Dangerous conditions to the pipelines can often be caused by different defects which occur in the pipe walls. Non-through surface cracks attract particular interest. Generally these cracks have com- pound front form - in other words, they are polyvalent. Modern methods of nondestructive inspection do not give complete information on the crack front shape with adequate accuracy. In global practice de- fects are approximated with the semielliptical cracks to simplify calculation methods. In this case the defect is considered two-parameter and it is only defined by maximum depth and length.This paper examines a steel pipe, which has been weakened by the semi-elliptical non-through surface crack. The crack is common to the external pipe area and has longitudinal orientation. The pipe is exposed to internal pressure. Fracture mechanics problem is resolved with ANSYS CAE-system. Stress intensity factor values distribution for the crack front points is under analysis. These values were obtained by using invariant J-integral. J-integral values calculation was performed using integration over a region technique. The obtained results are compared with the data published by other authors. These data resulted from the analysis of pipes and cylindrical pressure vessels weakened by non-through cracks. The results of numerical modelling correlate accurately with the existing solutions. Accuracy of the fracture mechanics problem solution can be significantly increased by using regular mesh with mul- tiple finite elements along to the crack front. Fracture mechanics parameters investigation identified presence of edge effect common to the area where the crack front goes to the pipe surface. Edge effect refers to the local maximum values which are much higher than the crack front end points values. These values should be used while investigating crack propagation under variable loading - that is when pul- sations take place in load condition.

About the authors

S V Glushkov

Samara State Aerospace University (SSAU)

34, Moskovskoye shosse, 443086, Samara, Russian Federation

Yu V Skvortsov

Samara State Aerospace University (SSAU)

34, Moskovskoye shosse, 443086, Samara, Russian Federation

S N Perov

Samara State Aerospace University (SSAU)

34, Moskovskoye shosse, 443086, Samara, Russian Federation


  1. Дефектность труб нефтепроводов и методы их ремонта: моногр. / А.Г. Гумеров, К.М. Ямалеев, Р.С. Гумеров, Х.А. Азметов; под общ. ред. А.Г. Гумерова. - М.: Недра, 1998. - 252 с.
  2. Шлянников В.Н., Чадаев Д.А. Анализ изменения формы усталостной поверхностной трещины в трубопроводе // Проблемы прочности. - 2003. - № 5. - С. 80-92. doi: 10.1023/B:STOM.0000004537.88053.77
  3. Леонов В.П., Васильев А.К. Разработка подходов к нормирова-нию технологической дефектности сварных соединений кон-струкций различного назначения // Вопросы материаловедения. - 2007. - № 3(51). - С. 187-203.
  4. Мурзаханов Г.Х., Щугорев В.Н. Методы оценки конструкцион-ной прочности трубопроводов / под ред. В.П. Чиркова; Моск. энергетический ин-т. - М., 2009. - 71 с.
  5. Мурзаханов Г.Х. Диагностика технического состояния и оценка остаточного ресурса магистральных трубопроводов: учеб. посо-бие / под ред. А.И. Владимирова, В.Я. Кершенбаума; Нац. ин-т нефти и газа. - М., 2005. - 72 с.
  6. Li C.Q., Yang S.T. Stress intensity factors for high aspect ratio semi-elliptical internal surface cracks in pipes // Int. J. of Pressure Vessels and Piping. - 2012. - Vol. 96-97. - Р. 13-23. doi: 10.1016/j.ijpvp.2012.05.005
  7. Diamantoudis A.T., Labeas G.N. Stress intensity factors of semi-elliptical surface cracks in pressure vessels by global-local finite ele-ment methodology // Eng. Fract. Mech. - 2005. - Vol. 72(9). - P. 1299-1312. doi: 10.1016/j.engfracmech.2004.10.004
  8. Yang S.T., Ni Y.L., Li C.Q. Weight function method to determine stress intensity factor for semi-elliptical crack with high aspect ratio in cylindrical vessels // Eng. Fract. Mech. - 2013. - Vol. 109. - P. 138-149. doi: 10.1016/j.engfracmech.2013.05.014
  9. Elastic-plastic fracture analyses for pipeline girth welds with 3D semi-elliptical surface cracks subjected to large plastic bending /
  10. Y.M. Zhang, D.K. Yi, Z.M. Xiao, Z.H. Huang, S.B. Kumar // Int. J. of Pressure Vessels and Piping. - 2013. - Vol. 105-106. - P. 90-102. doi: 10.1016/j.ijpvp.2013.03.009
  11. Chiodo M.S.G., Ruggieri C. J and CTOD estimation procedure for cir-cumferential surface cracks in pipes under bending // Eng. Fract. Mech. - 2010. - Vol. 77(3). - P. 415-436. doi: 10.1016/j.engfracmech.2009.10.001
  12. Madia M., Arafan D., Zerbst U. Reference load solutions for plates with semi-elliptical surface cracks subjected to biaxial tensile loading // Int. J. of Pressure Vessels and Piping. - 2014. - Vol. 119. - P. 19-28. doi: 10.1016/j.ijpvp.2014.02.004
  13. Lei Y. J-integral and limit load analysis of semi-elliptical surface cracks in plates under combined tension and bending // Int. J. of Pressure Vessels and Piping. - 2004. - Vol. 81. - P. 43-56. doi: 10.1016/j.ijpvp.2003.12.002
  14. Atroshchenko E., Potapenko S., Glinka G. Stress intensity factor for a semi-elliptical crack subjected to an arbitrary mode I loading // Math-ematics and Mechanics of Solids. - 2014. - Vol. 19(3). - P. 289-298. doi: 10.1177/1081286512463573
  15. Predan J., Močilnik V., Gubeljak N. Stress intensity factors for cir-cumferential semi-elliptical surface cracks in a hollow cylinder sub-jected to pure torsion // Eng. Fract. Mech. - 2013. - Vol. 105. - P. 152-168. doi: 10.1016/j.engfracmech.2013.03.033
  16. Shahani A.R., Habibi S.E. Stress intensity factors in a hollow cylinder containing a circumferential semi-elliptical crack subjected to combine loading // Int J Fatigue. - 2007. - Vol. 29. - P. 128-140. doi: 10.1016/j.ijfatigue.2006.01.017
  17. Linear and non-linear analyses for semi-elliptical surface cracks in pipes under bending / B. Mechab, B. Serier, B.B. Bouiadjra, K. Kad-douri, X. Feaugas // Int. J. of Pressure Vessels and Piping. - 2011. - Vol. 88(1). - P. 57-63. doi: 10.1016/j.ijpvp.2010.11.001
  18. Скворцов Ю.В., Глушков С.В. Моделирование несквозных по-верхностных трещин в тонкостенных конструкциях // Вестник СГАУ. - 2011. - № 3(27). - Ч. 4. - С. 187-191.
  19. Сапунов В.Т. Прочность поврежденных трубопроводов. Течь и разрушение трубопроводов с трещинами: учеб. пособие. - М.: КомКнига, 2005. - 192 с.
  20. Erdogan P., Rotwani M. The use of COD and plastic instability in crack propagation and arrest in shells. Crack Propagation in Pipelines // Symp. Newcastle upon Tyne. - 1974. - P. 61-63.
  21. Матвиенко Ю.Г. Модели и критерии механики разрушения. - М.: Физматлит, 2006. - 328 с.
  22. Bloom J.M. Validation of the deformation plasticity failure assessment diagram (DPFAD) approach - The case of an axial flaw in a pressurized cylinder // J. Pressure Vess. Techn. - 1990. - Vol. 112. - P. 213-217. doi: 10.1115/1.2928616
  23. Newman J.C., Raju I.S. Stress-intensity factors for internal surface cracks in cylindrical pressure vessels // J. Pressure Vess. Techn. - 1980. - Vol. 102(4). - P. 342-346. doi: 10.1115/1.3263343
  24. Справочник по коэффициентам интенсивности напряжений: в 2 т. Т. 2: пер. с англ. / под. ред. Ю. Мураками. - М.: Мир, 1990. - 566 с.
  25. SINTAP: Structural INTegrity Assessment Procedures for European Industry: Final Revision // EU Project BE 95-1462. Brite Euram Pro-gramme. - Brussels, 1999.
  26. Report R6 Revision 4. Assessment of the Integrity of Structures Containing Defects // British Energy Generation Ltd. - Gloucester, UK, 2000.



Abstract - 18

PDF (Russian) - 101



Copyright (c) 2014 Glushkov S.V., Skvortsov Y.V., Perov S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies