ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРИБЫЛИ БАНКА В ЗАВИСИМОСТИ ОТ ЕГО ВЛОЖЕНИЙ В ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ И РЕКЛАМУ С ПОМОЩЬЮ ЯЗЫКА ПРОГРАММИРОВАНИЯ R
- Авторы: Глухов В.Н1, Кузнецова О.А1
- Учреждения:
- Самарский национальный исследовательский университет имени академика С.П. Королева
- Выпуск: № 1 (2017)
- Страницы: 81-86
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/amcs/article/view/2233
- DOI: https://doi.org/10.15593/прикладная%20математика%20и%20вопросы%20управления%20/%20applied%20mathematics%20and%20control%20sciences.v0i1.2233
- Цитировать
Аннотация
Приводятся результаты исследования зависимости объема прибыли банка от его вложений в рекламу и информационно-коммуникационные технологии (ИКТ) с помощью регрессионного и корреляционного анализа. Показано, какое значение имеют данные факторы и куда выгоднее банку вкладывать деньги, чтобы иметь большую прибыль по сравнению с другими банками в будущем. Модель строится на основе метода наименьших квадратов. Проверка ее адекватности осуществляется с помощью F-критерия Фишера, а определение значимости коэффициентов регрессии - с помощью t -критерия Стьюдента. Вычисления производятся в программной среде RStudio посредством языка программирования R.
Полный текст
Основными источниками формирования прибыли банка обычно считаются кредитование населения и реализация выпущенных ценных бумаг. Это действительно так, потому что большую часть банковской прибыли составляют объемы возвращенных кредитов с процентами и продажа ценных бумаг сторонним организациям. Многие авторы рассматривали влияние статей активов и пассивов банка на получение ими прибыли в будущем периоде [1]. Косвенные факторы, влияющие на прибыль, в анализе и расчете обычно не учитываются, что не совсем верно. Развитие информационно-коммуникационных технологий и повсеместное использование рекламы в прессе, на радио, телевидении, в Интернете внесло свои коррективы в создание прибыли банка. Это можно проследить по следующим зависимостям: использование рекламы способствует созданию имиджа банка и его узнаваемости среди населения, а значит, если банк неубыточный, то увеличивается число потенциальных клиентов, многие из которых будут обращаться к данному банку с целью получения услуг. Широкое использование ИКТ в деятельности банка позволяет оптимизировать бизнес-процессы на предприятии, предоставлять более широкий ассортимент инновационных продуктов и услуг для населения, а значит, уменьшить затраты на операционную деятельность банка и привлечь новых клиентов благодаря разнообразию банковских услуг. Отсюда можно сделать вывод о том, что вложения банка в рекламу и ИКТ являются если не ключевым фактором формирования его прибыли, то весомым косвенным инструментом. Таким образом, цель данной работы состоит в том, чтобы определить регрессионную зависимость прибыли банка от затрат на его развитие. В соответствии с целью можно выделить следующие задачи: - построить модель парной регрессионной зависимости между прибылью и рекламой; - создать модель парной регрессионной зависимости между прибылью и ИКТ; - построить модель множественной регрессионной зависимости между прибылью, рекламой и ИКТ. В ходе исследования был проведен двухфакторный анализ прибыльности банка. Исходными данными являлись полученная прибыль банков и их затраты на ИКТ и рекламу в 2013 г. Данные брались по 28 российским банкам, единица измерения - миллион рублей. Полученная информация была занесена в таблицу Excel в виде 29 строк (шапка таблицы и значения) и 3 столбцов (ICT - ИКТ, Adv - реклама, Income - прибыль). В качестве среды разработки использовался бесплатный программный продукт - RStudio. Для проведения исследования был выбран язык программирования R, так как он имеет ряд преимуществ по сравнению с другими программными продуктами, которые имеют схожие функции, а именно: бесплатность, открытость для разработчиков, кросс-платформенность, гибкость, расширяемость, превосходство в 2D- и 3D-визуализации. Для импорта данных из таблицы Excel в RStudio используются следующие команды: install.packages (“xlsx”, dep = T) library (xlsx) data <- read.xlsx (“data.xlsx”, sheetIndex = 1), которые устанавливают пакет для работы с файлами Excel, включают его в работу и заносят данные из таблицы Excel в переменную data. В процессе подготовки были проанализированы различные функции, описывающие зависимость прибыли от ИКТ и рекламы. Лучший результат коэффициента детерминации был отмечен у линейной модели (R2 = 0,91), соответственно, в исследовании в качестве функции регрессионной модели выступает линейная функция вида Y = a0 + a1x1 + a2x2. Для первоначального анализа данных были определены коэффициенты корреляции между каждой из объясняющих переменных и объясняемой. Для этого в R используется функция cor (): cor(data$ICT, data$Income). Полученные значения равны 0,9293 и 0,8601 соответственно, что показывает, что между объясняемой и каждой из объясняющих переменных существует сильная корреляционная зависимость. При построении корреляционной модели определена низкая статистическая значимость свободного члена уравнения по критерию Стьюдента, в результате чего его включение оказалось нецелесообразным. Соответственно, модель примет вид Y = a1x1 + a2x2. Для того чтобы провести множественный регрессионный анализ методом наименьших квадратов, нужно использовать функцию lm(), которая в качестве первого аргумента принимает уравнение функции, описывающей вид модели (подаргумент -1 означает то, что свободный член в модели будет отсутствовать), а в качестве второго аргумента - таблицу данных, использующихся для создания модели. Функция summary() показывает детальные данные и описательную статистику модели, переданной ей в виде аргумента: fit <-lm(Income~ICT+Adv -1, data=data) summary(fit). Вышеприведенный код выведет на экран данные описательной статистики для получившейся линейной модели (таблица). Проанализируем их. Результаты описательной статистики Показатель Оценка Стандартная ошибка t-критерий Pr(>|t|) Коэффициенты: - ICT - Adv 119,70 337,76 18,44 103,15 6,491 3,274 7,02 · 10-7 0,00299 Коэффициент детерминации R2 0,9136 - - - F-критерий 137,4 - - - Коэффициенты линейной функции равны 119,7 и 337,76. Это означает, что при вложении 1 млн рублей в ИКТ отдача составит 119,9 млн прибыли либо при вложении 1 млн рублей в рекламу отдача составит 337,76 млн прибыли. Регрессионная модель примет вид Y = 119,7x1 + 337,76x2. Коэффициент детерминации R2 = 0,9136. Это указывает на то, что найденная функция достаточно хорошо описывает исходные данные. Изменение прибыли на 91 % зависит от вложений в ИКТ и рекламу. Статистическая значимость модели по F-критерию Фишера составляет 95 %. Коэффициенты регрессии значимы по t-критерию Стьюдента с надежностью 95 %. Таким образом, в данной работе произведена оценка зависимости прибыли банка от факторов, которые прямым образом не влияют на доходность банка - вложения банка в ИКТ и рекламу. Проведено исследование, задачей которого было построение модели и нахождение функции, наилучшим образом описывающей построенную модель. Полученная модель может быть использована для прогнозирования прибыли банка, а также в задачах оптимизации его прибыли.Об авторах
В. Н Глухов
Самарский национальный исследовательский университет имени академика С.П. Королева
Email: headlaw96@gmail.com
О. А Кузнецова
Самарский национальный исследовательский университет имени академика С.П. Королева
Email: olga_5@list.ru
Список литературы
- Пепеляева Т.Ф. Прогнозирование прибыли коммерческого банка с помощью регрессионных моделей // Прикладная математика и вопросы управления. - 2012. - № 10. - С. 160-174.
- Эконометрика: учебник для магистров / И.И. Елисеева [и др.]; под ред. И.И. Елисеевой. - М.: Юрайт, 2014. - 453 с.
- Кузнецова О.А., Татарникова М.С. Эконометрическое моделирование: учеб. пособие. - Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2012. - 44 с.
- R in action. Data analysis and graphics with R. - Manning Publications Co., 2011. - 447 p.
Статистика
Просмотры
Аннотация - 78
PDF (Russian) - 65
Ссылки
- Ссылки не определены.