происходит разрушение ячеистой структуры расплава и ее усреднение по составу. Гомогенизации способствуют выделяющиеся из расплава газовые пузырьки, повышение температуры и связанное с этим понижение вязкости, а также повышение скорости диффузии и массообмена. При подъеме пузырей к поверхности расплава они при своем движении разрывают и растягивают пограничные пленки ячеек, перемешивают неоднородные микроучастки и облегчают взаимную диффузию, выравнивая концентрацию химических компонентов. Существующие технологии и оборудование обеспечивают реализацию представленных процессов на уровне зерен макро- и микроразмера. Поскольку граница раздела зерен является зоной протекания реакций, а величина площади их поверхности определяет скорость процессов и реакций в этой зоне, перспективным является внедрение нанотехнологического подхода в модернизации технологии получения фторфлогопита. Наноразмерные частицы обладают значительно большей площадью поверхности на единицу массы, чем макро- и микроразмерные [14]. Уменьшение дисперсности частиц сырьевых компонентов позволит получать шихту лучшего качества, ускорить время получения расплава, а главное, улучшить структуру и качество камнелитого материала фторфлогопитовых изделий. Получение контроля над структурообразованием через дисперсность шихтовых материалов позволит повысить термоударохимическую стойкость фторфлогопитовых изделий в расплавах хлоридов при эксплуатации в аппаратах и агрегатах получения магния и титана. Для этого при подготовке шихты часть тугоплавких компонентов - периклаза и кварцевого песка (по 10-15 % от вводимого количества) - необходимо подвергнуть совместной механохимической обработке на вибромельнице или планетарном активаторе АГО-2С [15], чтобы получить частицы нано- и субнаноразмера 100-1000 нм. Совместный размол компонентов в шаровых мельницах может понизить температуру прохождения твердофазных реакций и ускорить процесс фазообразования при высокотемпературной обработке. Предварительная механохимическая активация периклаза и кварцевого песка необходима для создания долгоживущих нарушений атомной структуры этих материалов с целью изменения их структурно-чувствительных свойств, прежде всего повышения реакционной способности. Механохимическая обработка этих компонентов сопровождается увеличением площади межзеренных границ, образованием новых поверхностей, дислокаций. При измельчении кристаллов кварца трещина обычно не проходит по какому-либо из кристаллографических направлений, в результате чего разрушается значительное количество связей Si-O. При этом на поверхности трещины образуются ионы Si4+ и О2- с ненасыщенными валентными связями. Такая поверхность имеет высокую энергию и более высокую химическую активность. Поверхность «активированного» кремнезема повышает его окислительную способность. Это явление указывает на наличие тенденции к перестройке поверхности за счет миграции атомов или к адсорбированию других компонентов, в результате чего энергетическое состояние поверхности понижается. При образовании новой поверхности периклаза и кварцевых зерен часть межатомных связей разрывается, а это приводит к увеличению энергии системы. Избыточная свободная энергия этих материалов, имеющих высокую площадь поверхности, достаточно велика, чтобы являться движущей силой процесса твердофазных реакций и силикатообразования. Образовавшийся микрокремнезем и периклазовый цемент при смешивании шихты и введении воды являются компонентами вяжущей системы при последующем гранулировании или брикетировании шихты. Механохимическая активация периклаза и кварцевого песка кроме интенсификации твердофазных реакций с другими компонентами шихты будет способствовать снижению температуры полиморфных превращений, температуры спекания, существенно интенсифицирует процессы диффузии и массопереноса, скорость растворения этих компонентов. Одновременно с механохимической обработкой шихтовых компонентов следует применить способ обработки фторфлогопитового расплава высококонцентрированной электроимпульсной энергией наносекундных электромагнитных импульсов, создаваемых генератором, описание которого приведено в патенте РФ № 2004064 по кл. Н03КЗ/33 [16]. Характерной особенностью наносекундных электромагнитных импульсов является их однополярность, что приводит к отсутствию осциллирующих колебаний в излучаемом поле. Следствием этого, по мнению авторов работы [16], является наличие пространственно-временного направленного действия силы за время одного импульса, что создает условия для воздействия на физико-химические свойства и структуру расплава. Для воздействия на расплав фторфлогопита электромагнитным излучением используется генератор импульсов, соединенный одним выводом с токоподводом подвижного электрода плавильного агрегата, а другим - с токоподводом подового электрода. Воздействие генератора чередуется с подачей тока на электроды. Генератор импульсов включается при отключении питания печи тогда, когда количество расплава достигнет 1/5-1/4 объема тигля. Чередование включения генератора и отключения питания печи длится 3-5 мин. При этом пропускают однополярные импульсы тока длительностью 0,5 нс, мощностью 1 и более мегаватт, с частотой повторения 1 кГц. Обработку расплава производят до конца плавки. Обработка расплава наносекундными электромагнитными импульсами, по мнению авторов работы [16], способна увеличить количество атомов, обладающих избыточной энергией, необходимой для совершения акта перехода частицы из одного положения равновесия в другое. Это должно способствовать изменению параметров вязкого течения, самодиффузии и других свойств расплава, что приведет к ускорению прохождения твердофазных реакций, массо- и теплообмена, образованию соединений (ассоциаций) калиевого фторфлогопита. Таким образом, в ходе проведенных исследований установлена следующая последовательность процессов при нагреве и плавлении основных компонентов шихты для получения фторфлогопита: дегидратация → твердофазные реакции → термическое разложение компонентов → вторичные реакции и спекание → образование жидкой фазы → плавление → гомогенизация расплава. Полная гомогенизация расплава наступает при температуре 1380-1400 °С.

Об авторах

М. В Юдин

ПАО Корпорация «ВСМПО-АВИСМА Титано-магниевый комбинат»

М. М Николаев

ПАО Корпорация «ВСМПО-АВИСМА Титано-магниевый комбинат»

А. М Игнатова

Пермский национальный исследовательский политехнический университет

М. Н Игнатов

Пермский национальный исследовательский политехнический университет

Список литературы

  1. Дубровский М.И. Фазовая диаграмма части системы lac-fo-nf-kp (расширенный «базальтовый» тетраэдр) при 1 атм. - Апатиты: Изд-во Кол. науч. центра Акад. наук СССР, 1989. - 34 с.
  2. Eclogites and eclogites: their differences and similarities / R.G. Coleman, E.D. Lee, L.B. Beatty, W.W. Brannock // Geological Society of America Bulletin. - 1965. - Vol. 76. - Р. 483-508.
  3. Water partitioning between mantle minerals from peridotite xenoliths / K. Grant, J. Ingrin, J.P. Lorand, P. Dumas // Contributions to Mineralogy and Petrology. - 2007. - Vol. 154. - Р. 15-34.
  4. Захаров А.М. Диаграммы состояния двойных и тройных систем: учеб. пособие для студ. высш. учеб. заведений.- М.: Металлургия, 1990.- 240 с.
  5. Изучение анизотропности симиналов фторфлогопитового типа методами матричного и динамического наноиндентирования / А.М. Игнатова, М.В. Юдин, М.М. Николаев, М.Н. Игнатов // Вестник Пермского национального исследовательского политехнического университета. Машиностроение. Материаловедение. - 2012. - Т. 17, № 4. - С. 22-29.
  6. Игнатова А.М., Наумов С.В. Подготовка прозрачных шлифов синтетических минеральных сплавов для оценки их структуры // Вестник Пермского государственного технического университета. Машиностроение. Материаловедение. - 2010. - Т. 13, № 2. - С. 127-133.
  7. Характеристика микроструктуры и пористости синтетических минеральных сплавов на примере рентгеновской микротомографии фторфлогопита / А.М. Игнатова, М.Н. Игнатов, Д.В. Корост, М.М. Николаев, М.В. Юдин // Вестник Пермского университета. Геология. - 2013. - № 2. - С. 56-64.
  8. Прянишников В.П. Система кремнезема. - Л.: Стройиздат, 1971. - 240 с.
  9. Чайкина М.В. Механохимия природных и синтетических апатитов. - Новосибирск, 2002. - 219 с.
  10. Функциональная и технологическая схема производства фторфлогопитовых изделий / М.В. Юдин, М.М. Николаев, А.М. Игнатова, М.Н. Игнатов // Вестник Пермского национального исследовательского политехнического университета. Машиностроение. Материаловедение. - 2017. - Т. 19, № 2. - С. 118-132.
  11. Исследование плазменной технологии получения силикатных тугоплавких расплавов / А.А. Никифоров, Е.А. Маслов, Н.К. Скрипникова, О.Г. Волокитин // Теплофизика и аэромеханика. - 2009. - Т. 16, № 1. - С. 159-163.
  12. Волокитин О.Г., Верещагин В.И. Особенности физико-химических процессов получения высокотемпературных силикатных расплавов // Известия вузов. Химия и химическая технология. - 2013. - Т. 56, № 8. - С. 71-76.
  13. Гетлинг А.В. Формирование пространственных структур конвекции Рэлея - Бенара // Успехи физических наук. - 1991. - Т. 161, № 9. - С. 10.
  14. Vorobiev G.I. Parameters and the correlation of the nanostructure and surface properties of polymeric materials of different functional purpose: thesis of dis.. Ph. D. of Technical Sciences. - SPb., 2013. - 19 p.
  15. Итин В.И., Найбороденко О.С. Высокотемпературный синтез интерметаллических соединений. - Томск, 1989. - 149 с.
  16. Дорогина Г.А., Балакирев В.Ф., Горкунов Э.С. Физико-химический анализ технологии получения порошковых магнитомягких материалов на основе железа / Ин-т Металлургии Урал. отд-ния Рос. акад. наук. - Екатеринбург, 2013. - 183 с.

Статистика

Просмотры

Аннотация - 66

PDF (Russian) - 35

Ссылки

  • Ссылки не определены.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах