ДИАГНОСТИКА МЕЖВИТКОВОГО ЗАМЫКАНИЯ ОБМОТКИ СТАТОРА АСИНХРОННОГО ДВИГАТЕЛЯ НА ОСНОВЕ АНАЛИЗА ТРАЕКТОРИИ ВРАЩЕНИЯ ВЕКТОРА ТОКА СТАТОРА

Аннотация


Асинхронный двигатель является наиболее распространённым видом электрической машины на сегодняшний день, поэтому остро стоит вопрос о контроле его состояния. Наиболее часто встречающимся видом неисправности асинхронной машины является межвитковое замыкание обмотки статора. Существующие сегодня методы диагностики межвиткового замыкания не обладают возможностью диагностирования оборудования онлайн и требуют большой вычислительной мощности. Цель исследования: разработка метода диагностики межвиткового замыкания обмотки статора, основанного на использовании менее ресурсоемких алгоритмов. Методы: разработка метода основывается на координатном преобразовании вектора тока статора и дальнейшем анализе траектории вращения вектора Парка в двухфазных неподвижных координатах. Результаты: приведены принципы разработки диагностической системы обмоток статора по значениям тока статора. Приведено математическое описание асинхронного двигателя с короткозамкнутым ротором с дефектом в виде межвиткового короткого замыкания обмотки статора. Проведено моделирование процесса в среде MatLab Simulink с использованием библиотеки SimPowerSystem. Разработана лабораторная установка для исследования межвиткового короткого замыкания обмотки статора на базе асинхронного двигателя с закороченными витками. Реализация метода диагностики на основе анализа траектории вращения вектора статора производилась с помощью среды разработки в Mexbios Development Studio. Разработанная система диагностики является пригодной для использования и имеет большой запас точности измерений даже при использовании недорогих датчиков тока. Практическая значимость: применение системы не ограничивается лабораторным стендом. Метод может использоваться в промышленности с недоступным монтажом двигателя (крановый электропривод, системы воздушного охлаждения, электроцентробежные насосные установки и т.д.), удаленно расположенными установками (в насосе штанговых насосов и в водоносных установках). Основным преимуществом предлагаемого метода является его простота при меньшей обработке массива данных в алгоритме разработанной диагностической системы. Качественные результаты для подтверждения пригодности метода может дать детальный сравнительный анализ различных методов диагностики обнаружения межвиткового короткого замыкания статора.

Полный текст

Введение. В настоящее время существует множество методов комплексной диагностики асинхронных двигателей [1-3]. Обычно эти методы используют только с остановленным агрегатом, что, в свою очередь, не позволяет наблюдать за состоянием асинхронного двигателя (АД) в динамическом режиме. Большинство диагностических систем, работающих в динамическом режиме, основано на спектральном анализе тока статора [4]. Реализация этих методов требует высоких вычислительных ресурсов процессора преобразователя частоты. Хотя возможности современных микроконтроллеров могут легко решать задачу преобразования Фурье, диагностика является лишь одной из многих процедур, которые реализуются в системах электропривода. Процессорное время микроконтроллера преобразователя частоты может затрачиваться не только на систему управления и диагностики, но и на множество служебных и вспомогательных задач. Поэтому на практике необходимо использовать менее ресурсоемкие алгоритмы, которые обрабатывают массивы данных без затрат на цикл вычислений [5]. 1. Обоснование актуальности. Большое число неисправностей АД может быть классифицировано по электрическим и механическим причинам возникновения (рис. 1). Большинство неисправностей АД согласно статистике промышленного использования [6] связано с межвитковым замыканием обмотки статора (до 78 %). Поэтому этот тип из неисправностей является наиболее распространенным для АД. Межвитковое замыкание также может быть первопричиной других механических или электрических неисправностей. Например, эта неисправность приводит к несимметрии тока статора и, следовательно, к биению ротора [7], что является первопричиной перегрева и повреждений подшипника. Рис. 1. Классификация причин отказов АД 2. Постановка задачи. Для диагностики неисправностей обмоток двигателей могут применяться искусственные нейронные сетиобратного распространения, которые просты по своей структуре и стабильны в работе [8]. Хотя эти методы обеспечивают точную оценку, однако они требуют большого количества исходных данных для обучения на двигателях различной мощности, и для использования этих методов диагностики требуется дополнительное масштабирование данных. Получившие широкое распространение методы спектрального анализа не подходят для качественного диагностирования наиболее труднораспознаваемого дефекта обмотки статора - межвиткового замыкания. Это связно с использованием широтно-импульсной модуляции (ШИМ) для управления напряжением, подводимым к АД. В некоторых случаях высшие гармонические составляющие имеют и положительный эффект, так, например, третьи гармоники напряжения могут быть использованы в режиме перемодуляции [9-12]. Поэтому в этой статье рассмотрен метод динамической идентификации межвиткового замыкания обмотки статора, который не основан на спектральном анализе тока. 3. Теоретическая часть. Модель АД с межвитковым замыканием обмотки статора была построена в MatLab/Simulink с помощью библиотеки блоков SimPowerSystems для электрических систем (рис. 2). В модели часть импеданса статорной обмотки А закорочена, являясь эквивалентом межвиткого замыкания. Для сравнения токов в нормальном и аварийном режимах была добавлена модель исправного двигателя с аналогичными параметрами, без короткого замыкания. Рис. 2. MatLab-Simulink исправный и неисправный АД Рассмотрим базовую модель модели АД в системе координат αβ. Для этого используется система электромагнитных динамических уравнений: (1) где - принятые обозначения; - активное сопротивление статора [Ом], - активное сопротивление ротора [Ом], - полная индуктивность статора, Гн, - полная индуктивность ротора, Гн, - индуктивность намагничивания, Гн. Поскольку одна часть обмотки статора фазы закорочена, уравнения можно записать следующим образом: (2) (3) где - закороченная часть активного сопротивления статора, Ом, - закороченная часть индуктивности статора, Гн. Результаты моделирования представлены в виде траектории вращения вектора тока статора исправного (рис. 3, а) и неисправного (рис. 3, б) двигателя. Хорошо видно, что траектория тока на рис. 3, б с межвитковым замыканием в фазе A принимает более вытянутую форму и вытягивается вдоль оси поврежденной фазы. В этом случае ось эллипса имеет угловое рассогласование с осью α, это связано с влиянием несимметричного вращающегося магнитного поля. а б Рис. 3. Траектория вращения вектора тока в исправном АД Рис. 4. Структурная схема с системы диагностики межвиткового замыкания АД Система диагностики короткого замыкания статора реализована в среде Mexbios Development Studio [13-15]. В качестве аппаратной части использовался преобразователь частоты с открытой архитектурой на основе микроконтроллера TMS320F28335 производства Texas Instruments. Программное обеспечение преобразователя частоты имеет встроенную среду разработки MexBIOS. Архитектура данной среды дает возможность комбинировать алгоритмы системы управления и диагностики. Для управления АД использовалась скалярная система управления, но среда Mexbios Development Studio также позволяет реализовать любые алгоритмы датчиковых и бездатчиковых систем [16-20]. Структурная схема диагностики и управления АД представлена на рис. 4. По измеренным значениям статорных токов Ia, Ib вычисляется ток Ic в трехфазных ABC координатах. После полученные значения токов статора поступают на блок поворота осей эллипса. В данном блоке вектор статорного тока преобразуется из трехкоординатной (ABC) в двухкоординатную (αβ) систему. Поворот в неподвижной двухкоординатной системе осуществляется по следующим формулам: (4) где - угол поворота осей эллипса. Полученный вектор тока следует к блоку интегрирования, где вычисляются интегралы абсолютных значений токов каждой фазы. Блок сравнения интегралов (рис. 5) вычисляет сигнал коррекции угла, который минимизируется ПИ-регулятором в обратной связи. Блок может быть описан следующими выражениями: (5) где - значение максимального интеграла тока, - функция поиска максимального значения их перечисленных, - сигнум-функция, - массив значений, направляемых на блок индикации, M - отличие значение максимального интегрированного тока от среднего в %, направляемое на блок индикации, S - сигнал ошибки углового рассогласования, направляемый на ПИ-регулятор, для минимизации ошибки. Рис. 5. Графический интерфейс блока индикации в Mexbios Development Studio После настройки угла поворота осей эллипса в блоке индикации определяется максимальный интеграл тока и делается вывод о состоянии обмотки. Чем больше максимальный интегрированный ток отличается от среднего, тем более вероятно, что обмотка имеет межвитковое короткое замыкание. Поскольку в Mexbios Development Studio имеется встроенный симулятор, ситуация с замыканием 1/30 части фазовой обмотки в двигателе с различными мощностями показала значение интеграла тока статора в поврежденной фазе, отличающееся от среднего на 1,2-2,5 %. Для исследования были использованы модели двигателей с мощностью от 1 до 75 кВт. 4. Результаты экспериментальных исследований. Разработанная система была реализована в среде Mexbios Development Studio. Для эксперимента в АД часть одной обмотки была предварительно закорочена на 1:30 часть от общего числа витков. Двигатель, используемый в экспериментальном исследовании возникновения короткого замыкания обмотки статора, имеет параметры, представленные в таблице. Параметры АД, используемого для эксперимента Обозначение Наименование Значение P Номинальная мощность 1,7 [кВт] n Номинальная скорость вращение ротора 1470 [об.м.] Rr Активное сопротивление ротора 3,297 [Ом] Rs Активное сопротивление статора 3,6012 [Ом] Ls Индуктивность статора 0,1769 [Гн] Lr Индуктивность ротора 0,1769 [Гн] Lm Индуктивность намагничивания 0,168 [Гн] J Момент инерции ротора 0,035 [кг·м2] Zp Число пар полюсов 2 После точной настройки сигнала угла поворота осей эллипса (см. рис. 5) максимальный интеграл тока статора в поврежденной фазе отличается от среднего значения на 2,4 %, что указывает на межвитковое короткое замыкание в фазе А. Хотя лишь 1/30 часть обмотки фазы А была закорочена, алгоритм системы диагностики межвиткового замыкания обмотки статора показал приемлемый результат. В исправном двигателе без межвиткового замыкания интегрированные токи статора не отличались друг от друга более чем на 0,2 %. Выводы. Разработанная система диагностики является пригодной для использования и имеет большой запас точности измерений даже при использовании недорогих датчиков тока. Применение системы не ограничивается лабораторным стендом. Этот метод может использоваться в промышленности с недоступным монтажом двигателя (крановый электропривод, системы воздушного охлаждения, электроцентробежные насосные установки и т.д.), удаленно расположенными установками (в насосе штанговых насосов и в водоносных установках). Все методы диагностики, рассмотренные ранее, требуют либо больший объем вычислений, либо предварительных настроек на основе тестов. Основным преимуществом предлагаемого метода является его простота при меньшей обработке массива данных в алгоритме разработанной диагностической системы. Однако сравнение упомянутых и предложенных методов диагностики обнаружения межвиткового короткого замыкания статора может дать качественные результаты сравнительного анализа, которые очень полезны для подтверждения пригодности метода. Поэтому на следующем этапе исследования будет проводиться сравнительный анализ качества диагностирования межвиткового замыкания с использованием других методов.

Об авторах

Е. М Солодкий

Пермский национальный исследовательский политехнический университет

С. В Сальников

Пермский национальный исследовательский политехнический университет

Д. А Даденков

Пермский национальный исследовательский политехнический университет

Список литературы

  1. Ширман А.Р., Соловьев А.Б. Практическая вибродиагностика и мониторинг состояния механического оборудования. - М., 1996. - 276 с.
  2. Петухов В. Диагностика состояния электродвигателей. Метод спектрального анализа потребляемого тока // Новости электротехники. - 2005. - № 1(31). - С. 23-28.
  3. Singh G., Kumar T.C.A., Naikan V.N.A. Induction motor inter turn fault detection using infrared thermographic analysis // Infrared Physics &Technology. - 2016. - Vol. 77. - No. 7. - P. 277-282.
  4. Ghate V.N., Dudul S.V. Optimal MLP neural network classifier for fault detection of three phase induction motor // Expert Systems with Applications. - 2010. - Vol. 37. - No. 4. - P. 3468-3481.
  5. Solodkiy E., Dadenkov D., Kostygov A. Sensorless vector control of asynchronous machine based on reduced order Kalman filter // 17th International Ural Conference on AC Electric Drives (ACED). - 2018.
  6. Bonnett A.H., Sonknp G.C., Cause and analysis of stator and rotor failures in three-phase squirrel-cage induction motors // IEEE Trans. IndustryApplications. - 1992. - Vol. 28. - No. 4. - P. 921-937.
  7. Генкин М.Д., Соколова А.Г. Виброакустическая диагностика машин и механизмов. - М.: Машиностроение, 1987. - 288 с.
  8. Пономарев В.А., Суворов И.Ф. Комплексный метод диагностики асинхронных электродвигателей на основе использования искусственных нейронных сетей // Новости электротехники. - 2011. - № 2(68).
  9. Анучин А.С. Широтно-импульсная модуляция методом реализации мгновенных фазных потенциалов для трехфазных инвертеров напряжения // Тр. V Междунар. (16-я Всерос.) конф. по автоматизированному электроприводу АЭП-2007. - СПб., 2007. - С. 263-265.
  10. Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием. - М.: Академия, 2006. - 272 с.
  11. Сабинин Ю.А., Грузов В.Л. Частотно-регулируемые асинхронные приводы. - Л.: Энергоатомиздат, 1988. - 408 с.
  12. Терехов В.М., Осипов О.И. Системы управления электроприводов. - М.: Академия, 2005. - 304 с.
  13. MexBIOS Development Studio - визуальная среда разработки и моделирования [Электронный ресурс]. - URL: http://mechatronica-pro.com/ru/catalog/software/mexbiosdevelopmentstudio (дата обращения: 24.03.2018).
  14. Practice of using Mexbios Development Studio technologies in educational process / E., Solodkiy, D. Dadenkov, A. Terehin, I. Yusupov // 9th International Conference on Power Drives Systems. - 2016.
  15. Solodkiy E.M., Varzanosov P.V., Belonogov A.A. Induction motor sensorless vector control with an adaptive speed observer and direct electrical angle correction in coordinate transformations // International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). - 2017. - P. 1-4.
  16. Анучин А.С. Системы управления электроприводов: учебник для вузов. - М.: Изд. дом МЭИ, 2015. - 373 с.
  17. Schauder C. Adaptive speeds identification for vector control of induction motor without rotational transducers // IEEE Trans. Industry Application. - 1992. - Vol. 28. - No. 5. - P. 1054-1061.
  18. Грузов В.Л. Управление электроприводами с вентильными преобразователями: учеб. пособие. - Вологда: Изд-во ВоГТУ, 2003. - 294 с.
  19. Браславсикй И.Я. Энергосберегающий асинхронный электропривод: учеб. пособие для студ. вузов. - М.: Академия, 2004. - 256 с.
  20. Цылев П.Н., Щапова И.Н., Щапов В.А. Повышение энергоэффективности асинхронных электромеханических преобразователей энергии электропривода скважинных штанговых насосов // Нефтяное хозяйство. - 2014. - № 5. - С. 110-113.

Статистика

Просмотры

Аннотация - 44

PDF (Russian) - 23

Ссылки

  • Ссылки не определены.

© Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления, 2022

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах