We consider the process of deformation and buckling of flow during compression of the porous structure on the basis of aluminum with a high concentration of pores. The starting material is AMg6 alloy powder having a particle size of less than 1 mm. Compression tests are performed at an average rate of 1 mm / min. Loading at a temperature T = 293 K was carried out to a certain strain, then the test sample was photographed and stayed. The authors analyzed rotary modes of plastic flow and theirrelationship with the beginning of the fracture process. In order to do this, we allocated reference points - the joints and then determined their trajectory in the process of loading. We established the important role of nonuniform rotation associated with strong heterogeneity of the porous structure. Nonuniform rotation in the vicinity of large central pores lead to a collapse of the two neighboring pores and subsequent destruction. Phenomenology process was as follows: inhomogeneous rotation in the vicinity of large central pores lead to a collapse of two large and one medium-sized pores. This rotation "pulled" the displacement of two small pores related to them, etc. The concentration of large pores (3-5 times larger than the average size) was small 10-2; their statistics lied on the so-called "tail of the distribution" areas where statistical methods were ineffective, i.e. limit inequalities and theorems of probability theory were not executed. These areas ultimately determined moment buckling and fracture of the porous structure. Having a small number of large pores reduced the ultimate strain of 10-15 % and power consumption of the structures 25-35 %.

About the authors

A M Avdeenko

National University of Science and Technology “MISIS”

4, Leninsky av., 119934, Mos- cow, Russian Federation

Y A Krupin

National University of Science and Technology “MISIS”

4, Leninsky av., 119934, Mos- cow, Russian Federation

N A Pimenova

National University of Science and Technology “MISIS”

4, Leninsky av., 119934, Mos- cow, Russian Federation


  1. Microcalcifications of breast cancer and atypical cystic lobules associ- ated with infiltration of foam cells expressing osteopontin / T. Oyama, T. Sano, T. Hikino, Q. Xue // Virchows Arch. - 2002. - Bd. 440. - Р. 267-273.
  2. Andrews E., Sanders W., Gibson L.J. Compressive and tensile be- haviour of aluminium foams // Material Science and Engineering A. - 1999. - Vol. 270. - Р. 113-124.
  3. Size effects in ductile cellular solids. Part II: experimental results / E.W. Andrews, G. Gioux, P. Onck, L.J. Gibson // International Journal of Mechanical Sciences. - 2001. - Bd. 43. - Р. 701-713.
  4. Gupta N., Dung D. Luong, Cho Kyu Magnesium Matrix Composite Foams-Density // Mechanical Properties and Applications Metals. - 2012. - Vol. 2. - Р. 238-252.
  5. Compressive characteristics of A356 fly ash cenosphere composites synthesized by pressure infiltration technique / P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, A. Daoud // Compos. A. Appl. Sci. Manuf. - 2006. - Vol. 37. - Р. 430-437.
  6. Digital Image Correlation technique applied to mechanical characterisation of aluminium foam / M. De Giorgia, S. Giancane, R. No- bile, F. Palano // EPJ Web of Conferences 6. - 2010. - 31004. - Р. 1-8, available at: epjconf_ICEM14 _31004.pdf.
  7. Finite Element Modelling of Orthopaedic Implants using Metal Foam / G.L. Mancoa, K. Dattab, J. Williamc, T. Momend, D. Umbrelloa, Gagliardia // SIMULIA Customer Conference - 2011. - P. 1-15, avail- able at:
  8. Tagliavia G., Porfiri M., Gupta N. Elastic interaction of interfacial spherical-cap cracks in hollow particle filled composites // Int. J. Solids Struct. - 2011. - Vol. 48. - Р. 1141-1153.
  9. Marchi C.S., Mortensen A. Deformation of Open-Cell Aluminum Foam // Acta Mechanica. - 2001. - Vol. 49. - Р. 3959-3969.
  10. Kennedy A.R. The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 performs // Scripta Materiali. - 2002. - Vol. 47. - Р. 763-767.
  11. High strain rate compressive characterization of aluminum al- loy/fly ash cenosphere composites / D. Luong, N. Gupta, A. Daoud, P. Ro- hatgi // JOM. - 2011. - Vol. 63. - Р. 53-56.
  12. Koudelka P., Jiroušek O., Valach J. Determination of mechanical properties of materials with complex inner structure using microstructural models // MTM - Machines, Technologies, Materials. International virtual journal for science, technics and innovations for the industry. - 2011. - Vol. 5. - Р. 39-42, available at:
  13. Xinzhu W., Guangtao Zh. The Static Compressive Behavior Of Alu- minium Foam // Rev. Adv. Mater. Sci. - 2013. - Vol. 2. - Р. 316-321.
  14. Авдеенко А.М., Мельниченко А.С., Филиппова В.Б. Мезоме- ханика деформации пористых структур // Физическая мезомеханика. - 2003. - № 4. - С. 10-15.
  15. Авдеенко А.М., Крупин Ю.А. Влияние статистических харак- теристик распределения армирующих частиц на условия разрушения композиционного материала // Механика композиционных материалов и конструкций. - 2002. - Т. 8, № 1. - С. 97-102.



Abstract - 102

PDF (Russian) - 43



Copyright (c) 2014 Avdeenko A.M., Krupin Y.A., Pimenova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies