ВЛИЯНИЕ СПОСОБОВ МЕХАНИЧЕСКОЙ ОБРАБОТКИ И СТЕРИЛИЗАЦИИ НА СТРУКТУРНО-ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ПОВЕРХНОСТНОГО СЛОЯ КОСТНЫХ ОБРАЗЦОВ

  • Авторы: Литвинов Ю.Ю1, Матвейчук И.В1, Розанов В.В1,2, Краснов В.В1
  • Учреждения:
    1. Всероссийский научно-исследовательский институт лекарственных и ароматических растений
    2. Московский государственный университет имени М.В. Ломоносова
  • Выпуск: Том 25, № 2 (2021)
  • Страницы: 186-191
  • Раздел: Статьи
  • URL: https://ered.pstu.ru/index.php/rjb/article/view/2282
  • DOI: https://doi.org/10.15593/RZhBiomeh/2021.2.06
  • Цитировать

Аннотация


Представлены результаты структурно-функционального анализа поверхностного слоя образцов костной ткани после их механической обработки и стерилизации. Из цилиндрических заготовок, полученных из фрагментов диафиза бедренной кости быка с использованием полых фрез, изготавливали на прецизионном отрезном станке костные образцы заданной высоты с применением дисковых фрез. При этом одну из торцевых поверхностей костных образцов обрабатывали стальным отрезным диском с зубьями, а вторую - дисковой фрезой с алмазным напылением режущей кромки. Полученные образцы стерилизовали разными методами: озоновым, радиационным и комбинированным, основанным на сочетанном озоно-кислородном воздействии, - на первом этапе и радиационным на втором. После механического и стерилизующего физико-химического воздействия определяли упруго-пластические свойства (показатель микротвёрдости по Виккерсу) поверхностного слоя на торцах цилиндрических костных образцов. При изучении закономерностей изменения структуры торцевых поверхностей образцов использовали сканирующую электронную микроскопию. Установлено преимущество механической обработки костных образцов отрезной дисковой фрезой с алмазным напылением режущей кромки по сравнению с дисковой фрезой с отрезной кромкой в виде зубьев. Исследование упруго-пластических характеристик поверхностного слоя костных образцов в микрообъемах показало, что стерилизующее физико-химическое воздействие озоно-кислородной смесью, радиационной обработкой потоком быстрых электронов с дозами радиационного поглощения 10, 15 и 20 кГр, а также их комбинированное воздействие не оказывает существенного влияния на показатели микротвердости образцов.

Полный текст

Введение Эффективность выполнения реконструктивно-восстановительных операций является актуальной и многофакторной проблемой современной биоимплантологии, в решении которой используются различные научно-методические подходы [5, 7, 14]. Одним из них является обеспечение качества поверхности костных трансплантатов [6, 15]. Сведения о структурно-функциональном состоянии поверхностного слоя костных трансплантатов представляют интерес при контроле образцов после различных видов физико-химической обработки при их получении [12]. Для контроля качества поверхностного слоя костных трансплантатов с целью получения его количественных и качественных характеристик используют методы биомеханического и микроскопического анализа [3, 9]. Оптимизация технологии получения костных биоимплантатов для улучшения их регенеративного потенциала [4, 8], а также методов их стерилизации обусловила необходимость проведения структурно-функционального изучения костных образцов после их изготовления с применением разных способов разделения и инновационного метода комбинированной физико-химической стерилизации [11]. Цель работы - изучение закономерностей структурно-функциональных изменений поверхностного слоя образцов костной ткани после их механической обработки и стерилизации. Материалы и методы В исследовании использовали образцы компактного вещества кости из диафиза бедренных костей половозрелых, клинически здоровых животных (бык). Полученные с применением полых фрез цилиндрические заготовки диаметром 5 мм разрезали на отдельные фрагменты длиной 12 мм за один проход с помощью отрезного станка IsoMet 4000 Linea Precision Saw (Buehler, Германия). При этом одну из торцевых поверхностей цилиндрических фрагментов обрабатывали стальным отрезным диском, имеющим по внешней кромке зубья высотой 0,5 мм, а вторую - дисковой фрезой с алмазным напылением режущей кромки. Механическую обработку костных фрагментов осуществляли в охлаждающей среде (раствор 0,9% натрия хлорида с температурой 4÷6 ºС, скорость подачи струи в зону резания 3 л/мин). Скорость вращения шпинделя отрезного станка составляла 2000 об/мин, скорость подачи фрезы - 5 мм/мин. Полученные образцы разделили на партии (n = 36) и стерилизовали разными методами: - озоновым [11] - с одновременной стерилизацией образцов и упаковкой в проточном режиме озоно-кислородной смесью (концентрация озона 6÷8 мг/л) в течение 15 мин; - радиационным [1] - с одновременной стерилизацией образцов и упаковкой облучением с величинами поглощенной дозы в 10, 15, 20, 25 килогрей (кГр); - комбинированным [1, 12] - с одновременной стерилизацией образцов и упаковки озоно-кислородной смесью (концентрация озона 6-8 мг/л) в течение 15 мин с последующим радиационным облучением с величинами поглощенной дозы в 10, 15, 20, 25 кГр. Озоно-кислородную смесь получали с использованием промышленного генератора медицинского озона А-с-ГОКСф-5-02ОЗОН (ОАО «Электромашиностроительный завод «Лепсе», г. Киров, Россия), а также концентратора кислорода VisionAir (США). Контроль текущего реального значения концентрации озоно-кислородной смеси осуществляли с использованием измерителя концентрации озона ИКО-50 (ОАО «Электромашиностроительный завод «Лепсе», г. Киров, Россия). При изготовлении герметичных пакетов для упаковки костных образцов использовали термоаппарат F70-400 (Нидерланды) и двухслойную термопленку. Радиационное воздействие на образцы осуществляли в Научно-исследовательском институте ядерной физики МГУ имени М.В. Ломоносова на линейном ускорителе непрерывного действия с энергией 1 мегаэлектронвольт (МэВ) с помощью пучка до 25 киловатт. После механического и стерилизующего физико-химического воздействия определяли упруго-пластические свойства поверхностного слоя на торцах цилиндрических костных образцов посредством показателя микротвердости по Виккерсу с использованием цифрового микротвердомера DM 8 (AFFRI, Италия). Измерения осуществляли в продольном по отношению к ориентации остеонных структур направлении. Величина нагрузки на индентор при проведении измерений составила 50 г, или 0,490 Н. Продолжительность приложения нагрузки 10 с. Для микроскопического анализа структуры торцевых поверхностей образцов использовали сканирующий электронный микроскоп Phenom XL (Phenom-World, Нидерланды). Статистический анализ полученных результатов проводили с использованием программы Statistica 13.3 (TIBCO Software Inc, США). Для каждого показателя вычисляли среднее значение M и стандартное отклонение SD. Для сравнения средних значений в двух независимых группах применяли t-критерий Стьюдента. Различия показателей считали статистически значимыми при p < 0,05. Результаты и обсуждение Анализ результатов выполненного исследования показал, что после механической обработки цилиндрических костных заготовок зубчатым отрезным диском на всей площади поверхности среза отчетливо видны параллельные борозды, шириной (14,4 ± 1,3) мкм, с расстоянием между ними (145,6 ± 12,7) мкм (рис. 1, а). После обработки отрезной дисковой фрезой с алмазным напылением режущей кромки на торцевой поверхности образца визуализируется неповрежденная структура компактного вещества кости с ровными, четкими краями (рис. 1, б). а б Рис. 1. Микроструктура поверхности: а - после обработки с использованием зубчатого отрезного диска, увеличение ×300; б - после обработки дисковой фрезой с алмазным напылением режущей кромки, увеличение ×370 После использования отрезного зубчатого диска отпечатки индентора микротвердомера на торцевых поверхностях срезов практически не определяются. В то же время после механической обработки образцов отрезной дисковой фрезой с алмазным напылением режущей кромки на торцевых поверхностях срезов отчетливо регистрируются симметричные микроотпечатки индентора микротвердомера (рис. 2). Исследование упруго-пластических характеристик поверхностного слоя образцов показало, что стерилизующее физико-химическое воздействие озоно-кислородной смесью, радиационной обработкой потоком быстрых электронов с дозами радиационного поглощения 10, 15 и 20 кГр, а также их комбинированное воздействие не оказывают существенного влияния на показатели микротвердости образцов. Рис. 2. Отпечаток четырехгранной пирамиды индентора микротвердомера. Увеличение ×600 Показатели микротвердости поверхности нативных сухих образцов до и после стерилизующих воздействий № Вид стерилизующего воздействия Микротвердость, МПа (М ± SD) 1 Нативная сухая кость (контроль) 553,4 ± 10,2 2 Озоно-кислородная смесь 537,2 ± 14,4* 3 Радиация - 10 кГр 538,8 ± 15,0* 4 Озоно-кислородная смесь + радиация - 10 кГр 543,6 ± 18,6* 5 Радиация - 15 кГр 538,3 ± 19,8* 6 Озоно-кислородная смесь + радиация - 15 кГр 557,4 ± 18,8 7 Радиация - 20 кГр 547,0 ± 19,2 8 Озоно-кислородная смесь + радиация - 20 кГр 557,9 ± 19,8 9 Радиация - 25 кГр 529,7 ± 19,2* 10 Озоно-кислородная смесь + радиация - 25 кГр 517,7 ± 22,8* Примечание: *- различия статистически значимы по сравнению с контролем, р < 0,05. Однако при радиационном воздействии на образцы дозой поглощения 25 кГр и применении комбинированного способа стерилизации с дозой радиационного поглощения на втором этапе 25 кГр снижаются показатели их микротвердости на 4,3 и 6,5% соответственно (таблица), что согласуется с имеющимися в литературе данными других исследователей [2]. Проведенные нами ранее исследования позволили установить оптимальный режим комбинированной стерилизации, в котором величина поглощенной дозы при радиационной обработке на втором этапе стерилизации составляет не более 15 кГр [10, 13]. Заключение Таким образом, установлено влияние использованных в исследовании способов механической обработки и стерилизации на структуру и упруго-пластические характеристики поверхностного слоя костных образцов. Предложенный подход к оптимизации способа механической обработки костных образцов при их получении позволяет снизить повреждающее влияние режущего инструмента на структуру обрабатываемой поверхности костных образцов, что является одним из важных условий повышения качества трансплантатов. Экспериментально установлено отсутствие существенного влияния предложенного комбинированного метода стерилизации костных образцов с установленными оптимальными параметрами на упруго-пластические характеристики поверхностного слоя костных трансплантатов.

Об авторах

Ю. Ю Литвинов

Всероссийский научно-исследовательский институт лекарственных и ароматических растений

И. В Матвейчук

Всероссийский научно-исследовательский институт лекарственных и ароматических растений

В. В Розанов

Всероссийский научно-исследовательский институт лекарственных и ароматических растений; Московский государственный университет имени М.В. Ломоносова

В. В Краснов

Всероссийский научно-исследовательский институт лекарственных и ароматических растений

Список литературы

  1. Алимов А.С., Близнюк У.А., Борщеговская К.Ю., Варзарь С.М., Еланский С.Н., Ишханов Б.С., Литвинов Ю.Ю., Матвейчук И.В., Николаева А.А., Розанов В.В., Студеникин Ф.Р., Черняев А.П., Шведунов В.И., Юров Д.С. Применение пучков ускоренных электронов для радиационной обработки продуктов питания и биоматериалов // Известия Российской академии наук. Серия физическая. - 2017. - Т. 81, № 6. - С. 819-823.
  2. Воробьев К.А., Божкова С.А., Тихилов Р.М., Черный А.Ж. Современные способы обработки и стерилизации аллогенных костных тканей (обзор литературы) // Травматология и ортопедия России. - 2017. - Т. 23, №. 3. - С 134-147.
  3. Кирилова И.А., Подорожная В.Т., Легостаева Е.В., Шаркеев Ю.П., Уваркин П.В., Аронов А.М. Костно-пластические биоматериалы и их физико-механические свойства // Хирургия позвоночника. - 2010. - № 1. - С. 81-87.
  4. Кирилова И.А., Садовой М.А., Подорожная В.Т. Сравнительная характеристика материалов для костной пластики: состав и свойства // Хирургия позвоночника. - 2012. - № 3. - С. 72-83.
  5. Корель А.В., Кузнецов С.Б. Тканеинженерные стратегии для восстановления дефектов костной ткани // Международный журнал прикладных и фундаментальных исследований. - 2019. - № 4. - С. 228-234.
  6. Краснов В.В., Матвейчук И.В., Розанов В.В., Литвинов Ю.Ю. Оптимизация качества поверхностного слоя костных имплантатов с целью повышения их регенеративного потенциала // Гены и клетки. - 2019. - Т. 14. Приложение. - С. 125.
  7. Кузнецова Д.С., Тимашев П.С., Баграташвили В.Н., Загайнова Е.В. Костные имплантаты на основе скаффолдов и клеточных систем в тканевой инженерии (обзор) // Современные технологии в медицине. - 2014. - Т. 6, № 4. - С. 201-212.
  8. Литвинов Ю.Ю., Матвейчук И.В., Розанов В.В. Современные подходы к оптимизации технологии получения костных имплантатов // Гены и клетки. - 2019. - Т. 14. Приложение. - С. 135-136.
  9. Матвейчук И.В., Розанов В.В., Литвинов Ю.Ю. Изучение биофизических свойств костной ткани для медико-биологических приложений // Альманах клинической медицины. - 2016. - Т. 44, № 2. - С. 193-202.
  10. Розанов В.В., Матвейчук И.В., Лекишвили М.В., Литвинов Ю.Ю., Андреева Т.М., Николаева А.А. Инновационные подходы к стерилизации имплантатов // Технологии живых систем. - 2015. - Т. 12, № 4. - С. 74-76.
  11. Розанов В.В., Матвейчук И.В., Литвинов Ю.Ю., Уланова А.А., Пантелеев И.В. Анализ архитектоники костной ткани как объекта стерилизации с использованием озона // Биорадикалы и антиоксиданты. - 2016. - № 3. - С. 229-231.
  12. Розанов В.В., Матвейчук И.В., Черняев А.П., Николаева Н.А., Саввинова Л.Н. Исследование структурно-функциональных характеристик поверхности костных имплантатов при комбинированной стерилизации // Известия Российской академии наук. Серия физическая. - 2020. - Т. 84, № 11. - С. 1587-1592.
  13. Розанов В.В., Матвейчук И.В., Черняев А.П., Николаева Н.А., Краснов С.А. Современное состояние и направления дальнейшего развития высокотехнологичных методов радиационной стерилизации // Известия Российской академии наук. Серия физическая. - 2020. - Т. 84, № 4. - С. 521-524.
  14. Стогов М.В., Смоленцев Д.В., Киреева Е.А. Костные ксеноматериалы в травматологии и ортопедии (аналитический обзор литературы) // Травматология и ортопедия России. - 2020. - Т. 26, № 1. - С. 181-189.
  15. Щелкунова Е.И., Воропаева А.А., Корель А.В., Майер Д.А., Подорожная В.Т., Кирилова И.А. Заселение деминерализованного костного матрикса клетками хондрогенного ряда // Комплексные проблемы сердечно-сосудистых заболеваний. - 2018. - Т. 7, № 2. - С. 102-111.

Статистика

Просмотры

Аннотация - 58

PDF (Russian) - 31

Ссылки

  • Ссылки не определены.

© Российский журнал биомеханики, 2022

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах